Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 921
Filtrar
1.
Mol Cell ; 84(14): 2648-2664.e10, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38955181

RESUMEN

The essential Mediator (MED) coactivator complex plays a well-understood role in regulation of basal transcription in all eukaryotes, but the mechanism underlying its role in activator-dependent transcription remains unknown. We investigated modulation of metazoan MED interaction with RNA polymerase II (RNA Pol II) by antagonistic effects of the MED26 subunit and the CDK8 kinase module (CKM). Biochemical analysis of CKM-MED showed that the CKM blocks binding of the RNA Pol II carboxy-terminal domain (CTD), preventing RNA Pol II interaction. This restriction is eliminated by nuclear receptor (NR) binding to CKM-MED, which enables CTD binding in a MED26-dependent manner. Cryoelectron microscopy (cryo-EM) and crosslinking-mass spectrometry (XL-MS) revealed that the structural basis for modulation of CTD interaction with MED relates to a large intrinsically disordered region (IDR) in CKM subunit MED13 that blocks MED26 and CTD interaction with MED but is repositioned upon NR binding. Hence, NRs can control transcription initiation by priming CKM-MED for MED26-dependent RNA Pol II interaction.


Asunto(s)
Microscopía por Crioelectrón , Quinasa 8 Dependiente de Ciclina , Complejo Mediador , Unión Proteica , ARN Polimerasa II , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Complejo Mediador/metabolismo , Complejo Mediador/genética , Complejo Mediador/química , Humanos , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Animales , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Sitios de Unión , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Células HEK293 , Dominios y Motivos de Interacción de Proteínas
2.
Mol Cell ; 83(15): 2753-2767.e10, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478846

RESUMEN

Nuclear hormone receptors (NRs) are ligand-binding transcription factors that are widely targeted therapeutically. Agonist binding triggers NR activation and subsequent degradation by unknown ligand-dependent ubiquitin ligase machinery. NR degradation is critical for therapeutic efficacy in malignancies that are driven by retinoic acid and estrogen receptors. Here, we demonstrate the ubiquitin ligase UBR5 drives degradation of multiple agonist-bound NRs, including the retinoic acid receptor alpha (RARA), retinoid x receptor alpha (RXRA), glucocorticoid, estrogen, liver-X, progesterone, and vitamin D receptors. We present the high-resolution cryo-EMstructure of full-length human UBR5 and a negative stain model representing its interaction with RARA/RXRA. Agonist ligands induce sequential, mutually exclusive recruitment of nuclear coactivators (NCOAs) and UBR5 to chromatin to regulate transcriptional networks. Other pharmacological ligands such as selective estrogen receptor degraders (SERDs) degrade their receptors through differential recruitment of UBR5 or RNF111. We establish the UBR5 transcriptional regulatory hub as a common mediator and regulator of NR-induced transcription.


Asunto(s)
Cromatina , Factores de Transcripción , Humanos , Ligandos , Cromatina/genética , Factores de Transcripción/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Ubiquitinas , Ubiquitina-Proteína Ligasas/genética
3.
Genes Dev ; 35(5-6): 367-378, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33602873

RESUMEN

Thyroid hormones (THs) are powerful regulators of metabolism with major effects on body weight, cholesterol, and liver fat that have been exploited pharmacologically for many years. Activation of gene expression by TH action is canonically ascribed to a hormone-dependent "switch" from corepressor to activator binding to thyroid hormone receptors (TRs), while the mechanism of TH-dependent repression is controversial. To address this, we generated a mouse line in which endogenous TRß1 was epitope-tagged to allow precise chromatin immunoprecipitation at the low physiological levels of TR and defined high-confidence binding sites where TRs functioned at enhancers regulated in the same direction as the nearest gene in a TRß-dependent manner. Remarkably, although positive and negative regulation by THs have been ascribed to different mechanisms, TR binding was highly enriched at canonical DR4 motifs irrespective of the transcriptional direction of the enhancer. The canonical NCoR1/HDAC3 corepressor complex was reduced but not completely dismissed by TH and, surprisingly, similar effects were seen at enhancers associated with negatively as well as positively regulated genes. Conversely, coactivator CBP was found at all TH-regulated enhancers, with transcriptional activity correlating with the ratio of CBP to NCoR rather than their presence or absence. These results demonstrate that, in contrast to the canonical "all or none" coregulator switch model, THs regulate gene expression by orchestrating a shift in the relative binding of corepressors and coactivators.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Receptores beta de Hormona Tiroidea/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Sitios de Unión , Cromatina/química , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Ratones , Modelos Animales , Unión Proteica , Receptores beta de Hormona Tiroidea/genética
4.
Trends Biochem Sci ; 49(5): 384-386, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503673

RESUMEN

A recent report by Chervova, Molliex, et al. shows redundant functions for the transcription factors (TFs) ESRRB and NR5A2 as mitotic bookmarkers in mouse embryonic stem (ES) cells. These occupy some of their target sites in mitotic chromatin, ensuring their robust reactivation after cell division, including markers and regulators of pluripotency.


Asunto(s)
Mitosis , Receptores de Estrógenos , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Cromatina/metabolismo , Humanos
5.
Genes Dev ; 34(9-10): 701-714, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32165409

RESUMEN

Metabolism and development must be closely coupled to meet the changing physiological needs of each stage in the life cycle. The molecular mechanisms that link these pathways, however, remain poorly understood. Here we show that the Drosophila estrogen-related receptor (dERR) directs a transcriptional switch in mid-pupae that promotes glucose oxidation and lipogenesis in young adults. dERR mutant adults are viable but display reduced locomotor activity, susceptibility to starvation, elevated glucose, and an almost complete lack of stored triglycerides. Molecular profiling by RNA-seq, ChIP-seq, and metabolomics revealed that glycolytic and pentose phosphate pathway genes are induced by dERR, and their reduced expression in mutants is accompanied by elevated glycolytic intermediates, reduced TCA cycle intermediates, and reduced levels of long chain fatty acids. Unexpectedly, we found that the central pathways of energy metabolism, including glycolysis, the tricarboxylic acid cycle, and electron transport chain, are coordinately induced at the transcriptional level in mid-pupae and maintained into adulthood, and this response is partially dependent on dERR, leading to the metabolic defects observed in mutants. Our data support the model that dERR contributes to a transcriptional switch during pupal development that establishes the metabolic state of the adult fly.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Glucólisis/genética , Lipogénesis/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transcripción Genética/genética , Animales , Drosophila/crecimiento & desarrollo , Mutación , Pupa , Transcriptoma
6.
Proc Natl Acad Sci U S A ; 121(13): e2306814121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513102

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with aggressive behavior and poor prognosis. Current therapeutic options available for TNBC patients are primarily chemotherapy. With our evolving understanding of this disease, novel targeted therapies, including poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and immune-checkpoint inhibitors, have been developed for clinical use. Previous reports have demonstrated the essential role of estrogen receptor ß (ERß) in TNBC, but the detailed molecular mechanisms downstream ERß activation in TNBC are still far from elucidated. In this study, we demonstrated that a specific ERß agonist, LY500307, potently induces R-loop formation and DNA damage in TNBC cells. Subsequent interactome experiments indicated that the residues 151 to 165 of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and the Trp439 and Lys443 of ERß were critical for the binding between U2AF1 and ERß. Combined RNA sequencing and ribosome sequencing analysis demonstrated that U2AF1-regulated downstream RNA splicing of 5-oxoprolinase (OPLAH) could affect its enzymatic activity and is essential for ERß-induced R-loop formation and DNA damage. In clinical samples including 115 patients from The Cancer Genome Atlas (TCGA) and 32 patients from an in-house cohort, we found a close correlation in the expression of ESR2 and U2AF1 in TNBC patients. Collectively, our study has unraveled the molecular mechanisms that explain the therapeutic effects of ERß activation in TNBC, which provides rationale for ERß activation-based single or combined therapy for patients with TNBC.


Asunto(s)
Empalme Alternativo , Benzopiranos , Receptor beta de Estrógeno , Estructuras R-Loop , Factor de Empalme U2AF , Neoplasias de la Mama Triple Negativas , Humanos , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/metabolismo , Factor de Empalme U2AF/química , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Terapia Combinada , Células MDA-MB-231 , Empalme Alternativo/efectos de los fármacos , Benzopiranos/farmacología , Benzopiranos/uso terapéutico , Unión Proteica , Sitios de Unión
7.
Pharmacol Rev ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977324

RESUMEN

Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity, and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), type-2 diabetes, and inflammatory bowel diseases (IBD). Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. Significance Statement Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling hold promise for treating metabolic and inflammatory diseases.

8.
Immunol Rev ; 317(1): 152-165, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37074820

RESUMEN

Our laboratory has a long-standing research interest in understanding how lipid-activated transcription factors, nuclear hormone receptors, contribute to dendritic cell and macrophage gene expression regulation, subtype specification, and responses to a changing extra and intracellular milieu. This journey in the last more than two decades took us from identifying target genes for various RXR heterodimers to systematically mapping nuclear receptor-mediated pathways in dendritic cells to identifying hierarchies of transcription factors in alternative polarization in macrophages to broaden the role of nuclear receptors beyond strictly ligand-regulated gene expression. We detail here the milestones of the road traveled and draw conclusions regarding the unexpectedly broad role of nuclear hormone receptors as epigenomic components of dendritic cell and macrophage gene regulation as we are getting ready for the next challenges.


Asunto(s)
Epigenómica , Receptores Citoplasmáticos y Nucleares , Humanos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Regulación de la Expresión Génica , Macrófagos/metabolismo , Factores de Transcripción
9.
Cancer Metastasis Rev ; 43(1): 321-362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38517618

RESUMEN

Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.


Asunto(s)
Plasticidad de la Célula , Neoplasias , Humanos , Plasticidad de la Célula/fisiología , Neoplasias/patología , Transducción de Señal , Transición Epitelial-Mesenquimal/fisiología , Resistencia a Antineoplásicos , Receptores Citoplasmáticos y Nucleares/metabolismo , Células Madre Neoplásicas/patología
10.
EMBO Rep ; 24(6): e55556, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37103980

RESUMEN

Alzheimer's, Parkinson's and Huntington's diseases can be caused by mutations that enhance protein aggregation, but we still do not know enough about the molecular players of these pathways to develop treatments for these devastating diseases. Here, we screen for mutations that might enhance aggregation in Caenorhabditis elegans, to investigate the mechanisms that protect against dysregulated homeostasis. We report that the stomatin homologue UNC-1 activates neurohormonal signalling from the sulfotransferase SSU-1 in ASJ sensory/endocrine neurons. A putative hormone, produced in ASJ, targets the nuclear receptor NHR-1, which acts cell autonomously in the muscles to modulate polyglutamine repeat (polyQ) aggregation. A second nuclear receptor, DAF-12, functions oppositely to NHR-1 to maintain protein homeostasis. Transcriptomics analyses of unc-1 mutants revealed changes in the expression of genes involved in fat metabolism, suggesting that fat metabolism changes, controlled by neurohormonal signalling, contribute to protein homeostasis. Furthermore, the enzymes involved in the identified signalling pathway are potential targets for treating neurodegenerative diseases caused by disrupted protein homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteostasis , Metabolismo de los Lípidos/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Esteroides/metabolismo
11.
Mol Cell ; 66(3): 321-331.e6, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475868

RESUMEN

The molecular mechanisms underlying the opposing functions of glucocorticoid receptors (GRs) and estrogen receptor α (ERα) in breast cancer development remain poorly understood. Here we report that, in breast cancer cells, liganded GR represses a large ERα-activated transcriptional program by binding, in trans, to ERα-occupied enhancers. This abolishes effective activation of these enhancers and their cognate target genes, and it leads to the inhibition of ERα-dependent binding of components of the MegaTrans complex. Consistent with the effects of SUMOylation on other classes of nuclear receptors, dexamethasone (Dex)-induced trans-repression of the estrogen E2 program appears to depend on GR SUMOylation, which leads to stable trans-recruitment of the GR-N-CoR/SMRT-HDAC3 corepressor complex on these enhancers. Together, these results uncover a mechanism by which competitive recruitment of DNA-binding nuclear receptors/transcription factors in trans to hot spot enhancers serves as an effective biological strategy for trans-repression, with clear implications for breast cancer and other diseases.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptor Cross-Talk , Receptores de Glucocorticoides/metabolismo , Transcripción Genética , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Dexametasona/farmacología , Regulación hacia Abajo , Elementos de Facilitación Genéticos , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Células MCF-7 , Complejos Multiproteicos , Mutación , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Unión Proteica , Interferencia de ARN , Receptor Cross-Talk/efectos de los fármacos , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/genética , Transducción de Señal , Sumoilación , Transcripción Genética/efectos de los fármacos , Transcriptoma , Transfección
12.
Cell Mol Life Sci ; 81(1): 78, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334807

RESUMEN

Hematological malignancies (HM) represent a subset of neoplasms affecting the blood, bone marrow, and lymphatic systems, categorized primarily into leukemia, lymphoma, and multiple myeloma. Their prognosis varies considerably, with a frequent risk of relapse despite ongoing treatments. While contemporary therapeutic strategies have extended overall patient survival, they do not offer cures for advanced stages and often lead to challenges such as acquisition of drug resistance, recurrence, and severe side effects. The need for innovative therapeutic targets is vital to elevate both survival rates and patients' quality of life. Recent research has pivoted towards nuclear receptors (NRs) due to their role in modulating tumor cell characteristics including uncontrolled proliferation, differentiation, apoptosis evasion, invasion and migration. Existing evidence emphasizes NRs' critical role in HM. The regulation of NR expression through agonists, antagonists, or selective modulators, contingent upon their levels, offers promising clinical implications in HM management. Moreover, several anticancer agents targeting NRs have been approved by the Food and Drug Administration (FDA). This review highlights the integral function of NRs in HM's pathophysiology and the potential benefits of therapeutically targeting these receptors, suggesting a prospective avenue for more efficient therapeutic interventions against HM.


Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Humanos , Estudios Prospectivos , Calidad de Vida , Neoplasias Hematológicas/patología , Receptores Citoplasmáticos y Nucleares
13.
Proc Natl Acad Sci U S A ; 119(28): e2202256119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867766

RESUMEN

Phenotypic variations in the retinal pigment epithelial (RPE) layer are often a predecessor and driver of ocular degenerative diseases, such as age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. We previously identified the orphan nuclear receptor-related 1 (NURR1), from a nuclear receptor atlas of human RPE cells, as a candidate transcription factor potentially involved in AMD development and progression. In the present study we characterized the expression of NURR1 as a function of age in RPE cells harvested from human donor eyes and in donor tissue from AMD patients. Mechanistically, we found an age-dependent shift in NURR1 dimerization from NURR1-RXRα heterodimers toward NURR1-NURR1 homodimers in primary human RPE cells. Additionally, overexpression and activation of NURR1 attenuated TNF-α-induced epithelial-to-mesenchymal transition (EMT) and migration, and modulated EMT-associated gene and protein expression in human RPE cells independent of age. In vivo, oral administration of IP7e, a potent NURR1 activator, ameliorated EMT in an experimental model of wet AMD and improved retinal function in a mouse model that presents with dry AMD features, impacting AMD phenotype, structure, and function of RPE cells, inhibiting accumulation of immune cells, and diminishing lipid accumulation. These results provide insight into the mechanisms of action of NURR1 in the aging eye, and demonstrate that the relative expression levels and activity of NURR1 is critical for both physiological and pathological functions of human RPE cells through RXRα-dependent regulation, and that targeting NURR1 may have therapeutic potential for AMD by modulating EMT, inflammation, and lipid homeostasis.


Asunto(s)
Transición Epitelial-Mesenquimal , Degeneración Macular , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Epitelio Pigmentado de la Retina , Anciano , Animales , Humanos , Lípidos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Ratones , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/química , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Fenotipo , Multimerización de Proteína , Epitelio Pigmentado de la Retina/metabolismo
14.
J Lipid Res ; 65(3): 100510, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38280459

RESUMEN

The link between changes in astrocyte function and the pathological progression of Alzheimer's disease (AD) has attracted considerable attention. Interestingly, activated astrocytes in AD show abnormalities in their lipid content and metabolism. In particular, the expression of apolipoprotein E (ApoE), a lipid transporter, is decreased. Because ApoE has anti-inflammatory and amyloid ß (Aß)-metabolizing effects, the nuclear receptors, retinoid X receptor (RXR) and LXR, which are involved in ApoE expression, are considered promising therapeutic targets for AD. However, the therapeutic effects of agents targeting these receptors are limited or vary considerably among groups, indicating the involvement of an unknown pathological factor that modifies astrocyte and ApoE function. Here, we focused on the signaling lipid, sphingosine-1-phosphate (S1P), which is mainly produced by sphingosine kinase 2 (SphK2) in the brain. Using astrocyte models, we found that upregulation of SphK2/S1P signaling suppressed ApoE induction by both RXR and LXR agonists. We also found that SphK2 activation reduced RXR binding to the APOE promoter region in the nucleus, suggesting the nuclear function of SphK2/S1P. Intriguingly, suppression of SphK2 activity by RNA knockdown or specific inhibitors upregulated lipidated ApoE induction. Furthermore, the induced ApoE facilitates Aß uptake in astrocytes. Together with our previous findings that SphK2 activity is upregulated in AD brain and promotes Aß production in neurons, these results indicate that SphK2/S1P signaling is a promising multifunctional therapeutic target for AD that can modulate astrocyte function by stabilizing the effects of RXR and LXR agonists, and simultaneously regulate neuronal pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Apolipoproteínas E/metabolismo
15.
J Biol Chem ; 299(2): 102896, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36639026

RESUMEN

We found previously that nuclear receptors (NRs) compete for heterodimerization with their common partner, retinoid X receptor (RXR), in a ligand-dependent manner. To investigate potential competition in their DNA binding, we monitored the mobility of retinoic acid receptor (RAR) and vitamin D receptor (VDR) in live cells by fluorescence correlation spectroscopy. First, specific agonist treatment and RXR coexpression additively increased RAR DNA binding, while both agonist and RXR were required for increased VDR DNA binding, indicating weaker DNA binding of the VDR/RXR dimer. Second, coexpression of RAR, VDR, and RXR resulted in competition for DNA binding. Without ligand, VDR reduced the DNA-bound fraction of RAR and vice versa, i.e., a fraction of RXR molecules was occupied by the competing partner. The DNA-bound fraction of either RAR or VDR was enhanced by its own and diminished by the competing NR's agonist. When treated with both ligands, the DNA-bound fraction of RAR increased as much as due to its own agonist, whereas that of VDR increased less. RXR agonist also increased DNA binding of RAR at the expense of VDR. In summary, competition between RAR and VDR for RXR is also manifested in their DNA binding in an agonist-dependent manner: RAR dominates over VDR in the absence of agonist or with both agonists present. Thus, side effects of NR-ligand-based (retinoids, thiazolidinediones) therapies may be ameliorated by other NR ligands and be at least partly explained by reduced DNA binding due to competition. Our results also complement the model of NR action by involving competition both for RXR and for DNA sites.


Asunto(s)
Receptores de Calcitriol , Receptores de Ácido Retinoico , Receptores X Retinoide , ADN/metabolismo , Ligandos , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares , Receptores X Retinoide/química , Receptores X Retinoide/metabolismo , Tretinoina/farmacología , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo
16.
J Biol Chem ; 299(6): 104702, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37059182

RESUMEN

Mitochondria are organelles known primarily for generating ATP via the oxidative phosphorylation process. Environmental signals are sensed by whole organisms or cells and markedly affect this process, leading to alterations in gene transcription and, consequently, changes in mitochondrial function and biogenesis. The expression of mitochondrial genes is finely regulated by nuclear transcription factors, including nuclear receptors and their coregulators. Among the best-known coregulators is the nuclear receptor corepressor 1 (NCoR1). Muscle-specific knockout of NCoR1 in mice induces an oxidative phenotype, improving glucose and fatty acid metabolism. However, the mechanism by which NCoR1 is regulated remains elusive. In this work, we identified the poly(A)-binding protein 4 (PABPC4) as a new NCoR1 interactor. Unexpectedly, we found that silencing of PABPC4 induced an oxidative phenotype in both C2C12 and MEF cells, as indicated by increased oxygen consumption, mitochondria content, and reduced lactate production. Mechanistically, we demonstrated that PABPC4 silencing increased the ubiquitination and consequent degradation of NCoR1, leading to the derepression of PPAR-regulated genes. As a consequence, cells with PABPC4 silencing had a greater capacity to metabolize lipids, reduced intracellular lipid droplets, and reduced cell death. Interestingly, in conditions known to induce mitochondrial function and biogenesis, both mRNA expression and PABPC4 protein content were markedly reduced. Our study, therefore, suggests that the lowering of PABPC4 expression may represent an adaptive event required to induce mitochondrial activity in response to metabolic stress in skeletal muscle cells. As such, the NCoR1-PABPC4 interface might be a new road to the treatment of metabolic diseases.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Factores de Transcripción , Animales , Ratones , Proteínas Co-Represoras/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Fosforilación Oxidativa , Receptores Citoplasmáticos y Nucleares/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo
17.
J Biol Chem ; 299(7): 104855, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224961

RESUMEN

Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.


Asunto(s)
Proteínas 14-3-3 , Receptor alfa de Estrógeno , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Ligandos , Tamoxifeno/farmacología , Unión Proteica/efectos de los fármacos , Descubrimiento de Drogas , Antagonistas de Estrógenos/farmacología
18.
J Biol Chem ; 299(10): 105255, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714463

RESUMEN

9-cis-retinoic acid (9cRA) binds retinoic acid receptors (RAR) and retinoid X receptors (RXR) with nanomolar affinities, in contrast to all-trans-retinoic acid (atRA), which binds only RAR with nanomolar affinities. RXR heterodimerize with type II nuclear receptors, including RAR, to regulate a vast gene array. Despite much effort, 9cRA has not been identified as an endogenous retinoid, other than in pancreas. By revising tissue analysis methods, 9cRA quantification by liquid chromatography-tandem mass spectrometry becomes possible in all mouse tissues analyzed. 9cRA occurs in concentrations similar to or greater than atRA. Fasting increases 9cRA in white and brown adipose, brain and pancreas, while increasing atRA in white adipose, liver and pancreas. 9cRA supports FoxO1 actions in pancreas ß-cells and counteracts glucose actions that lead to glucotoxicity; in part by inducing Atg7 mRNA, which encodes the key enzyme essential for autophagy. Glucose suppresses 9cRA biosynthesis in the ß-cell lines 832/13 and MIN6. Glucose reduces 9cRA biosynthesis in 832/13 cells by inhibiting Rdh5 transcription, unconnected to insulin, through cAMP and Akt, and inhibiting FoxO1. Through adapting tissue specifically to fasting, 9cRA would act independent of atRA. Widespread occurrence of 9cRA in vivo, and its self-sufficient adaptation to energy status, provides new perspectives into regulation of energy balance, attenuation of insulin and glucose actions, regulation of type II nuclear receptors, and retinoid biology.


Asunto(s)
Alitretinoína , Metabolismo Energético , Glucosa , Células Secretoras de Insulina , Animales , Ratones , Alitretinoína/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Tretinoina/metabolismo , Ratones Endogámicos C57BL , Ratas , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Ayuno , Proteínas Proto-Oncogénicas c-akt/metabolismo
19.
Cancer Metastasis Rev ; 42(3): 765-822, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36482154

RESUMEN

Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.


Asunto(s)
Neoplasias , Receptores Citoplasmáticos y Nucleares , Humanos , Factores de Transcripción , Neoplasias/tratamiento farmacológico , Transducción de Señal
20.
J Hepatol ; 80(3): 467-481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37972658

RESUMEN

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS: We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS: The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION: We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS: Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Ratones , Humanos , Animales , Pericitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hígado/patología , Transducción de Señal , Células Estrelladas Hepáticas/metabolismo , Hígado Graso/metabolismo , Cirrosis Hepática/patología , Factor 2 de Diferenciación de Crecimiento/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda