Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 960
Filtrar
1.
Cell ; 184(5): 1201-1213.e14, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33571429

RESUMEN

Memory B cells play a fundamental role in host defenses against viruses, but to date, their role has been relatively unsettled in the context of SARS-CoV-2. We report here a longitudinal single-cell and repertoire profiling of the B cell response up to 6 months in mild and severe COVID-19 patients. Distinct SARS-CoV-2 spike-specific activated B cell clones fueled an early antibody-secreting cell burst as well as a durable synchronous germinal center response. While highly mutated memory B cells, including pre-existing cross-reactive seasonal Betacoronavirus-specific clones, were recruited early in the response, neutralizing SARS-CoV-2 RBD-specific clones accumulated with time and largely contributed to the late, remarkably stable, memory B cell pool. Highlighting germinal center maturation, these cells displayed clear accumulation of somatic mutations in their variable region genes over time. Overall, these findings demonstrate that an antigen-driven activation persisted and matured up to 6 months after SARS-CoV-2 infection and may provide long-term protection.


Asunto(s)
Linfocitos B/inmunología , COVID-19/inmunología , Memoria Inmunológica , Adulto , COVID-19/fisiopatología , Citometría de Flujo , Centro Germinal/citología , Humanos , Activación de Linfocitos , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual , Glicoproteína de la Espiga del Coronavirus/química
2.
Cell ; 184(1): 120-132.e14, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33382968

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.


Asunto(s)
Infecciones por Coronavirus/genética , Estudio de Asociación del Genoma Completo , SARS-CoV-2/fisiología , Células A549 , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Coronavirus Humano 229E/fisiología , Infecciones por Coronavirus/virología , Coronavirus Humano NL63/fisiología , Coronavirus Humano OC43/fisiología , Técnicas de Inactivación de Genes , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Mapeo de Interacción de Proteínas
3.
Cell ; 184(1): 106-119.e14, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333024

RESUMEN

The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.


Asunto(s)
COVID-19/genética , Infecciones por Coronavirus/genética , Coronavirus/fisiología , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno , SARS-CoV-2/fisiología , Células A549 , Animales , Vías Biosintéticas/efectos de los fármacos , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Colesterol/biosíntesis , Colesterol/metabolismo , Análisis por Conglomerados , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Resfriado Común/genética , Resfriado Común/virología , Coronavirus/clasificación , Infecciones por Coronavirus/virología , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Ratones , Fosfatidilinositoles/biosíntesis , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral
4.
Mol Cell ; 81(13): 2838-2850.e6, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33989516

RESUMEN

SARS-CoV-2 is an RNA virus whose success as a pathogen relies on its abilities to repurpose host RNA-binding proteins (RBPs) and to evade antiviral RBPs. To uncover the SARS-CoV-2 RNA interactome, we here develop a robust ribonucleoprotein (RNP) capture protocol and identify 109 host factors that directly bind to SARS-CoV-2 RNAs. Applying RNP capture on another coronavirus, HCoV-OC43, revealed evolutionarily conserved interactions between coronaviral RNAs and host proteins. Transcriptome analyses and knockdown experiments delineated 17 antiviral RBPs, including ZC3HAV1, TRIM25, PARP12, and SHFL, and 8 proviral RBPs, such as EIF3D and CSDE1, which are responsible for co-opting multiple steps of the mRNA life cycle. This also led to the identification of LARP1, a downstream target of the mTOR signaling pathway, as an antiviral host factor that interacts with the SARS-CoV-2 RNAs. Overall, this study provides a comprehensive list of RBPs regulating coronaviral replication and opens new avenues for therapeutic interventions.


Asunto(s)
Autoantígenos/genética , COVID-19/genética , ARN Viral/genética , Ribonucleoproteínas/genética , SARS-CoV-2/genética , COVID-19/virología , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/patogenicidad , Células HEK293 , Interacciones Huésped-Patógeno/genética , Humanos , Unión Proteica/genética , Mapas de Interacción de Proteínas/genética , Proteínas de Unión al ARN/genética , SARS-CoV-2/patogenicidad , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/genética , Transcriptoma/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Replicación Viral/genética , Antígeno SS-B
5.
Genes Dev ; 35(13-14): 1005-1019, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34168039

RESUMEN

N6-methyladenosine (m6A) is an abundant internal RNA modification, influencing transcript fate and function in uninfected and virus-infected cells. Installation of m6A by the nuclear RNA methyltransferase METTL3 occurs cotranscriptionally; however, the genomes of some cytoplasmic RNA viruses are also m6A-modified. How the cellular m6A modification machinery impacts coronavirus replication, which occurs exclusively in the cytoplasm, is unknown. Here we show that replication of SARS-CoV-2, the agent responsible for the COVID-19 pandemic, and a seasonal human ß-coronavirus HCoV-OC43, can be suppressed by depletion of METTL3 or cytoplasmic m6A reader proteins YTHDF1 and YTHDF3 and by a highly specific small molecule METTL3 inhibitor. Reduction of infectious titer correlates with decreased synthesis of viral RNAs and the essential nucleocapsid (N) protein. Sites of m6A modification on genomic and subgenomic RNAs of both viruses were mapped by methylated RNA immunoprecipitation sequencing (meRIP-seq). Levels of host factors involved in m6A installation, removal, and recognition were unchanged by HCoV-OC43 infection; however, nuclear localization of METTL3 and cytoplasmic m6A readers YTHDF1 and YTHDF2 increased. This establishes that coronavirus RNAs are m6A-modified and host m6A pathway components control ß-coronavirus replication. Moreover, it illustrates the therapeutic potential of targeting the m6A pathway to restrict coronavirus reproduction.


Asunto(s)
Coronavirus Humano OC43/fisiología , Procesamiento Postranscripcional del ARN/genética , SARS-CoV-2/fisiología , Replicación Viral/genética , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Línea Celular , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Regulación de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Proteínas de la Nucleocápside , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Replicación Viral/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 121(29): e2310421121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976733

RESUMEN

We generated a replication-competent OC43 human seasonal coronavirus (CoV) expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike in place of the native spike (rOC43-CoV2 S). This virus is highly attenuated relative to OC43 and SARS-CoV-2 in cultured cells and animals and is classified as a biosafety level 2 (BSL-2) agent by the NIH biosafety committee. Neutralization of rOC43-CoV2 S and SARS-CoV-2 by S-specific monoclonal antibodies and human sera is highly correlated, unlike recombinant vesicular stomatitis virus-CoV2 S. Single-dose immunization with rOC43-CoV2 S generates high levels of neutralizing antibodies against SARS-CoV-2 and fully protects human ACE2 transgenic mice from SARS-CoV-2 lethal challenge, despite nondetectable replication in respiratory and nonrespiratory organs. rOC43-CoV2 S induces S-specific serum and airway mucosal immunoglobulin A and IgG responses in rhesus macaques. rOC43-CoV2 S has enormous value as a BSL-2 agent to measure S-specific antibodies in the context of a bona fide CoV and is a candidate live attenuated SARS-CoV-2 mucosal vaccine that preferentially replicates in the upper airway.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Pruebas de Neutralización , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Humanos , Anticuerpos Neutralizantes/inmunología , Ratones , COVID-19/inmunología , COVID-19/virología , COVID-19/prevención & control , Anticuerpos Antivirales/inmunología , Pruebas de Neutralización/métodos , Ratones Transgénicos , Coronavirus Humano OC43/inmunología , Coronavirus Humano OC43/genética , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , Chlorocebus aethiops , Células Vero , Macaca mulatta
7.
Proc Natl Acad Sci U S A ; 120(28): e2304087120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399385

RESUMEN

We recently reported that SARS-CoV-2 nucleocapsid (N) protein is abundantly expressed on the surface of both infected and neighboring uninfected cells, where it enables activation of Fc receptor-bearing immune cells with anti-N antibodies (Abs) and inhibits leukocyte chemotaxis by binding chemokines (CHKs). Here, we extend these findings to N from the common cold human coronavirus (HCoV)-OC43, which is also robustly expressed on the surface of infected and noninfected cells by binding heparan sulfate/heparin (HS/H). HCoV-OC43 N binds with high affinity to the same set of 11 human CHKs as SARS-CoV-2 N, but also to a nonoverlapping set of six cytokines. As with SARS-CoV-2 N, HCoV-OC43 N inhibits CXCL12ß-mediated leukocyte migration in chemotaxis assays, as do all highly pathogenic and common cold HCoV N proteins. Together, our findings indicate that cell surface HCoV N plays important evolutionarily conserved roles in manipulating host innate immunity and as a target for adaptive immunity.


Asunto(s)
Coronavirus Humano OC43 , Inmunidad Innata , Nucleocápside , SARS-CoV-2 , Humanos , Coronavirus Humano OC43/genética , Proteínas de la Membrana , SARS-CoV-2/genética
8.
Proc Natl Acad Sci U S A ; 120(12): e2220320120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917669

RESUMEN

Pre-existing SARS-CoV-2-reactive T cells have been identified in SARS-CoV-2-unexposed individuals, potentially modulating COVID-19 and vaccination outcomes. Here, we provide evidence that functional cross-reactive memory CD4+ T cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is established in early childhood, mirroring early seroconversion with seasonal human coronavirus OC43. Humoral and cellular immune responses against OC43 and SARS-CoV-2 were assessed in SARS-CoV-2-unexposed children (paired samples at age two and six) and adults (age 26 to 83). Pre-existing SARS-CoV-2-reactive CD4+ T cell responses targeting spike, nucleocapsid, and membrane were closely linked to the frequency of OC43-specific memory CD4+ T cells in childhood. The functional quality of the cross-reactive memory CD4+ T cell responses targeting SARS-CoV-2 spike, but not nucleocapsid, paralleled OC43-specific T cell responses. OC43-specific antibodies were prevalent already at age two. However, they did not increase further with age, contrasting with the antibody magnitudes against HKU1 (ß-coronavirus), 229E and NL63 (α-coronaviruses), rhinovirus, Epstein-Barr virus (EBV), and influenza virus, which increased after age two. The quality of the memory CD4+ T cell responses peaked at age six and subsequently declined with age, with diminished expression of interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF), and CD38 in late adulthood. Age-dependent qualitative differences in the pre-existing SARS-CoV-2-reactive T cell responses may reflect the ability of the host to control coronavirus infections and respond to vaccination.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Preescolar , Adulto , Niño , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , SARS-CoV-2 , Linfocitos T , Herpesvirus Humano 4 , Linfocitos T CD4-Positivos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Reacciones Cruzadas
9.
Front Neuroendocrinol ; 72: 101111, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967755

RESUMEN

Worldwide, over 150 million adolescent and adult women use oral contraceptives (OC). An association between OC-use and the emergence of symptoms of mental disorders has been suggested. This systematic review and meta-analysis provide an overview of published research regarding symptoms of mental disorders in association with OC-use, factoring the influence of OC types, age of first-use, duration of OC-intake, and previous diagnoses of mental disorders. A systematic literature search was conducted between June-July 2022. 22 studies were included. While most found no significant OC-use effects on mental symptoms, some hinted at OCs as a potential risk. The existing evidence regarding the potential link between progestin-only OC-use and an elevated risk of mental symptoms in comparison to combined OC-use remains inconclusive. However, due to emerging indications suggesting that the formulation of OC might play a role in mental health outcomes, this topic warrants further investigation. Moreover, indications of an increased risk for depressive symptoms in adolescent OC-users should be noted. Hence, while general population effects seem unlikely, they cannot be completely disregarded. The decision on OC-use should depend on the patient's medical history and should be re-evaluated regularly.


Asunto(s)
Anticonceptivos Orales , Trastornos Mentales , Adulto , Adolescente , Humanos , Femenino , Anticonceptivos Orales/efectos adversos , Anticoncepción
10.
J Virol ; 98(7): e0047824, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38819132

RESUMEN

ß-coronaviruses cause acute infection in the upper respiratory tract, resulting in various symptoms and clinical manifestations. OC43 is a human ß-coronavirus that induces mild clinical symptoms and can be safely studied in the BSL2 laboratory. Due to its low risk, OC43 can be a valuable and accessible model for understanding ß-coronavirus pathogenesis. One potential target for limiting virus infectivity could be gap junction-mediated communication. This study aims to unveil the status of cell-to-cell communications through gap junctions in human ß-coronavirus infection. Infection with OC43 leads to reduced expression of Cx43 in A549, a lung epithelial carcinoma cell line. Infection with this virus also shows a significant ER and oxidative stress increase. Internal localization of Cx43 is observed post-OC43 infection in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) region, which impairs the gap junction communication between two adjacent cells, confirmed by Lucifer yellow dye transfer assay. It also affects hemichannel formation, as depicted by the EtBr uptake assay. Impairment of Cx43 trafficking and the ability to form hemichannels and functional GJIC are hampered by virus-induced Golgi apparatus disruption. Altogether, these results suggest that several physiological changes accompany OC43 infection in A549 cells and can be considered an appropriate model system for understanding the differences in gap junction communication post-viral infections. This model system can provide valuable insights for developing therapies against human ß-coronavirus infections.IMPORTANCEThe enduring impact of the recent SARS-CoV-2 pandemic underscores the importance of studying human ß-coronaviruses, advancing our preparedness for future coronavirus infections. As SARS-CoV-2 is highly infectious, another human ß-coronavirus OC43 can be considered an experimental model. One of the crucial pathways that can be considered is gap junction communication, as it is vital for cellular homeostasis. Our study seeks to understand the changes in Cx43-mediated cell-to-cell communication during human ß-coronavirus OC43 infection. In vitro studies showed downregulation of the gap junction protein Cx43 and upregulation of the endoplasmic reticulum and oxidative stress markers post-OC43 infection. Furthermore, HCoV-OC43 infection causes reduced Cx43 trafficking, causing impairment of functional hemichannel and GJIC formation by virus-mediated Golgi apparatus disruption. Overall, this study infers that OC43 infection reshapes intercellular communication, suggesting that this pathway may be a promising target for designing highly effective therapeutics against human coronaviruses by regulating Cx43 expression.


Asunto(s)
Comunicación Celular , Conexina 43 , Coronavirus Humano OC43 , Retículo Endoplásmico , Uniones Comunicantes , Humanos , Uniones Comunicantes/metabolismo , Conexina 43/metabolismo , Células A549 , Coronavirus Humano OC43/fisiología , Coronavirus Humano OC43/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Aparato de Golgi/metabolismo , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/patología , Estrés Oxidativo
11.
J Virol ; 98(7): e0085024, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38953378

RESUMEN

Viruses are obligate parasites that depend on the cellular machinery for their propagation. Several viruses also incorporate cellular proteins that facilitate viral spread. Defining these cellular proteins is critical to decipher viral life cycles and delineate novel therapeutic strategies. While numerous studies have explored the importance of host proteins in coronavirus spread, information about their presence in mature virions is limited. In this study, we developed a protocol to highly enrich mature HCoV-OC43 virions and characterize them by proteomics. Recognizing that cells release extracellular vesicles whose content is modulated by viruses, and given our ability to separate virions from these vesicles, we also analyzed their protein content in both uninfected and infected cells. We uncovered 69 unique cellular proteins associated with virions including 31 high-confidence hits. These proteins primarily regulate RNA metabolism, enzymatic activities, vesicular transport, cell adhesion, metabolite interconversion, and translation. We further discovered that the virus had a profound impact on exosome composition, incorporating 47 novel cellular proteins (11 high confidence) and excluding 92 others (61 high confidence) in virus-associated extracellular vesicles compared to uninfected cells. Moreover, a dsiRNA screen revealed that 11 of 18 select targets significantly impacted viral yields, including proteins found in virions or extracellular vesicles. Overall, this study provides new and important insights into the incorporation of numerous host proteins into HCoV-OC43 virions, their biological significance, and the ability of the virus to modulate extracellular vesicles. IMPORTANCE: In recent years, coronaviruses have dominated global attention, making it crucial to develop methods to control them and prevent future pandemics. Besides viral proteins, host proteins play a significant role in viral propagation and offer potential therapeutic targets. Targeting host proteins is advantageous because they are less likely to mutate and develop resistance compared to viral proteins, a common issue with many antiviral treatments. In this study, we examined the protein content of the less virulent biosafety level 2 HCoV-OC43 virus as a stand-in for the more virulent SARS-CoV-2. Our findings reveal that several cellular proteins incorporated into the virion regulate viral spread. In addition, we report that the virus extensively modulates the content of extracellular vesicles, enhancing viral dissemination. This underscores the critical interplay between the virus, host proteins, and extracellular vesicles.


Asunto(s)
Coronavirus Humano OC43 , Vesículas Extracelulares , Proteómica , Virión , Virión/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virología , Coronavirus Humano OC43/fisiología , Coronavirus Humano OC43/metabolismo , Proteómica/métodos , Proteoma/metabolismo , Proteoma/análisis , Exosomas/metabolismo , Exosomas/virología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/metabolismo , Línea Celular , Interacciones Huésped-Patógeno
12.
Hum Genomics ; 18(1): 71, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915066

RESUMEN

OBJECTIVE: To investigate the association between liver enzymes and ovarian cancer (OC), and to validate their potential as biomarkers and their mechanisms in OC. Methods Genome-wide association studies for OC and levels of enzymes such as Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), Alanine aminotransferase, and gamma-glutamyltransferase were analyzed. Univariate and multivariate Mendelian randomization (MR), complemented by the Steiger test, identified enzymes with a potential causal relationship to OC. Single-cell transcriptomics from the GSE130000 dataset pinpointed pivotal cellular clusters, enabling further examination of enzyme-encoding gene expression. Transcription factors (TFs) governing these genes were predicted to construct TF-mRNA networks. Additionally, liver enzyme levels were retrospectively analyzed in healthy individuals and OC patients, alongside the evaluation of correlations with cancer antigen 125 (CA125) and Human Epididymis Protein 4 (HE4). RESULTS: A total of 283 single nucleotide polymorphisms (SNPs) and 209 SNPs related to ALP and AST, respectively. Using the inverse-variance weighted method, univariate MR (UVMR) analysis revealed that ALP (P = 0.050, OR = 0.938) and AST (P = 0.017, OR = 0.906) were inversely associated with OC risk, suggesting their roles as protective factors. Multivariate MR (MVMR) confirmed the causal effect of ALP (P = 0.005, OR = 0.938) on OC without reverse causality. Key cellular clusters including T cells, ovarian cells, endothelial cells, macrophages, cancer-associated fibroblasts (CAFs), and epithelial cells were identified, with epithelial cells showing high expression of genes encoding AST and ALP. Notably, TFs such as TCE4 were implicated in the regulation of GOT2 and ALPL genes. OC patient samples exhibited decreased ALP levels in both blood and tumor tissues, with a negative correlation between ALP and CA125 levels observed. CONCLUSION: This study has established a causal link between AST and ALP with OC, identifying them as protective factors. The increased expression of the genes encoding these enzymes in epithelial cells provides a theoretical basis for developing novel disease markers and targeted therapies for OC.


Asunto(s)
Fosfatasa Alcalina , Biomarcadores de Tumor , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias Ováricas , Polimorfismo de Nucleótido Simple , Análisis de la Célula Individual , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Polimorfismo de Nucleótido Simple/genética , Análisis de la Célula Individual/métodos , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/sangre , Biomarcadores de Tumor/genética , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/genética , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/metabolismo , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/sangre , Hígado/patología , Hígado/metabolismo , Alanina Transaminasa/sangre , Alanina Transaminasa/genética , gamma-Glutamiltransferasa/genética , gamma-Glutamiltransferasa/sangre , Antígeno Ca-125/genética , Regulación Neoplásica de la Expresión Génica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de la Membrana/genética , Persona de Mediana Edad
13.
Exp Cell Res ; 435(1): 113913, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199479

RESUMEN

Ovarian cancer (OC) is a lethal gynecologic cancer and the common cause of death within women worldwide. The polycomb group protein enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase highly expressed in various tumors, including OC. However, the mechanistic basis of EZH2 oncogenic activity in OC remain incompletely understood. Bioinformatics analysis showed that the expression of MAPRE3 was lower in OC tissues than in normal tissues, and was positively correlated with the overall survival. MAPRE3 overexpression decreased cell growth, inducing cell cycle arrest and apoptosis in OC cells, whereas MAPRE3 silencing promoted proliferation and accelerated cell cycle progression of OC cells. The in vivo study validated that overexpression of MAPRE3 impeded tumor formation and growth of OC xenografts in nude mice. In addition, knockdown of EZH2 in OC cells downregulated H3K27me3 expression and increased MAPRE3 expression. Inhibiting EZH2 in OC cells reduced the enrichment of H3K27me3 on the promoter of MAPRE3. Furthermore, MAPRE3 silencing significantly reversed changes in the expression of cell cycle and apoptosis-related markers and cell growth mediated by EZH2 knockdown in OC cells. MAPRE3 functions as a suppressor of OC and is epigenetic repressed by EZH2, suggesting a potential therapeutic strategy for OC by targeting EZH2/MAPRE3 axis.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica/genética , Histonas/metabolismo , Ratones Desnudos , Neoplasias Ováricas/patología , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
14.
Cell Mol Life Sci ; 81(1): 386, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243335

RESUMEN

Organisms respond to proteotoxic-stress by activating the heat-shock response, a cellular defense mechanism regulated by a family of heat-shock factors (HSFs); among six human HSFs, HSF1 acts as a proteostasis guardian regulating severe stress-driven transcriptional responses. Herein we show that human coronaviruses (HCoV), both low-pathogenic seasonal-HCoVs and highly-pathogenic SARS-CoV-2 variants, are potent inducers of HSF1, promoting HSF1 serine-326 phosphorylation and triggering a powerful and distinct HSF1-driven transcriptional-translational response in infected cells. Despite the coronavirus-mediated shut-down of the host translational machinery, selected HSF1-target gene products, including HSP70, HSPA6 and AIRAP, are highly expressed in HCoV-infected cells. Using silencing experiments and a direct HSF1 small-molecule inhibitor we show that, intriguingly, HCoV-mediated activation of the HSF1-pathway, rather than representing a host defense response to infection, is hijacked by the pathogen and is essential for efficient progeny particles production. The results open new scenarios for the search of innovative antiviral strategies against coronavirus infections.


Asunto(s)
Factores de Transcripción del Choque Térmico , SARS-CoV-2 , Replicación Viral , Humanos , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Fosforilación , Interacciones Huésped-Patógeno/genética , COVID-19/virología , COVID-19/metabolismo , Animales , Coronavirus/fisiología , Coronavirus/metabolismo , Chlorocebus aethiops , Células HEK293 , Coronavirus Humano OC43/fisiología , Coronavirus Humano OC43/genética
15.
Apoptosis ; 29(7-8): 1232-1245, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38615083

RESUMEN

MARCH5 is a ring-finger E3 ubiquitin ligase located in the outer membrane of mitochondria. A previous study has reported that MARCH5 was up-regulated and contributed to the migration and invasion of OC cells by serving as a competing endogenous RNA. However, as a mitochondrial localized E3 ubiquitin ligase, the function of MARCH5 in mitochondrial-associated metabolism reprogramming in human cancers remains largely unexplored, including OC. We first assessed the glycolysis effect of MARCH5 in OC both in vitro and in vivo. Then we analyzed the effect of MARCH5 knockdown or overexpression on respiratory activity by evaluating oxygen consumption rate, activities of OXPHOS complexes and production of ATP in OC cells with MARCH5. Co-immunoprecipitation, western-blot, and in vitro and vivo experiments were performed to investigate the molecular mechanisms underlying MARCH5-enhanced aerobic glycolysis s in OC. In this study, we demonstrate that the abnormal upregulation of MARCH5 is accompanied by significantly increased aerobic glycolysis in OC. Mechanistically, MARCH5 promotes aerobic glycolysis via ubiquitinating and degrading mitochondrial pyruvate carrier 1 (MPC1), which mediates the transport of cytosolic pyruvate into mitochondria by localizing on mitochondria outer membrane. In line with this, MPC1 expression is significantly decreased and its downregulation is closely correlated with unfavorable survival. Furthermore, in vitro and in vivo assays revealed that MARCH5 upregulation-enhanced aerobic glycolysis played a critical role in the proliferation and metastasis of OC cells. Taken together, we identify a MARCH5-regulated aerobic glycolysis mechanism by degradation of MPC1, and provide a rationale for therapeutic targeting of aerobic glycolysis via MARCH5-MPC1 axis inhibition.


Asunto(s)
Progresión de la Enfermedad , Glucólisis , Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Neoplasias Ováricas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Línea Celular Tumoral , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Ratones Endogámicos BALB C
16.
Glob Chang Biol ; 30(9): e17480, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221621

RESUMEN

Coastal-wetlands play a crucial role as carbon (C) reservoirs on Earth due to their C pool composition and functional sink, making them significant for mitigating global climate change. However, due to the development and utilization of wetland resources, many wetlands have been transformed into other land-use types. The current study focuses on the alterations in soil organic-C (SOC) in coastal-wetlands following reclamation into aquaculture ponds. We conducted sampling at 11 different coastal-wetlands along the tropical to temperate regions of the China coast. Each site included two community types, one with solely native species (Suaeda salsa, Phragmites australis and Mangroves) and the other with an adjacent reclaimed aquaculture pond. Across these 11 locations we compared SOC stock, active OC fractions, and soil physicochemical properties between coastal wetlands and aquaculture ponds. We observed that different soil uses, sampling sites, and their interaction had significant effects on SOC and its stock (p < .05). Reclamation significantly declined SOC concentration at depths of 0-15 cm and 15-30 cm by 35.5% and 30.3%, respectively, and also decreased SOC stock at 0-15 cm and 15-30 cm depths by 29.1% and 37.9%, respectively. Similar trends were evident for SOC stock, labile organic-C, dissolved organic-C and microbial biomass organic-C concentrations (p < .05), indicating soil C-destabilization and losses from soil following conversion. Soils in aquaculture ponds exhibited higher bulk density (BD; 11.3%) and lower levels of salinity (61.0%), soil water content (SWC; 11.7%), total nitrogen (TN) concentration (23.8%) and available-nitrogen concentration (37.7%; p < .05) than coastal-wetlands. Redundancy-analysis revealed that pH, BD and TN concentration were the key variables most linked with temporal variations in SOC fractions and stock between two land use types. This study provides a theoretical basis for the rational utilization and management of wetland resources, the achievement of an environment-friendly society, and the preservation of multiple service functions within wetland ecosystems.


Asunto(s)
Acuicultura , Carbono , Suelo , Humedales , Suelo/química , Carbono/análisis , China , Estanques/química
17.
Virol J ; 21(1): 207, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223556

RESUMEN

BACKGROUND: Coronaviruses, a group of highly transmissible and potentially pathogenic viruses, can be transmitted indirectly to humans via fomites. To date, no study has investigated their persistence on carpet fibers. Establishing persistence is essential before testing the efficacy of a disinfectant. METHODS: The persistence of BCoV and HCoV OC43 on polyethylene terephthalate (PET) and nylon carpet was first determined using infectivity and RT-qPCR assays. Then, the disinfectant efficacy of steam vapor was evaluated against both coronaviruses on nylon carpet. RESULTS: Immediately after inoculation of carpet coupons, 32.50% of BCoV and 3.87% of HCoV OC43 were recovered from PET carpet, compared to 34.86% of BCoV and 24.37% of HCoV OC43 recovered from nylon carpet. After incubation at room temperature for 1 h, BCoV and HCoV OC43 showed a 3.6 and > 2.8 log10 TCID50 reduction on PET carpet, and a 0.6 and 1.8 log10 TCID50 reduction on nylon carpet. Based on first-order decay kinetics, the whole gRNA of BCoV and HCoV OC43 were stable with k values of 1.19 and 0.67 h- 1 on PET carpet and 0.86 and 0.27 h- 1 on nylon carpet, respectively. A 15-s steam vapor treatment achieved a > 3.0 log10 TCID50 reduction of BCoV and > 3.2 log10 TCID50 reduction of HCoV OC43 on nylon carpet. CONCLUSION: BCoV was more resistant to desiccation on both carpet types than HCoV OC43. Both viruses lost infectivity quicker on PET carpet than on nylon carpet. Steam vapor inactivated both coronaviruses on nylon carpet within 15 s.


Asunto(s)
Desinfección , Vapor , Desinfección/métodos , Desinfectantes/farmacología , Pisos y Cubiertas de Piso , Tereftalatos Polietilenos , Nylons/farmacología , Humanos , Coronavirus/efectos de los fármacos , Animales , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/fisiología
18.
Cell Biol Int ; 48(5): 626-637, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38263609

RESUMEN

Ovarian cancer (OC) is the most lethal gynecological malignancy with a high mortality rate. Low-density lipoprotein (LDL) receptor-related protein 8 (LRP8) is a cell membrane receptor belonging LDL receptor family and is involved in several tumor progressions. However, there is limited understanding of how LRP8 mediates OC development. LRP8 expression level was identified in human OC tissues and cells using immunohistochemical staining and quantitative polymerase chain reaction assays, respectively. Functions of LRP8 in OC progression were evaluated by Celigo cell counting, wound healing, transwell and flow cytometry assays, and the xenograft models. The human phospho-kinase array analysis was used for screening potential signaling involved in OC development. We observed that LRP8 was overexpressed in OC tissues, and high expression of LRP8 was associated with poor prognosis of OC patients. Functionally, LRP8 knockdown remarkably reduced proliferation and migration of OC cells, and induced apoptosis and S phase cycle arrest. LRP8 deficiency attenuated in vivo tumor growth of OC cells. Moreover, the addition of p53 inhibitor partially reversed the effects of LRP8 knockdown on OC cell proliferation and apoptosis, indicating the involvement of p53 signaling in LRP8-mediated OC progression. This study confirmed that LRP8/p53 axis contributed to OC progression, which might serve as a novel potential therapeutic target for OC patients.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL , MicroARNs , Neoplasias Ováricas , Femenino , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo
19.
Epidemiol Infect ; 152: e90, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770587

RESUMEN

We analyzed data from a community-based acute respiratory illness study involving K-12 students and their families in southcentral Wisconsin and assessed household transmission of two common seasonal respiratory viruses - human metapneumovirus (HMPV) and human coronaviruses OC43 and HKU1 (HCOV). We found secondary infection rates of 12.2% (95% CI: 8.1%-17.4%) and 19.2% (95% CI: 13.8%-25.7%) for HMPV and HCOV, respectively. We performed individual- and family-level regression models and found that HMPV transmission was positively associated age of the index case (individual model: p = .016; family model: p = .004) and HCOV transmission was positively associated with household density (family model: p = .048). We also found that the age of the non-index case was negatively associated with transmission of both HMPV (individual model: p = .049) and HCOV (individual model: p = .041), but we attributed this to selection bias from the original study design. Understanding household transmission of common respiratory viruses like HMPV and HCOV may help to broaden our understanding of the overall disease burden and establish methods to prevent the spread of disease from low- to high-risk populations.


Asunto(s)
Infecciones por Coronavirus , Composición Familiar , Metapneumovirus , Infecciones por Paramyxoviridae , Humanos , Infecciones por Paramyxoviridae/transmisión , Infecciones por Paramyxoviridae/epidemiología , Wisconsin/epidemiología , Femenino , Adulto Joven , Masculino , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/epidemiología , Adulto , Adolescente , Niño , Coronavirus , Estaciones del Año , Persona de Mediana Edad , Preescolar , Infecciones del Sistema Respiratorio/transmisión , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología
20.
Environ Sci Technol ; 58(4): 2078-2088, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235676

RESUMEN

Lake sediments connection to the biogeochemical cycling of phosphorus (P) and carbon (C) influences streamwater quality. However, it is unclear whether and how the type of sediment controls P and C cycling in water. Here, the adsorption behavior of montmorillonite (Mt) with different interlayer cations (Na+, Ca2+, or Fe3+) on dissolved organic matter (DOM) and P was investigated to understand the role of Mt in regulating the organic carbon-to-phosphate (OC/P) ratio within freshwater systems. The adsorption capacity of Fe-Mt for P was 3.2-fold higher than that of Ca-Mt, while it was 1/3 lower for DOM. This dissimilarity in adsorption led to an increased OC/P in Fe-Mt-dominated water and a decreased OC/P in Ca-Mt-dominated water. Moreover, an in situ atomic force microscope and high-resolution mass spectrometry revealed molecular fractionation mechanisms and adsorptive processes. It was observed that DOM inhibited the nucleation and crystallization processes of P on the Mt surface, and P affected the binding energy of DOM on Mt through competitive adsorption, thereby governing the interfacial P/DOM dynamics on Mt substrates at a molecular level. These findings have important implications for water quality management, by highlighting the role of clay minerals as nutrient sinks and providing new strategies for controlling P and C dynamics in freshwater systems.


Asunto(s)
Materia Orgánica Disuelta , Fósforo , Arcilla , Adsorción , Minerales/química , Lagos/química , Carbono
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda