Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Exp Eye Res ; 244: 109938, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789020

RESUMEN

Neurodegenerative pathologies affecting the posterior segment of the eye, are characterized by being devastating and responsible for the majority of visual dysfunctions worldwide. These diseases are primarily degenerative, progressing chronically, and can inflict gradual harm to the optic nerve, retinal ganglion cells (RGC), photoreceptors, and other retinal cells. This retinal damage leads to a progressive loss of vision, marking these conditions as a significant health concern worldwide. The intravitreal administration of the phytochemical Carvacrol (CAR) is expected to demonstrate a neuroprotective and antiapoptotic effect on retinal cells, with a specific focus on RGC. This effect will be observed in a retinal degeneration model (RDM) in rabbits induced by cytotoxic and oxidative agents, namely glutamate (GLUT) and L-buthionine-S, R-sulfoximine (BSO). An in vivo study was conducted using New Zealand rabbits in which retinal damage was created to evaluate the effectiveness of CAR. The effectiveness of CAR on the functionality of retinal neuronal cells in RDM was evaluated using pupillary light reflection (PLR). Furthermore, the phytotherapeutic's influence on cell viability was determined through flow cytometry analysis. Finally, the neuroprotective and antiapoptotic capabilities of CAR were specifically scrutinized in RGC through histological studies, quantifying cell survival, and employing immunohistochemical assays to detect the apoptotic index (%) using the TUNEL technique. Our results demonstrated that CAR promoted the recovery of the pupillary contraction profile over time, maintaining the functionality of retinal cells as healthy controls. Additionally, it showed increased cell viability under oxidative and cytotoxic conditions given by GLUT-BSO agents. Finally, we found that CAR protects the survival of RGC and decreases the percentage of apoptotic cells when compared to RDM. CAR demonstrated to have positive effects on the functionality of photoreceptive nerve cells by restoring pupillary contraction. Likewise, it was shown to have neuroprotective and antiapoptotic effects when evaluated in a general and specific way on retinal nerve cells.


Asunto(s)
Supervivencia Celular , Cimenos , Modelos Animales de Enfermedad , Degeneración Retiniana , Células Ganglionares de la Retina , Animales , Conejos , Degeneración Retiniana/prevención & control , Degeneración Retiniana/patología , Degeneración Retiniana/metabolismo , Cimenos/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Inyecciones Intravítreas , Citometría de Flujo , Reflejo Pupilar/efectos de los fármacos , Reflejo Pupilar/fisiología
2.
Pharmaceutics ; 12(5)2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429388

RESUMEN

The purpose of this study was to explore retina-targeted delivery of 17ß-estradiol (E2), a powerful neuroprotectant, by its bioprecursor prodrug 10ß,17ß-dihydroxyestra-1,4-dien-3-one (DHED) administered as eye drops in animal models. Compared to the parent hormone, DHED displayed increased transcorneal flux ex vivo both with and without the presence of 2-hydroxypropyl-ß-cyclodextrin used as a penetration-enhancing excipient in rat, rabbit, and pig. In vitro, the prodrug also showed facile bioactivation to E2 in the retina but not in the cornea. After topical administration to rats and rabbits, peak DHED-derived E2 concentrations reached 13 ± 5 ng/g and 18 ± 7 ng/g in the retina of female rats and rabbits, respectively. However, the prodrug remained inert in the rest of the body and, therefore, did not cause increase in circulating hormone concentration, as well as wet uterine and anterior pituitary weights as typical markers of E2's endocrine impact. Altogether, our studies presented here have demonstrated the premise of topical retina-selective estrogen therapy by the DHED prodrug approach for the first time and provide compelling support for further investigation into the full potential of DHED for an efficacious and safe ocular neurotherapy.

3.
Biomaterials ; 101: 165-75, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27294536

RESUMEN

Magnetically softened iron oxide (MSIO) nanofluid, PEGylated (Mn0.5Zn0.5)Fe2O4, was successfully developed for local induction of heat shock proteins (HSPs) 72 in retinal ganglion cells (RGCs) for ocular neuroprotection. The MSIO nanofluid showed significantly enhanced alternating current (AC) magnetic heat induction characteristics including exceptionally high SLP (Specific Loss Power, > 2000 W/g). This phenomenon was resulted from the dramatically improved AC magnetic softness of MSIO caused by the magnetically tailored Mn(2+) and Zn(2+) distributions in Fe3O4. In addition, the MSIO nanofluid with ultra-thin surface coating layer thickness and high monodispersity allowed for a higher cellular uptake up to a 52.5% with RGCs and enhancing "relaxation power" for higher AC heating capability. The RGCs cultured with MSIO nanofluid successfully induced HSPs 72 by magnetic nanofluid hyperthermia (MNFH). Moreover, it was interestingly observed that systematic control of "AC magnetically-induced heating up rate" reaching to a constant heating temperature of HSPs 72 induction allowed to achieve maximized induction efficiency at the slowest AC heating up rate during MNFH. In addition to in-vitro experimental verification, the studies of MSIO infusion behavior using animal models and a newly designed magnetic coil system demonstrated that the MSIO has promising biotechnical feasibility for thermally-induced HSPs agents in future glaucoma clinics.


Asunto(s)
Glaucoma/terapia , Proteínas de Choque Térmico/metabolismo , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/uso terapéutico , Neuroprotección , Células Ganglionares de la Retina/metabolismo , Animales , Línea Celular , Supervivencia Celular , Células Cultivadas , Glaucoma/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/citología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda