Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Multimed Syst ; 28(3): 1039-1058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153387

RESUMEN

Nowadays, multimedia big data have grown exponentially in diverse applications like social networks, transportation, health, and e-commerce, etc. Accessing preferred data in large-scale datasets needs efficient and sophisticated retrieval approaches. Multimedia big data consists of the most significant features with different types of data. Even though the multimedia supports various data formats with corresponding storage frameworks, similar semantic information is expressed by the multimedia. The overlap of semantic features is most efficient for theory and research related to semantic memory. Correspondingly, in recent years, deep multimodal hashing gets more attention owing to the efficient performance of huge-scale multimedia retrieval applications. On the other hand, the deep multimodal hashing has limited efforts for exploring the complex multilevel semantic structure. The main intention of this proposal is to develop enhanced deep multimedia big data retrieval with the Adaptive Semantic Similarity Function (A-SSF). The proposed model of this research covers several phases "(a) Data collection, (b) deep feature extraction, (c) semantic feature selection and (d) adaptive similarity function for retrieval. The two main processes of multimedia big data retrieval are training and testing. Once after collecting the dataset involved with video, text, images, and audio, the training phase starts. Here, the deep semantic feature extraction is performed by the Convolutional Neural Network (CNN), which is again subjected to the semantic feature selection process by the new hybrid algorithm termed Spider Monkey-Deer Hunting Optimization Algorithm (SM-DHOA). The final optimal semantic features are stored in the feature library. During testing, selected semantic features are added to the map-reduce framework in the Hadoop environment for handling the big data, thus ensuring the proper big data distribution. Here, the main contribution termed A-SSF is introduced to compute the correlation between the multimedia semantics of the testing data and training data, thus retrieving the data with minimum similarity. Extensive experiments on benchmark multimodal datasets demonstrate that the proposed method can outperform the state-of-the-art performance for all types of data.

2.
Digit Health ; 10: 20552076241236370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449681

RESUMEN

Objectives: Diabetes is a metabolic disease and early detection is crucial to ensuring a healthy life for people with prediabetes. Community care plays an important role in public health, but the association between community follow-up of key life characteristics and diabetes risk remains unclear. Based on the method of optimal feature selection and risk scorecard, follow-up data of diabetes patients are modeled to assess diabetes risk. Methods: We conducted a study on the diabetes risk assessment model and risk scorecard using follow-up data from diabetes patients in Haizhu District, Guangzhou, from 2016 to 2023. The raw data underwent preprocessing and imbalance handling. Subsequently, features relevant to diabetes were selected and optimized to determine the optimal subset of features associated with community follow-up and diabetes risk. We established the diabetes risk assessment model. Furthermore, for a comprehensible and interpretable risk expression, the Weight of Evidence transformation method was applied to features. The transformed features were discretized using the quantile binning method to design the risk scorecard, mapping the model's output to five risk levels. Results: In constructing the diabetes risk assessment model, the Random Forest classifier achieved the highest accuracy. The risk scorecard obtained an accuracy of 85.16%, precision of 87.30%, recall of 80.26%, and an F1 score of 83.27% on the unbalanced research dataset. The performance loss compared to the diabetes risk assessment model was minimal, suggesting that the binning method used for constructing the diabetes risk scorecard is reasonable, with very low feature information loss. Conclusion: The methods provided in this article demonstrate effectiveness and reliability in the assessment of diabetes risk. The assessment model and scorecard can be directly applied to community doctors for large-scale risk identification and early warning and can also be used for individual self-examination to reduce risk factor levels.

3.
J Med Phys ; 49(1): 22-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828069

RESUMEN

Aim: The goal of this study was to get optimal brain tumor features from magnetic resonance imaging (MRI) images and classify them based on the three groups of the tumor region: Peritumoral edema, enhancing-core, and necrotic tumor core, using machine learning classification models. Materials and Methods: This study's dataset was obtained from the multimodal brain tumor segmentation challenge. A total of 599 brain MRI studies were employed, all in neuroimaging informatics technology initiative format. The dataset was divided into training, validation, and testing subsets online test dataset (OTD). The dataset includes four types of MRI series, which were combined together and processed for intensity normalization using contrast limited adaptive histogram equalization methodology. To extract radiomics features, a python-based library called pyRadiomics was employed. Particle-swarm optimization (PSO) with varying inertia weights was used for feature optimization. Inertia weight with a linearly decreasing strategy (W1), inertia weight with a nonlinear coefficient decreasing strategy (W2), and inertia weight with a logarithmic strategy (W3) were different strategies used to vary the inertia weight for feature optimization in PSO. These selected features were further optimized using the principal component analysis (PCA) method to further reducing the dimensionality and removing the noise and improve the performance and efficiency of subsequent algorithms. Support vector machine (SVM), light gradient boosting (LGB), and extreme gradient boosting (XGB) machine learning classification algorithms were utilized for the classification of images into different tumor regions using optimized features. The proposed method was also tested on institute test data (ITD) for a total of 30 patient images. Results: For OTD test dataset, the classification accuracy of SVM was 0.989, for the LGB model (LGBM) was 0.992, and for the XGB model (XGBM) was 0.994, using the varying inertia weight-PSO optimization method and the classification accuracy of SVM was 0.996 for the LGBM was 0.998, and for the XGBM was 0.994, using PSO and PCA-a hybrid optimization technique. For ITD test dataset, the classification accuracy of SVM was 0.994 for the LGBM was 0.993, and for the XGBM was 0.997, using the hybrid optimization technique. Conclusion: The results suggest that the proposed method can be used to classify a brain tumor as used in this study to classify the tumor region into three groups: Peritumoral edema, enhancing-core, and necrotic tumor core. This was done by extracting the different features of the tumor, such as its shape, grey level, gray-level co-occurrence matrix, etc., and then choosing the best features using hybrid optimal feature selection techniques. This was done without much human expertise and in much less time than it would take a person.

4.
Multimed Tools Appl ; : 1-31, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-37362744

RESUMEN

There is a broad range of novel Coronaviruses (CoV) such as the common cold, cough, and severe lung infections. The mutation of this virus, which originally started as COVID-19 in Wuhan, China, has continued the rapid spread globally. As the mutated form of this virus spreads across the world, testing and screening procedures of patients have become tedious for healthcare departments in largely populated countries such as India. To diagnose COVID-19 pneumonia by radiological methods, high-resolution computed tomography (CT) of the chest has been considered the most precise method of examination. The use of modern artificial intelligence (AI) techniques on chest high-resolution computed tomography (HRCT) images can help to detect the disease, especially in remote areas with a lack of specialized physicians. This article presents a novel metaheuristic algorithm for automatic COVID-19 detection using a least square support vector machine (LSSVM) classifier for three classes namely normal, COVID, and pneumonia. The proposed model results in a classification accuracy of 87.2% and an F1-score of 86.3% for multiclass classifications from simulations. The analysis of information transfer rate (ITR) revealed that the modified quantum-based marine predators algorithm (Mq-MPA) feature selection algorithm reduces the classification time of LSSVM by 23% when compared to the deep learning models.

5.
Cogn Neurodyn ; 17(3): 1-14, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34522236

RESUMEN

COVID-19 was first identified in December 2019 at Wuhan, China. At present, the outbreak of COVID-19 pandemic has resulted in severe consequences on both economic and social infrastructures of the developed and developing countries. Several studies have been conducted and ongoing still to design efficient models for diagnosis and treatment of COVID-19 patients. The traditional diagnostic models that use reverse transcription-polymerase chain reaction (rt-qPCR) is a costly and time-consuming process. So, automated COVID-19 diagnosis using Deep Learning (DL) models becomes essential. The primary intention of this study is to design an effective model for diagnosis and classification of COVID-19. This research work introduces an automated COVID-19 diagnosis process using Convolutional Neural Network (CNN) with a fusion-based feature extraction model, called FM-CNN. FM-CNN model has three major phases namely, pre-processing, feature extraction, and classification. Initially, Wiener Filtering (WF)-based preprocessing is employed to discard the noise that exists in input chest X-Ray (CXR) images. Then, the pre-processed images undergo fusion-based feature extraction model which is a combination of Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRM), and Local Binary Patterns (LBP). In order to determine the optimal subset of features, Particle Swarm Optimization (PSO) algorithm is employed. At last, CNN is deployed as a classifier to identify the existence of binary and multiple classes of CXR images. In order to validate the proficiency of the proposed FM-CNN model in terms of its diagnostic performance, extension experimentation was carried out upon CXR dataset. As per the results attained from simulation, FM-CNN model classified multiple classes with the maximum sensitivity of 97.22%, specificity of 98.29%, accuracy of 98.06%, and F-measure of 97.93%.

6.
Bioengineering (Basel) ; 10(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37237678

RESUMEN

Multimodal data fusion (electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS)) has been developed as an important neuroimaging research field in order to circumvent the inherent limitations of individual modalities by combining complementary information from other modalities. This study employed an optimization-based feature selection algorithm to systematically investigate the complementary nature of multimodal fused features. After preprocessing the acquired data of both modalities (i.e., EEG and fNIRS), the temporal statistical features were computed separately with a 10 s interval for each modality. The computed features were fused to create a training vector. A wrapper-based binary enhanced whale optimization algorithm (E-WOA) was used to select the optimal/efficient fused feature subset using the support-vector-machine-based cost function. An online dataset of 29 healthy individuals was used to evaluate the performance of the proposed methodology. The findings suggest that the proposed approach enhances the classification performance by evaluating the degree of complementarity between characteristics and selecting the most efficient fused subset. The binary E-WOA feature selection approach showed a high classification rate (94.22 ± 5.39%). The classification performance exhibited a 3.85% increase compared with the conventional whale optimization algorithm. The proposed hybrid classification framework outperformed both the individual modalities and traditional feature selection classification (p < 0.01). These findings indicate the potential efficacy of the proposed framework for several neuroclinical applications.

7.
Comput Methods Biomech Biomed Engin ; 25(4): 387-411, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34311642

RESUMEN

In this paper, the information related to heart disease using IoT wearable devices is collected from any benchmark site, which is publicly available. With the collected data, feature extraction process is performed initially, in which heart rate, zero crossing rate, and higher order statistical features like standard deviation, median, skewness, kurtosis, variance, mean, peak amplitude, and entropy are extracted. For acquiring most significant features, the optimal feature selection process is implemented. As a novel contribution, the feature selection process is done by the hybrid optimization algorithm called PS-GWO by integrating GWO and PSO. Next, the extracted features are subjected to a famous deep learning algorithm named modified DBN, in which the activation function and number of hidden neurons is optimized using the same developed hybrid algorithm to improve the heart diagnosis accuracy. From the analysis, for the test case 1, the accuracy of the developed PS-GWO-DBN is 60%, 52.5%, 35% and 35% increased than NN, KNN, SVM, and DBN. For test case 2, the accuracy of the proposed PS-GWO-DBN is 26%, 24%, 21.6% and 17% increased than NN, KNN, SVM, and DBN, respectively. The accuracy of the designed PS-GWO-DBN is 26% advanced than NN, 24% advanced than KNN, 21.6% advanced than SVM and 17% advanced than DBN for test case 3. Thus, the proposed heart disease prediction model using PS-GWO-DBN performs better than other classifiers.


Asunto(s)
Cardiopatías , Dispositivos Electrónicos Vestibles , Algoritmos , Entropía , Corazón , Cardiopatías/diagnóstico , Humanos
8.
Comput Med Imaging Graph ; 91: 101936, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34218121

RESUMEN

Disease prediction plays a significant role in the life of people, as predicting the threat of diseases is necessary for citizens to live life in a healthy manner. The current development of data mining schemes has offered several systems that concern on disease prediction. Even though the disease prediction system includes more advantages, there are still many challenges that might limit its realistic use, such as the efficiency of prediction and information protection. This paper intends to develop an improved disease prediction model, which includes three phases: Weighted Coalesce rule generation, Optimized feature extraction, and Classification. At first, Coalesce rule generation is carried out after data transformation that involves normalization and sequential labeling. Here, rule generation is done based on the weights (priority level) assigned for each attribute by the expert. The support of each rule is multiplied with the proposed weighted function, and the resultant weighted support is compared with the minimum support for selecting the rules. Further, the obtained rule is subject to the optimal feature selection process. The hybrid classifiers that merge Support Vector Machine (SVM), and Deep Belief Network (DBN) takes the role of classification, which characterizes whether the patient is affected with the disease or not. In fact, the optimized feature selection process depends on a new hybrid optimization algorithm by linking the Grey Wolf Optimization (GWO) with Dragonfly Algorithm (DA) and hence, the presented model is termed as Grey Wolf Levy Updated-DA (GWU-DA). Here, the heart disease and breast cancer data are taken, where the efficiency of the proposed model is validated by comparing over the state-of-the-art models. From the analysis, the proposed GWU-DA model for accuracy is 65.98 %, 53.61 %, 42.27 %, 35.05 %, 34.02 %, 11.34 %, 13.4 %, 10.31 %, 9.28 % and 9.89 % better than CBA + CPAR, MKL + ANFIS, RF + EA, WCBA, IQR + KNN + PSO, NL-DA + SVM + DBN, AWFS-RA, HCS-RFRS, ADS-SM-DNN and OSSVM-HGSA models at 60th learning percentage.


Asunto(s)
Neoplasias de la Mama , Cardiopatías , Algoritmos , Minería de Datos , Femenino , Humanos , Máquina de Vectores de Soporte
9.
Big Data ; 8(2): 125-146, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32319798

RESUMEN

In this article, the proposed method develops a big data classification model with the aid of intelligent techniques. Here, the Parallel Pool Map reduce Framework is used for handling big data. The model involves three main phases, namely (1) feature extraction, (2) optimal feature selection, and (3) classification. For feature extraction, the well-known feature extraction techniques such as principle component analysis, linear discriminate analysis, and linear square regression are used. Since the length of feature vector tends to be high, the choice of the optimal features is complex task. Hence, the proposed model utilizes the optimal feature selection technology referred as Lion-based Firefly (L-FF) algorithm to select the optimal features. The main objective of this article is projected on minimizing the correlation between the selected features. It results in providing diverse information regarding the different classes of data. Once, the optimal features are selected, the classification algorithm called neural network (NN) is adopted, which effectively classify the data in an effective manner with the selected features. Furthermore, the proposed L-FF+NN model is compared with the traditional methods and proves the effectiveness over other methods. Experimental analysis shows that the proposed L-FF+NN model is 92%, 28%, 87%, 82%, and 78% superior to the state-of-art models such as GA+NN, FF+NN, PSO+NN, ABC+NN, and LA+NN, respectively.


Asunto(s)
Algoritmos , Macrodatos , Clasificación , Redes Neurales de la Computación
10.
Neurosci Lett ; 647: 61-66, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28336339

RESUMEN

In this paper, a novel technique for determination of the optimal feature combinations and, thereby, acquisition of the maximum classification performance for a functional near-infrared spectroscopy (fNIRS)-based brain-computer interface (BCI), is proposed. After obtaining motor-imagery and rest signals from the motor cortex, filtering is applied to remove the physiological noises. Six features (signal slope, signal mean, signal variance, signal peak, signal kurtosis and signal skewness) are then extracted from the oxygenated hemoglobin (HbO). Afterwards, the hybrid genetic algorithm (GA)-support vector machine (SVM) is applied in order to determine and classify 2- and 3-feature combinations across all subjects. The SVM classifier is applied to classify motor imagery versus rest. Moreover, four time windows (0-20s, 0-10s, 11-20s and 6-15s) are selected, and the hybrid GA-SVM is applied in order to extract the optimal 2- and 3-feature combinations. In the present study, the 11-20s time window showed significantly higher classification accuracies - the minimum accuracy was 91% - than did the other time windows (p<0.05). The proposed hybrid GA-SVM technique, by selecting optimal feature combinations for an fNIRS-based BCI, shows positive classification-performance-enhancing results.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Motora/fisiología , Espectroscopía Infrarroja Corta/métodos , Adulto , Algoritmos , Humanos , Imaginación , Masculino , Máquina de Vectores de Soporte
11.
Front Hum Neurosci ; 10: 237, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27252637

RESUMEN

In this study, we determine the optimal feature-combination for classification of functional near-infrared spectroscopy (fNIRS) signals with the best accuracies for development of a two-class brain-computer interface (BCI). Using a multi-channel continuous-wave imaging system, mental arithmetic signals are acquired from the prefrontal cortex of seven healthy subjects. After removing physiological noises, six oxygenated and deoxygenated hemoglobin (HbO and HbR) features-mean, slope, variance, peak, skewness and kurtosis-are calculated. All possible 2- and 3-feature combinations of the calculated features are then used to classify mental arithmetic vs. rest using linear discriminant analysis (LDA). It is found that the combinations containing mean and peak values yielded significantly higher (p < 0.05) classification accuracies for both HbO and HbR than did all of the other combinations, across all of the subjects. These results demonstrate the feasibility of achieving high classification accuracies using mean and peak values of HbO and HbR as features for classification of mental arithmetic vs. rest for a two-class BCI.

12.
Cancer Inform ; 13(Suppl 1): 17-27, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25392680

RESUMEN

In the field of computer-aided mammographic mass detection, many different features and classifiers have been tested. Frequently, the relevant features and optimal topology for the artificial neural network (ANN)-based approaches at the classification stage are unknown, and thus determined by trial-and-error experiments. In this study, we analyzed a classifier that evolves ANNs using genetic algorithms (GAs), which combines feature selection with the learning task. The classifier named "Phased Searching with NEAT in a Time-Scaled Framework" was analyzed using a dataset with 800 malignant and 800 normal tissue regions in a 10-fold cross-validation framework. The classification performance measured by the area under a receiver operating characteristic (ROC) curve was 0.856 ± 0.029. The result was also compared with four other well-established classifiers that include fixed-topology ANNs, support vector machines (SVMs), linear discriminant analysis (LDA), and bagged decision trees. The results show that Phased Searching outperformed the LDA and bagged decision tree classifiers, and was only significantly outperformed by SVM. Furthermore, the Phased Searching method required fewer features and discarded superfluous structure or topology, thus incurring a lower feature computational and training and validation time requirement. Analyses performed on the network complexities evolved by Phased Searching indicate that it can evolve optimal network topologies based on its complexification and simplification parameter selection process. From the results, the study also concluded that the three classifiers - SVM, fixed-topology ANN, and Phased Searching with NeuroEvolution of Augmenting Topologies (NEAT) in a Time-Scaled Framework - are performing comparably well in our mammographic mass detection scheme.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda