Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Environ Res ; 251(Pt 1): 118571, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431066

RESUMEN

Supercritical water oxidation (SCWO) has been regarded as a new and efficient technology for the harmless treatment and energy utilization of organic wastes, resulting in the quickly homogeneous oxidation between organics and oxidizers and the former being wholly degraded into small environment-friendly green molecules such as H2O and N2 and inorganic salts. This paper systematically analyzed the influencing behavior and mechanisms of the reaction factors, such as temperature, pressure, residence time, oxidant type, oxidation coefficient, and the concentration and pH values of the raw material, on the treatment effect of organic wastes. For most organic wastes, the SCWO conditions at 550 °C with a residence time of 1min and an oxidation coefficient of 100% can meet the removal rate of more than 99%. To further enhance the degradation rate of organics, the principles, implementation cases, and related equipment components of general enhancement technologies of supercritical water oxidation were discussed, such as fractional oxygen injection, auxiliary fuel co-oxidation, and hydrothermal flame-assisted degradation. This paper proposes a novel supercritical flame-assisted oxidation process in which the reactor performs preheating, corrosion protection, and desalination functions. The use of additive-enhanced oxidation, segmented oxidation, and supercritical hydrothermal flame-assisted oxidation has achieved good results in the complicated treatment process of brutal degradation of organic matter.


Asunto(s)
Oxidación-Reducción , Agua , Agua/química , Compuestos Orgánicos/química , Eliminación de Residuos Líquidos/métodos , Temperatura
2.
Environ Res ; 242: 117796, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040178

RESUMEN

Anaerobic fermentation of organic waste to produce volatile fatty acids (VFAs) production is a relatively mature technology. VFAs can be used as a cheap and readily available carbon source by photosynthetic bacteria (PSB) to produce high value-added products, which are widely used in various applications. To better enhance the VFAs obtained from organic wastes for PSB to produce high value-added products, a comprehensive review is needed, which is currently not available. This review systematically summarizes the current status of microbial proteins, H2, poly-ß-hydroxybutyrate (PHB), coenzyme Q10 (CoQ10), and 5-aminolevulinic acid (ALA) production by PSB utilizing VFAs as a carbon resource. Meanwhile, the metabolic pathways involved in the H2, PHB, CoQ10, and 5-ALA production by PSB were deeply explored. In addition, a systematic resource utilization pathway for PSB utilizing VFAs from anaerobic fermentation of organic wastes to produce high value-added products was proposed. Finally, the current challenges and priorities for future research were presented, such as the screening of efficient PSB strains, conducting large-scale experiments, high-value product separation, recovery, and purification, and the mining of metabolic pathways for the VFA utilization to generate high value-added products by PSB.


Asunto(s)
Ácidos Grasos Volátiles , Bacterias Gramnegativas , Ácidos Grasos Volátiles/metabolismo , Fermentación , Anaerobiosis , Bacterias Gramnegativas/metabolismo , Carbono/metabolismo , Reactores Biológicos , Concentración de Iones de Hidrógeno , Aguas del Alcantarillado
3.
Ecotoxicol Environ Saf ; 269: 115821, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091670

RESUMEN

Black soldier fly larvae (BSFL), Hermetia illucens L., are widely used to reduce the mass of various wastes. However, the potential metal tolerance mechanisms during periods of waste bioconversion by BSFL remain largely unknown. To further reveal the mechanisms, BSFL were used to treat the agricultural organic wastes, including pig manure (PM), cow manure (COM), spent mushroom substrate (SMS), and wet distiller grains (WDG). After these individual and combined waste(s) were treated by BSFL, we investigated the waste reduction rates and evaluated the responses of BSFL gut microbes to heavy metals of agricultural organic wastes. Additionally, the colloidal particles of residual wastes were characterized by combing energy dispersive X-ray (EDX) spectroscopy, Size potential, Zeta potential, and excitation-emission matrix (EEM) spectroscopy. Results indicated that the waste reduction rates were up to 74% in COM+WDG and 69% in WDG, most of heavy metals (e.g., Zn and Co) from organic wastes were not accumulated in the bodies of mature larvae after treatment. Further, results obtained from the prediction of gene function on the basis of 16 S rRNA data revealed that the presence of multi-resistance genes in the gut of BSFL can help the larvae resist Zn and/or Co stress. In addition, the drug sensitivity test implied that BSFL5_L and BSFL6_L from BSFL gut bacterial strains have multi-resistance to Co and Zn. Additionally, EDX results revealed that the colloidal particles in five waste residues after BSFL treatment are mainly consisted of Fe, Ca and Si, which can capture heavy metals (e.g., Cu, Mn). Results from EEM spectroscopy and PARAFAC showed that tryptophan-like and humic-like accumulatively account for 56%- 68% of all components. Importantly, these two components could strongly bind the metal elements and form colloidal particles with high stability, and therefore reduce the heavy metal pollution of agricultural organic wastes. Our findings offered an environment-friendly method to treat agricultural organic wastes, which would be far-reaching influence to our environment.


Asunto(s)
Dípteros , Metales Pesados , Bovinos , Femenino , Animales , Porcinos , Larva , Estiércol , Disponibilidad Biológica , Metales Pesados/toxicidad
4.
Ecotoxicol Environ Saf ; 270: 115884, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154152

RESUMEN

Appropriate management of agricultural organic waste (AOW) presents a significant obstacle in the endeavor to attain sustainable agricultural development. The proper management of AOW is a necessity for sustainable agricultural development. This can be done skillfully by incorporating microbial agents in the composting procedure. In this study, we isolated relevant bacteria strains from tomato straw AOW, which demonstrated efficient degradation of lignocellulose without any antagonistic effects in them. These strains were then combined to create a composite microbial agent called Zyco Shield (ZS). The performance of ZS was compared with a commercially effective microorganism (EM) and a control CK. The results indicate that the ZS treatment significantly prolonged the elevated temperature phase of the tomato straw pile, showing considerable degradation of lignocellulosic material. This substantial degradation did not happen in the EM and CK treatments. Moreover, there was a temperature rise of 4-6 â„ƒ in 2 days of thermophilic phase, which was not the case in the EM and CK treatments. Furthermore, the inoculation of ZS substantially enhanced the degradation of organic waste derived from tomato straw. This method increased the nutrient content of the resulting compost and elevated the enzymatic activity of lignocellulose-degrading enzymes, while reducing the urease enzyme activity within the pile. The concentrations of NH4+-N and NO3--N showed increases of (2.13% and 47.51%), (14.81% and 32.17%) respectively, which is again very different from the results of the EM and CK treatments. To some extent, the alterations observed in the microbial community and the abundance of functional microorganisms provide indirect evidence supporting the fact that the addition of ZS microbial agent facilitates the composting process of tomato straw. Moreover, we confirmed the degradation process of tomato straw through X-ray diffraction, Fourier infrared spectroscopy, and by scanning electron microscopy to analyze the role of ZS microbial inoculum composting. Consequently, reinoculation compost strains improves agricultural waste composting efficiency and enhances product quality.


Asunto(s)
Compostaje , Microbiota , Solanum lycopersicum , Agricultura , Bacterias/metabolismo , Suelo/química , Nitrógeno/análisis
5.
Environ Res ; 221: 115284, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36640934

RESUMEN

With rapid growing world population and increasing demand for natural resources, the production of sufficient food, feed for protein and fat sources and sustainable energy presents a food insecurity challenge globally. Insect biorefinery is a concept of using insect as a tool to convert biomass waste into energy and other beneficial products with concomitant remediation of the organic components. The exploitation of insects and its bioproducts have becoming more popular in recent years. This review article presents a summary of the current trend of insect-based industry and the potential organic wastes for insect bioconversion and biorefinery. Numerous biotechnological products obtained from insect biorefinery such as biofertilizer, animal feeds, edible foods, biopolymer, bioenzymes and biodiesel are discussed in the subsequent sections. Insect biorefinery serves as a promising sustainable approach for waste management while producing valuable bioproducts feasible to achieve circular bioeconomy.


Asunto(s)
Alimentos , Administración de Residuos , Animales , Insectos , Industrias , Biocombustibles , Biomasa
6.
J Environ Manage ; 342: 118191, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37210821

RESUMEN

This paper aimed to highlight the succession of biochar addition for soil amendment and contaminants remediation during composting process. Biochar incorporated into the compost mixture promotes composting performance and enhances contaminants reduction. Co-composting with biochar for soil biota has been demonstrated via modified soil biological community abundance and diversity. On the other hand, adverse alterations to soil properties were noted, which had a negative impact on the communication of microbe-to-plant interactions within the rhizosphere. As a result, these changes influenced the competition between soilborne pathogens and beneficial soil microorganisms. Co-composting with biochar promoted the heavy metals (HMs) remediation efficiency in contaminated soils by around 66-95%. Notably, applying biochar during composting could improve nutrient retention and mitigate leaching. The adsorption of nutrients such as nitrogen and phosphorus compounds by biochar can be applied to manage environmental contamination and presents an excellent opportunity to enhance soil quality. Additionally, the various specific functional groups and large specific surface areas of biochar allow for excellent adsorption of persistent pollutants (e.g., pesticides, polychlorinated biphenyls (PCBs)) and emerging organic pollutants, such as microplastic, phthalate acid esters (PAEs) during co-composting. Finally, future perspectives, research gaps, and recommendations for further studies are highlighted, and potential opportunities are discussed.


Asunto(s)
Compostaje , Contaminantes Ambientales , Contaminantes del Suelo , Suelo , Plásticos , Contaminantes del Suelo/análisis , Carbón Orgánico
7.
Environ Res ; 212(Pt A): 113137, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35358545

RESUMEN

Cypermethrin is a toxic pyrethroid insecticide that is widely used in agricultural and household activities. One of the most serious issues is its persistence in the environment, because it is easily transported to the soil and aquatic ecosystem. The biodegradation of cypermethrin is emerging as an environmentally friendly method for large-scale treatment. This study examined the application of a novel binary bacterial combination-based (Bacillus thuringiensis strain SG4 and Bacillus sp. strain SG2) approach used for the enhanced degradation of cypermethrin from the environment. The bacterial strains degraded cypermethrin (80% and 85%) in the presence of external nitrogen sources (KNO3 and NaNO3). Furthermore, when immobilized in agar disc beads, the co-culture degraded cypermethrin (91.3%) with a half-life (t1/2) of 4.3 days compared to 4.9 days using sodium alginate beads. Cereal straw, farmyard manure, press mud compost, fresh cow dung, and gypsum were used as organic amendments in the soil to stimulate cypermethrin degradation. Cereal straw promoted the fastest cypermethrin degradation among the different organic amendments tested, with a t1/2 of 4.4 days. The impact of cypermethrin-degrading bacterial consortium on cypermethrin rhizoremediation was also investigated. Bacterial inoculums exhibited beneficial effects on plant biomass. Moreover, Zea mays and the bacterial partnership substantially enhanced cypermethrin degradation in soil. Six intermediate metabolites were detected during the degradation of cypermethrin, indicating that cypermethrin could be degraded first by the hydrolysis of its carboxyl ester bond, followed by the cleavage of the diaryl linkage and subsequent metabolism. Our findings highlight the promising potential and advantages of the bacterial consortium for the bioremediation of a cypermethrin-contaminated environment.


Asunto(s)
Bacillus thuringiensis , Bacillus , Piretrinas , Contaminantes del Suelo , Biodegradación Ambiental , Ecosistema , Plantas/metabolismo , Piretrinas/metabolismo , Suelo , Contaminantes del Suelo/metabolismo , Zea mays/metabolismo
8.
J Environ Manage ; 302(Pt B): 114102, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800766

RESUMEN

We assessed the effect of three organic amendments and two organo-clays on sorption, persistence, and phytotoxicity of scopoletin, an allelochemical compound with potential as bioherbicide, in a Mediterranean alkaline soil. The aim was to elucidate whether the phytotoxicity of scopoletin could be expressed better in amended than unamended soil. The three organic amendments were fresh solid olive-mill waste (OMW), composted solid olive-mill waste (OMWc), and biochar (BC) prepared from OMWc. The two organo-clays were a commercial organo-montmorillonite (Cloi10) and lab-synthesized oleate-modified hydrotalcite (HT-OLE). The amendments enhanced sorption of scopoletin by the soil consistently with their individual affinities for the allelochemical: Cloi10 ≫ OMW > BC > OMWc > HT-OLE. The soil persistence of scopoletin increased significantly because of the addition of Cloi10, OMW, and BC. This increase was attributed to a combination of sorption, which protected the allelochemical from rapid biodegradation, and microbial activity changes. Although the inhibitory effect produced by the amendments themselves obscured the phytotoxicity of scopoletin to Lactuca sativa L. in soil treated with OMW and Cloi10, applying scopoletin to BC-amended soil led to a marked reduction in root length and aerial biomass of the emerged seedlings even though BC alone did not negatively affect these parameters. This inhibitory effect of scopoletin in BC-amended soil was in contrast to the negligible effect exerted by the allelochemical when applied to unamended soil. The results show that soils treated with suitable amendments, such as BC, might provide a scenario in which the herbicidal properties of 7-hydroxycoumarins could be better expressed.


Asunto(s)
Contaminantes del Suelo , Suelo , Arcilla , Feromonas , Escopoletina , Contaminantes del Suelo/análisis
9.
J Environ Manage ; 307: 114562, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091242

RESUMEN

Valorization of oil sludge has been gaining attention to improve the sustainability of the petroleum industry. This study aimed to assess the possibility of anaerobic co-digestion of oil scum and secondary sludge with food waste (or swine manure). Oil scum and secondary sludge were obtained from a wastewater treatment plant (WWTP) of a petrochemical plant. Physicochemical properties, hazardous materials, and microbial community were characterized and biochemical methane potential was performed by a simplex-lattice mixture design. More than 87% (wet wt.) of the oil scum consisted of total petroleum hydrocarbons (TPHs) (21,762 mg/L) that are difficult to be degraded by anaerobes. The secondary sludge showed low TPHs (5 mg/L) and a bacterial community similar to that of municipal WWTPs. The heavy metal (Cu, As, Cr, Ni, Mn, Zn, and V) concentrations in the oil scum and secondary sludge were similar (20-600 mg/L). The maximum methane potentials of the oil sludge and secondary sludges were 20 ± 2 and 56 ± 3 mL CH4/g-volatile solid, respectively. The co-digestion with food waste or swine manure led to a synergy effect on methane production of the co-digestion substrate (10-40% increase compared to the calculated value; v/v) by balancing the C/N ratio. Due to the high TPH contents, oil scum is not appropriate for co-digestion. The co-digestion of secondary sludge with food waste and/or swine manure is recommended. It is necessary to consider whether the concentration of heavy metals is at a level that inhibits the anaerobic co-digestion depending on the operating conditions such as mixing ratios and solid contents.


Asunto(s)
Petróleo , Eliminación de Residuos , Anaerobiosis , Animales , Biocombustibles/análisis , Reactores Biológicos , Digestión , Alimentos , Estiércol , Metano , Aguas del Alcantarillado , Porcinos
10.
Environ Dev Sustain ; : 1-27, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36570522

RESUMEN

In twenty-first century buildings, green roof systems are envisioned as great solution for improving Environmental sustainability in urban ecosystems and it helps to mitigate various health hazards for humans due to climatic pollution. This study determines the feasibility of using five domestic organic wastes, including sawdust, wood bark, biochar, coir, and compost, as sustainable substrates for green roofs as compared to classical Sri Lankan base medium (fertiliser + potting mix) in terms of physicochemical and biological parameters associated with growing mediums. Comprehensive methodologies were devised to determine the thermal conductivity and electric conductivity of growing mediums. According to preliminary experimental results, the most suitable composition for green roof substrates comprised 60% organic waste and 40% base medium. Sawdust growing medium exhibited the highest moisture content and minimum density magnitudes. Biochar substrate was the best performing medium with the highest drought resistance and vegetation growth. The wood bark substrate had the highest thermal resistance. Growing mediums based on compost, sawdust, and coir produced the best results in terms of nitrate, phosphate, pH, and electric conductivity (EC) existence. This study provided a standard set of comprehensive comparison methodologies utilising physicochemical and biological properties required for substrate characterization. The findings of this research work have strong potential in the future to be used in selecting the most suitable lightweight growing medium for a green roof based on stakeholder requirements.

11.
Waste Manag Res ; 40(6): 706-720, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34405751

RESUMEN

In recent years, decentralized composting appeared as one of the most appropriate treatment options for organic waste valorization in low- and middle-income countries. In Cote d'Ivoire, a pilot project has proved the feasibility of organic municipal solid waste composting for the city of Tiassalé. However, numerous issues still need to be addressed for the establishment of a sustainable decentralized composting system in this city. One of the key issues is site selection. Until now, there is no clear model for such plant site selection. In this study, multi-criteria decision analysis (MCDA) and geographical information system (GIS) approaches were combined to develop an appropriate model for selecting decentralized composting sites in the city of Tiassalé. The methodology used involved two different and complementary phases. First, MCDA and GIS techniques were used to identify the most suitable site areas. Seven criteria clustered in three main factors (environmental, social and economic), and five constraints were considered in the analysis process. Second, five sites were selected within the most suitable areas after a basic field visit and ranked using the Analytic Hierarchy Process. The results showed that the most suitable spaces for decentralized composting plant siting represent only 2.6% of the study area. The investigation yielded on the selection of the two best options for decentralized composting plant siting for the city of Tiassalé. This study proved that the combination of MCDA and GIS is a practical and efficient method to identify suitable sites for decentralized composting plants.


Asunto(s)
Compostaje , Eliminación de Residuos , Côte d'Ivoire , Técnicas de Apoyo para la Decisión , Sistemas de Información Geográfica , Proyectos Piloto , Eliminación de Residuos/métodos
12.
J Environ Manage ; 280: 111648, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33213993

RESUMEN

Sewage sludge digestate is a valuable organic waste which can be used as fertilizer in soil bioremediation. Sewage sludge digestate is not only a good source of nutrients but is also rich in bacteria carrying alkB genes, which are involved in aliphatic hydrocarbons metabolism. Increase of alkB genes ratio in polluted soils has been observed to improve bioremediation efficiency. In this study, for the first time, the genetic potential of indigenous microorganisms of digestate to degrade petroleum products was assessed. The objectives were to study petroleum hydrocarbons (PHCs) removal together with shifts in soil taxa and changes in the concentration of alkB genes after digestate application. Initial alkB genes concentration in contaminated soils and digestate was 1.5% and 4.5%, respectively. During soil incubation with digestate, alkB genes percentage increased up to 11.5% and after the addition of bacteria immobilized onto biochar this value increased up to 60%. Application of digestate positively affected soil respiration and bacterial density, which was concomitant with enhanced PHCs degradation. Incubation of soil amended with digestate resulted in 74% PHCs decrease in 2 months, while extra addition of bacteria immobilized onto biochar increased this value up to 95%. The use of digestate affected the microbial community profiles by increasing initial bacterial density and diversity, including taxa containing recognized PHCs degraders. This study reveals the great potential of digestate as a soil amendment which additionally improves the abundance of alkB genes in petroleum contaminated soils.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos , Petróleo/análisis , Aguas del Alcantarillado , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
13.
Molecules ; 26(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34443295

RESUMEN

In Saudi Arabia, more than 335,000 tons of cow manure is produced every year from dairy farming. However, the produced cow manure is usually added to the agricultural soils as raw or composted manure; significant nitrogen losses occur during the storage, handling, and application of the raw manure. The recovery of ammonia from cow manure through thermochemical treatments is a promising technique to obtain concentrated nitrogen fertilizer and reducing nitrogen losses from raw manure. However, the byproduct effluents from the recovery process are characterized by different chemical properties from the original raw manure; thus, its impact as soil amendments on the soil carbon and nitrogen dynamics is unknown. Therefore, a 90-day incubation experiment was conducted to study the impact of these effluents on CO2 efflux, organic C, microbial biomass C, available NH4+, and NO3- when added to agricultural soil. In addition to the two types of effluents (produced at pH 9 and pH 12), raw cow manure (CM), composted cow manure (CMC), cow manure biochar (CMB), and control were used for comparison. The application of CM resulted in a considerable increase in soil available nitrogen and CO2 efflux, compared to other treatments. Cow manure biochar showed the lowest CO2 efflux. Cumulative CO2 effluxes of cow manure effluents were lower than CM; this is possibly due to the relatively high C:N ratio of manure effluent. The content of P, Fe, Cu, Zn, and Mn decreased as incubation time increased. Soil microbial biomass C for soil treated with cow manure effluents (pH 12 and 7) was significantly higher than the rest of the soil amendments and control.

14.
Bioprocess Biosyst Eng ; 43(10): 1911-1919, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32447512

RESUMEN

In this work, white wine lees (WWL), cheese whey (CW), and glycerol (GLY) were used as carbon (C) sources to mixotrophically support the production of the microalga Nannochloropsis salina, replacing CO2 supply. In doing so, the alga was allowed to grow on C sources dosed at 2 g L-1, 3 g L-1, and 4 g L-1 of C, in the presence and absence of CO2 supply. WWL and CW were not able to support the algal growth due to a fungal contamination that was genomically identified, while GLY gave interesting results in particular with 3 g L-1 of C. GLY-C was able to replace CO2-C completely when the latter was omitted, showing an algal biomass production similar to those obtained in autotrophy. If CO2-C was provided jointly with GLY-C, biomass production and lipid contents increased more than 30% and 23%, respectively, compared to autotrophy.


Asunto(s)
Dióxido de Carbono/metabolismo , Lípidos/biosíntesis , Microalgas/crecimiento & desarrollo , Estramenopilos/crecimiento & desarrollo , Aguas Residuales/microbiología
15.
Microb Cell Fact ; 18(1): 201, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31739794

RESUMEN

BACKGROUND: The chemolithoautotrophic ß-proteobacterium Ralstonia eutropha H16 (Cupriavidus necator) is one of the most studied model organisms for growth on H2 and CO2. R. eutropha H16 is also a biologically significant bacterium capable of synthesizing O2-tolerant [NiFe]-hydrogenases (Hyds), which can be used as anode biocatalysts in enzyme fuel cells. For heterotrophic growth of R. eutropha, various sources of organic carbon and energy can be used. RESULTS: Growth, bioenergetic properties, and oxidation-reduction potential (ORP) kinetics were investigated during cultivation of R. eutropha H16 on fructose and glycerol or lignocellulose-containing brewery spent grain hydrolysate (BSGH). BSGH was used as carbon and energy source by R. eutropha H16, and the activities of the membrane-bound hydrogenase (MBH) and cytoplasmic, soluble hydrogenase (SH) were measured in different growth phases. Growth of R. eutropha H16 on optimized BSGH medium yielded ~ 0.7 g cell dry weight L-1 with 3.50 ± 0.02 (SH) and 2.3 ± 0.03 (MBH) U (mg protein)-1 activities. Upon growth on fructose and glycerol, a pH drop from 7.0 to 6.7 and a concomitant decrease of ORP was observed. During growth on BSGH, in contrast, the pH and ORP stayed constant. The growth rate was slightly stimulated through addition of 1 mM K3[Fe(CN)6], whereas temporarily reduced growth was observed upon addition of 3 mM dithiothreitol. The overall and N,N'-dicyclohexylcarbodiimide-sensitive ATPase activities of membrane vesicles were ~ 4- and ~ 2.5-fold lower, respectively, upon growth on fructose and glycerol (FGN) compared with only fructose utilization (FN). Compared to FN, ORP was lower upon bacterial growth on FGN, GFN, and BSGH. CONCLUSIONS: Our results suggest that reductive conditions and low ATPase activity might be signals for energy depletion, which, in turn, leads to increased hydrogenase biosynthesis to overcome this unfavorable situation. Addition of fructose or microelements have no, or a negative, influence on hydrogenase activity. Organic wastes (glycerol, BSGH) are promising carbon and energy sources for the formation of biomass harboring significant amounts of the biotechnologically relevant hydrogenases MBH and SH. The results are valuable for using microbial cells as producers of hydrogenase enzymes as catalysts in enzymatic fuel cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cupriavidus necator/enzimología , Cupriavidus necator/crecimiento & desarrollo , Hidrogenasas/biosíntesis , Biocatálisis , Biodegradación Ambiental , Glicerol/metabolismo , Procesos Heterotróficos , Hidrogenasas/metabolismo , Oxidación-Reducción , Residuos
16.
J Environ Manage ; 249: 109397, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31442907

RESUMEN

In this study, the optimum conditions of thermal-alkali pre-treatment and the performance of ammonia stripping were investigated for improving solubilization efficiency and methane yield in the anaerobic co-digestion of food waste (FW) and sewage sludge (SS). The reaction temperature, NaOH concentration and reaction time for the thermal-alkali pre-treatment were investigated to determine optimum pre-treatment conditions. Solubilization rate, volatile suspended solids (VSS) reduction rate and total volatile fatty acid (VFAs) yields were improved with increasing reaction temperature, NaOH concentration and reaction time. In addition, by applying the optimum pre-treatment conditions (140 °C, 60 meq/L and 60 min), the experimental methane yield of thermal-alkali pre-treatment of a mixture of FW and SS was 483.0 ±â€¯15.7 mL CH4/g VSadded, which was about 84% higher than that of the untreated one. However, after thermal-alkali pre-treatment, the NH4+ concentration of the thermal-alkali pre-treatment liquid showed a concentration that could inhibit anaerobic digestion, so ammonia stripping was performed to remove NH4+. As a result, the experimental methane yield was increased by about 7% compared to when ammonia stripping was not performed.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Anaerobiosis , Alimentos , Metano
17.
Waste Manag Res ; 37(7): 746-754, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31165675

RESUMEN

In this study a fractionation procedure was developed and applied to evaluate the potential of some organic wastes (two cattle manures and two catch crops, fresh and after ensiling) for anaerobic digestion. This procedure was based on water extraction of the raw sample, which enabled the evaluation of the contributions of water-soluble and particulate phases to the investigated properties. Biomethane potential (BMP) and chemical oxygen demand (COD) were determined and used to assess the anaerobic biodegradability of raw materials. Analysis of structural carbohydrates, total Kjeldahl nitrogen, water-soluble carbohydrates, volatile fatty acids and pH were also included to explain the main phenomena involved in methane production from the tested biomass. Results show that the origin and the preparation mode had a significant impact on BMP distribution. Based on a COD balance, the biodegradability of the various feedstocks ranged from 45% to 75%. Biodegradability of fresh materials was negatively correlated with the sum of structural carbohydrates and lignin content. Among the feedstock used, the water-soluble phase represented 8-69% of the total COD and 7-46% to the total BMP. Solubilization of organic matter during ensiling was due to the production and accumulation of organic acids from particulate carbohydrates and organic nitrogen. This procedure detects kinetic and biodegradability differences among biomass and thus it can be useful for the design of anaerobic digestion plants. Furthermore, it can be applied to evaluate the efficiency of biomass pretreatments.


Asunto(s)
Estiércol , Metano , Anaerobiosis , Animales , Reactores Biológicos , Bovinos , Ácidos Grasos Volátiles , Lignina
18.
Int J Phytoremediation ; 20(12): 1264-1273, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31274025

RESUMEN

To date, very few attempts have been made to systematically compare the effectiveness of agricultural and nonagricultural organic wastes for aided phytostabilization of mine tailings under field conditions. In this study, we performed a field trial to compare the effectiveness of three agricultural organic wastes: chicken manure (CM), crop straw (CS), and spent mushroom compost (SMC), with that of three nonagricultural organic wastes, municipal sludge (MS), medicinal herb residues (MHR), and sweet sorghum vinasse (SSV) for aided phytostabilization of a Pb-Zn mine tailings pond in Hunan Province, China. Eight plant species naturally established in the vicinity of the mine were selected and seeded onto trial plots. It was found that the CM-amended plots had the highest (p < 0.05) vegetation cover (86%) and biomass production (881 g m-2), compared to other treatments. CM was also one of the best amendments in terms of improving soil nutrient status, increasing activities of soil enzymes, and immobilizing soil Pb. In addition, CM-amended plots were characterized by their higher microbial diversity and distinct microbial community structure as compared to the control plots. MS was the second best amendment in promoting vegetation cover (71%) and biomass production (461 g m-2), and it performed as well as CM for improving nutrient status, immobilizing heavy metals, and increasing the activities of enzymes in the mine tailings. Suggestions for further lines of research are made in order to develop future investigations.

19.
Biotechnol Bioeng ; 114(5): 970-979, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27943246

RESUMEN

In the present work, a two-stage anaerobic digestion system (TSADS) was newly designed to produce biogas with a greatly reduced H2 S content. The role of first (sulfidogenic)-stage digester was not only acidogenesis but also sulfidogenesis (sulfate reduction to H2 S), which would minimize the input of H2 S-producing source in the followed second (methanogenic)-stage digester. For the coexistence of acidogens and sulfate reducing bacteria (SRB) in the sulfidogenic-stage digester, it was found that pH played a crucial role. The acidogenic activity was not affected within a pH range of 4.5-6.0, while it was important to maintain a pH at 5.5 to achieve a sulfate removal efficiency over 70%. The highest sulfate removal attained was 78% at a hydraulic retention time (HRT) of 5 h at pH 5.5 ± 0.1. The H2 S content in the biogas produced in the conventional single-stage digester (SSAD), used as a control, reached 1,650 ± 25 ppmv . In contrast, the biogas produced in the methanogenic-stage digester of the developed process had an H2 S content of 200 ± 15 ppmv . Microbial analysis, done by the next generation sequencing technique, clearly showed the changes in community under different operating conditions. Desulfovibrio bastinii (4.9%) played a key role in sulfate removal in the sulfidogenic-stage of the TSADS owing to its characteristics of a short doubling time and growth in an acidic environment. Biotechnol. Bioeng. 2017;114: 970-979. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biocombustibles , Reactores Biológicos/microbiología , Sulfatos/aislamiento & purificación , Sulfatos/metabolismo , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Desulfovibrio/metabolismo , Aguas del Alcantarillado/microbiología , Sulfatos/análisis
20.
J Environ Manage ; 186(Pt 2): 301-313, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27817970

RESUMEN

(Aided) phytostabilisation has been proposed as a suitable technique to decrease the environmental risks associated with metal(loid)-enriched mine tailings. Field scale evaluations are needed for demonstrating their effectiveness in the medium- to long-term. A field trial was implemented in spring 2011 in Cu-rich mine tailings in the NW of Spain. The tailings were amended with composted municipal solid wastes and planted with Salix spp., Populus nigra L. or Agrostis capillaris L. cv. Highland. Plant growth, nutritive status and metal accumulation, and soil physico- and bio-chemical properties, were monitored over three years (four years for plant growth). The total bacterial community, α- and ß-Proteobacteria, Actinobacteria and Streptomycetaceae were studied by DGGE of 16s rDNA fragments. Compost amendment improved soil properties such as pH, CEC and fertility, and decreased soil Cu availability, leading to the establishment of a healthy vegetation cover. Both compost-amendment and plant root activity stimulated soil enzyme activities and induced important shifts in the bacterial community structure over time. The woody plant, S. viminalis, and the grassy species, A. capillaris, showed the best results in terms of plant growth and biomass production. The beneficial effects of the phytostabilisation process were maintained at least three years after treatment.


Asunto(s)
Biodegradación Ambiental , Cobre/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Suelo/química , Agrostis/crecimiento & desarrollo , Bacterias/genética , Biomasa , Cobre/farmacocinética , Consorcios Microbianos/genética , Minería , Raíces de Plantas/química , Raíces de Plantas/microbiología , Populus/crecimiento & desarrollo , Salix/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Residuos Sólidos , España , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda