Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 802
Filtrar
Más filtros

Publication year range
1.
J Mammary Gland Biol Neoplasia ; 29(1): 15, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017946

RESUMEN

As both perimenopausal and menopausal periods are recognized critical windows of susceptibility for breast carcinogenesis, development of a physiologically relevant model has been warranted. The traditional ovariectomy model causes instant removal of the entire hormonal repertoire produced by the ovary, which does not accurately approximate human natural menopause with gradual transition. Here, we characterized the mammary glands of 4-vinylcyclohexene diepoxide (VCD)-treated animals at different time points, revealing that the model can provide the mammary glands with both perimenopausal and menopausal states. The perimenopausal gland showed moderate regression in ductal structure with no responsiveness to external hormones, while the menopausal gland showed severe regression with hypersensitivity to hormones. Leveraging the findings on the VCD model, effects of a major endocrine disruptor (polybrominated diphenyl ethers, PBDEs) on the mammary gland were examined during and after menopausal transition, with the two exposure modes; low-dose, chronic (environmental) and high-dose, subacute (experimental). All conditions of PBDE exposure did not augment or compromise the macroscopic ductal reorganization resulting from menopausal transition and/or hormonal treatments. Single-cell RNA sequencing revealed that the experimental PBDE exposure during the post-menopausal period caused specific transcriptomic changes in the non-epithelial compartment such as Errfi1 upregulation in fibroblasts. The environmental PBDE exposure resulted in similar transcriptomic changes to a lesser extent. In summary, the VCD mouse model provides both perimenopausal and menopausal windows of susceptibility for the breast cancer research community. PBDEs, including all tested models, may affect the post-menopausal gland including impacts on the non-epithelial compartments.


Asunto(s)
Ciclohexenos , Glándulas Mamarias Animales , Perimenopausia , Compuestos de Vinilo , Animales , Femenino , Ratones , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/metabolismo , Perimenopausia/efectos de los fármacos , Perimenopausia/metabolismo , Menopausia/metabolismo , Menopausia/efectos de los fármacos , Disruptores Endocrinos/efectos adversos , Modelos Animales de Enfermedad , Humanos , Éteres Difenilos Halogenados/toxicidad
2.
Am J Epidemiol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38803157

RESUMEN

Persistent endocrine disrupting chemicals (EDCs) can dysregulate the stress response. We evaluated associations between persistent EDCs and perceived stress among participants from the Study of Environment, Lifestyle and Fibroids (n=1,394), a prospective cohort study of Black women. Participants completed the Perceived Stress Scale (PSS-4) at baseline, and every 20 months through 60 months (range of scores: 0-16); higher scores indicated higher stress. EDCs, including per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides, were quantified in plasma samples at baseline. We fit Bayesian Kernel Machine Regression (BKMR) and linear mixed effects models to estimate associations of EDCs (as a mixture and individually) with PSS-4 scores at baseline and at each follow-up visit, respectively. Increasing percentiles of the mixture were not strongly associated with PSS-4 scores at baseline, and no interactions were observed among EDCs. Several individual EDCs (e.g., PFDA, PCB 118, PBDE 99) were associated with higher PSS-4 scores at baseline or follow-up, while other EDCs (e.g., PCB 138/158) were associated with lower PSS-4 scores at baseline or follow-up. The directionality of associations for individual EDCs was inconsistent across follow-up visits. In conclusion, specific EDCs may be associated with perceived stress in Black women.

3.
Environ Sci Technol ; 58(19): 8417-8431, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701378

RESUMEN

This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.


Asunto(s)
Biomarcadores , Retardadores de Llama , Éteres Difenilos Halogenados , Exposición Profesional , Organofosfatos , Retardadores de Llama/metabolismo , Humanos , Exposición por Inhalación , Adulto , Masculino , Piel/metabolismo , Estados Unidos , Femenino
4.
Environ Sci Technol ; 58(5): 2514-2527, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252621

RESUMEN

The USEPA Great Lakes Fish Monitoring and Surveillance Program (GLFMSP) has been monitoring top predator lake trout and walleye contaminant concentrations since the early 1970s. Our research revealed that select legacy contaminant groups (∑PCBs, ∑DDTs, ∑chlordanes, and ∑5PBDEs) have similar t1/2 and k2 values across the Great Lakes, with the exception of both Lake Erie sites and the Lake Superior─Keweenaw Point site. The slower halving times determined at both Lake Erie sites are consistent with legacy contaminant remobilization due to extreme weather climate effects and past remedial actions on the Detroit River, whereas the Lake Superior─Keweenaw Point site demonstrates contaminant halving times approaching the exponential minimum. Overall, Great Lakes select contaminant groupings have decreased between 25.8 and 97.9% since 2004. An age-normalized Great Lakes Contaminant Index (GLCI) was devised, indicating both Lake Michigan sites as the most highly impacted. The mean absolute deviation statistic was applied, documenting the need to age-correct contaminant trends due to highly variable age profiles. With the noted exceptions, the uniformity of age-corrected trend modeling suggests that a combination of the fundamental biological and physicochemical mechanisms of natural contaminant sequestration, declining dissolved water concentrations, accumulation/metabolism/depuration, and the overall reduction of legacy contaminant loading are driving the generally consistent rates of declines in the Great Lakes. Many of the biological and ecological stressors currently associated with climate change appear to be accounted for by the age-trend model.


Asunto(s)
Percas , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Lagos , Michigan , Great Lakes Region
5.
Environ Res ; 250: 118537, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38408627

RESUMEN

E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 µg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.


Asunto(s)
Polvo , Residuos Electrónicos , Éteres Difenilos Halogenados , Exposición Profesional , Bifenilos Policlorados , Reciclaje , Humanos , Polvo/análisis , Exposición Profesional/análisis , Europa (Continente) , Residuos Electrónicos/análisis , Éteres Difenilos Halogenados/sangre , Éteres Difenilos Halogenados/análisis , Adulto , Masculino , Persona de Mediana Edad , Bifenilos Policlorados/sangre , Bifenilos Policlorados/análisis , Femenino , Contaminantes Orgánicos Persistentes/sangre , Siliconas , Monitoreo del Ambiente/métodos
6.
Environ Res ; 260: 119582, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992756

RESUMEN

BACKGROUND: Organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that can negatively impact metabolic health through pathways including endocrine disruption. Few studies have evaluated diabetes risk associated with PBDEs. Little is known about the joint effect of exposure to POP mixtures on diabetes risk. OBJECTIVES: We investigated the relationship between POPs, individually and as mixtures, and diabetes development over 18 years (1999-2016) in midlife women. METHODS: We measured lipid-standardized serum concentrations of 34 PCBs, 19 OCPs, and 14 PBDEs in 1040 midlife women aged 45-56 years from the Study of Women's Health Across the Nation. We tested the association between POPs measured in 1999/2000 and incident diabetes using Cox proportional hazards models. We evaluated diabetes risk associated with the overall POP mixture using Quantile-Based G-Computation (QBGC). RESULTS: For most mixture components, single pollutant and mixtures analyses indicated null associations with diabetes risk, however results were inconsistent. After adjustment, hazard ratios (HRs) of developing diabetes (95% CI) associated with upper exposure tertiles (T2/T3) compared with the first tertile (T1), were 1.7 (1.0, 2.8) at T2 and 1.5 (0.84, 2.7) at T3 for hexachlorobenzene and 1.9 (1.1, 3.3) at T2 and 1.6 (0.88, 2.9) at T3 for PCB 123. A doubling of PBDE 47 was associated with 1.11 (1.00, 1.24) times the risk of T2D. QBGC identified no association for the overall joint effect of the POP mixture on diabetes (HR = 1.04 [0.53, 2.07]). CONCLUSION: Exposure to a mixture of PCBs, OCPs, and PBDEs was not associated with incident diabetes in midlife U.S. women, although some individual POPs demonstrated significant yet inconsistent associations with diabetes. Non-linear and non-monotonic dose-response dynamics deserve further exploration. More research is needed on the diabetogenic effects of PBDEs.

7.
Environ Res ; 257: 119299, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824984

RESUMEN

Kelp forests (KFs) are one of the most significant marine ecosystems in the planet. They serve as a refuge for a wide variety of marine species of ecological and economic importance. Additionally, they aid with carbon sequestration, safeguard the coastline, and maintain water quality. Microplastic (MP) and polybrominated diphenyl ethers (PBDEs) concentrations were analyzed across trophic levels in KFs around Todos Santos Bay. Spatial variation patterns were compared at three sites in 2021 and temporal change at Todos Santos Island (TSI) in 2021 and 2022. We analyzed these MPs and PBDEs in water, primary producers (Macrocystis pyrifera), grazers (Strongylocentrotus purpuratus), predators (Semicossyphus pulcher), and kelp detritus. MPs were identified in all samples (11 synthetic and 1 semisynthetic polymer) and confirmed using Fourier-transform infrared microspectroscopy-attenuated total reflectance (µ-FTIR-ATR). The most abundant type of MP is polyester fibers. Statistically significant variations in MP concentration were found only in kelps, with the greatest average concentrations in medium-depth kelps from TSI in 2022 (0.73 ± 0.58 MP g-1 ww) and in the kelp detritus from TSI in 2021 (0.96 ± 0.64 MP g-1 ww). Similarly, PBDEs were found in all samples, with the largest concentration found in sea urchins from Punta San Miguel (0.93 ± 0.24 ng g-1 ww). The similarity of the polymers can indicate a trophic transfer of MPs. This study shows the extensive presence of MP and PBDE subtropical trophic web of a KF, but correlating these compounds in environmental samples is highly complex, influenced by numerous factors that could affect their presence and behavior. However, this suggests that there is a potential risk to the systems and the services that KFs offer.


Asunto(s)
Monitoreo del Ambiente , Cadena Alimentaria , Éteres Difenilos Halogenados , Kelp , Microplásticos , Contaminantes Químicos del Agua , Éteres Difenilos Halogenados/análisis , Kelp/química , Contaminantes Químicos del Agua/análisis , Animales , Microplásticos/análisis
8.
Ecotoxicol Environ Saf ; 272: 116021, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295738

RESUMEN

Kelp, the brown alga distributed in coastal areas all over the world, is also an important medicine food homology product in China. However, the levels and profiles of persistent organic pollutants (POPs) in kelp have not been thoroughly investigated to date. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and emerging bromine flame retardants (eBFRs) were evaluated in 41 kelp samples from the main kelp producing areas in China. The concentrations of total PCBs, PBDEs and eBFRs were in the range of 0.321-4.24 ng/g dry weight (dw), 0.255-25.5 ng/g dw and 3.00 × 10-3-47.2 ng/g dw in kelp, respectively. The pollutant pattern was dominated by decabromodiphenyl ethane (DBDPE, 13.0 ± 11.7 ng/g dw) followed in decreasing order by BDE-209 (2.74 ± 4.09 ng/g dw), CB-11 (1.32 ± 1.06 ng/g dw). The tested results showed that kelp could reflect the pollution status of PCBs, PBDEs and eBFRs, indicating the suitability of kelp as a biomonitor of these harmful substances. Finally, the data obtained was used to evaluate human non-cancer and cancer risks of PCBs and PBDEs via kelp consumption for Chinese. Though the calculated risk indices were considered acceptable according to the international standards even in the worst scenarios, the POPs levels in kelp should be monitored continuously as a good environmental indicator.


Asunto(s)
Contaminantes Ambientales , Retardadores de Llama , Bifenilos Policlorados , Contaminantes Químicos del Agua , Humanos , Bifenilos Policlorados/análisis , Contaminantes Orgánicos Persistentes , Éteres Difenilos Halogenados/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , China , Retardadores de Llama/análisis
9.
Environ Geochem Health ; 46(10): 377, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167306

RESUMEN

As the most common endocrine cancer, thyroid cancer (TC) has sharply increased globally over the past three decades. The growing incidence of TC might be counted by genetics, radiation, iodine, autoimmune disease, and exposure to environmental endocrine-disrupting chemicals (EDCs). Polybrominated diphenyl ethers (PBDEs), being typical EDCs, have been widely utilized in plastics, electronics, furniture, and textiles as flame retardants since the 1980s, and research has indicated a significant correlation between their exposure and the risk of TC. Even so, PBDEs exposure impact on the metabolic signature for TC remains unexplored. In this study, eight congeners of PBDEs were determined in serum from 111 patents with papillary thyroid cancer (PTC) and 111 healthy participants based on case-control epidemiology using gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (GC-APCI-MS/MS). Based on the tertile distribution of total PBDEs concentrations in 59 participants, metabolomics analysis was further performed by ultra-high performance liquid chromatography coupled to hybrid quadrupole-Orbitrap MS. In the partial correlation analysis, the 29 identified metabolites were correlated with PBDEs exposure (P < 0.05). In addition, PBDEs disrupted the metabolism of glycerophospholipids, sphingolipids, taurine, and hypotaurine, indicating that neurotransmitters, oxidative stress, and inflammation are the vulnerable pathways affected in PTC. Furthermore, (±)-octopamine and 5-hydroxyindole, both of which modulate the actions of neurotransmitters, emerged as potential disturbed metabolite markers for TC following exposure to PBDEs. This study analyzed the impact of PBDEs on PTC in terms of the metabolic changes and further explored possible biomarkers, which helped us have a deep understanding of the possible mechanism of the effects of PBDEs on TC.


Asunto(s)
Éteres Difenilos Halogenados , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Éteres Difenilos Halogenados/sangre , Estudios de Casos y Controles , Femenino , Neoplasias de la Tiroides/sangre , Neoplasias de la Tiroides/inducido químicamente , Masculino , Persona de Mediana Edad , Adulto , Cáncer Papilar Tiroideo/sangre , Contaminantes Ambientales/sangre , Exposición a Riesgos Ambientales , Cromatografía de Gases y Espectrometría de Masas , Anciano
10.
Environ Sci Technol ; 57(1): 520-530, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36539350

RESUMEN

In this study, the levels of polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) were characterized in firefighters' personal protective equipment (PPE) (i.e., jackets, pants, hoods, and gloves) and vehicle dust wipe samples to assess the exposure and potential risk of firefighters to these combustion-related toxic pollutants. The mean levels of ∑PBDEs in the fire vehicle dust samples (778 and 449 pg/cm2 for pump trucks and command cars, respectively) were significantly higher than those in the private vehicles (31.2 pg/cm2) (Kruskal-Wallis test, p < 0.05), which was similar to the ∑PAH levels (521, 185, and 46.8 pg/cm2 for pump trucks, command cars, and private vehicles, respectively). In the case of firefighters' PPE, the levels of ∑PBDEs and ∑PAHs in used jackets and pants were found to be, respectively, 70- to 2242-folds and 11- to 265-folds higher than those in their unused counterparts. Biomass/petroleum combustion was found to be the main source of PAH contamination in fire vehicle dust and used PPE in the present study. Both carcinogenic and noncarcinogenic risks via vehicle dust ingestion and dermal absorption from wearing of PPE were within permissible limits, although the relative risk evaluation showed that PAH/PBDE absorption via wearing of PPE could pose a higher likelihood of carcinogenic and noncarcinogenic risks than the ingestion of pollutants via fire vehicle dust, warranting the need for appropriate management of firefighters' personal protective ensembles.


Asunto(s)
Contaminantes Ambientales , Bomberos , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Humanos , Exposición Profesional/análisis , Éteres Difenilos Halogenados/análisis , Polvo/análisis , Equipo de Protección Personal , Medición de Riesgo , República de Corea
11.
Environ Sci Technol ; 57(20): 7777-7788, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37115742

RESUMEN

Polybrominated dibenzofurans (PBDFs) are characteristic dioxin-like products of polybrominated diphenyl ether (PBDE) photolysis. In this study, competition mechanisms of radical-based cyclization and hydrogen abstraction reactions are proposed in PBDF formation. Commonly, the ortho C-Br bond dissociation during photolysis generates aryl radicals, which undergo intramolecular cyclization to form PBDFs or hydrogen abstraction with hydrogen donors (such as organic solvents and water) to form lower brominated PBDEs. By using 2,4,4'-tribromodiphenyl ether (BDE-28) as the model reactant, the experimental PBDF formation ratios in various solutions are explained quantitatively by the calculated rate constants of cyclization and hydrogen abstraction reactions using the density functional theory (DFT) method. The solvent effect of pure and mixed solvents on PBDF formation is illustrated successfully. The structure-related hydrogen donation ability for hydrogen abstraction controls the bias of competition reactions and influences PBDF formation. Water resulted to be the most significant generation of PBDFs. Fulvic and humic acid display higher hydrogen donation ability than small-molecule organics due to the partitioning effect in aqueous solution. Quantitative structure-activity relationship (QSAR) models of the calculated rate constants for 512 cyclization and 319 hydrogen abstraction reactions using 189 PBDEs as the initial reactants in water are established, revealing the high risk of PBDF formation in aqueous solution.


Asunto(s)
Éteres Difenilos Halogenados , Agua , Éteres Difenilos Halogenados/química , Fotólisis , Ciclización , Solventes , Agua/química
12.
Environ Sci Technol ; 57(26): 9722-9731, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37350554

RESUMEN

As typical persistent organic pollutants, polybrominated diphenyl ethers (PBDEs) tend to accumulate in edible parts of rice, posing great ecological and health risks. The translocation of PBDEs from underground to aboveground parts of rice is a crucial procedure to determine the final bioaccumulation level. Herein, this study aimed to identify the transporter proteins for PBDEs in rice plants in order to strengthen our understanding of the bioaccumulation mechanism and the potential prevention strategy of the PBDE risk. Similar time-dependent patterns were observed among the root-to-shoot translocation factors (TFs) of PBDEs, the expression of lysine histidine transporter (LHT) protein, and the relative levels of LHT substrates (phenylalanine or tyrosine), implying the potential co-transport of PBDEs, phenylalanine, and tyrosine by the carrier LHT. Fluorescence spectra and circular dichroism showed that PBDE congeners interfered with LHT via static fluorescence quenching and changes in the protein's secondary structure. The in vitro sorption fraction of LHT to PBDEs, as revealed by sorption equilibrium analysis, was comparable to the in vivo TF values. Knockout of OsLHT1 in rice using CRISPR/Cas9 technology caused a 48.2-78.4% decrease in PBDE translocation. Molecular docking simulation suggested that PBDEs, phenylalanine, and tyrosine were inserted into the same ligand-binding cavity of LHT, substantiating the potential carrier role of LHT for PBDEs from a conformational perspective. Quantitative structure activity relationship analysis demonstrated that the ether-bond oxygen and the carbons at the site 4 and 4' of PBDE molecules are significant determinants of the binding affinity with the LHT protein and in vivo translocation of PBDEs. In summary, this study discovered that LHT acts as the cellular carrier for PBDEs and offered a comprehensive molecular explanation for the bioaccumulation and translocation of PBDEs in rice plants, covering both biological and chemical perspectives. These findings fill in a knowledge gap on the endogenous transporter proteins for exogenous organic pollutants.


Asunto(s)
Éteres Difenilos Halogenados , Oryza , Éteres Difenilos Halogenados/química , Proteínas Portadoras , Simulación del Acoplamiento Molecular , Sistemas de Transporte de Aminoácidos , Monitoreo del Ambiente/métodos
13.
Anal Bioanal Chem ; 415(19): 4813-4825, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37289209

RESUMEN

Biotransformation can greatly influence the accumulation and, subsequently, toxicity of substances in living beings. Although traditionally these studies to quantify metabolization of a compound have been carried out with in vivo species, currently, in vitro test methods with very different cell lines are being developed for their evaluation. However, this is still a very limited field due to multiple variables of a very diverse nature. So, an increasing number of analytical chemists are working with cells or other similar biological samples of very small size. This makes it necessary to address the development of analytical methods that allow determining their concentration both inside the cells and in their exposure medium. The aim of this study is to develop a set of analytical methodologies for the quantification of polycyclic aromatic hydrocarbons, PAHs (phenanthrene, PHE), and polybrominated diphenyl ethers, PBDEs (2,2',4,4'-tetrabromodiphenyl ether, BDE-47), and their major metabolites in cells and their exposure medium. Analytical methodologies, based on miniaturized ultrasound probe-assisted extraction, gas chromatography-mass spectrometry-microelectron capture detector (GC-MS-µECD), and liquid chromatography-fluorescence detector (LC-FL) determination techniques, have been optimized and then applied to a biotransformation study in HepG2 at 48 h of exposure. Significant concentrations of the major metabolites of PHE (1-OH, 2-OH, 3-OH, 4-OH-, and 9-OH-PHE) and BDE-47 (5-MeO-, 5-OH-, and 3-OH-BDE-47) were detected and quantified inside the cells and in the exposure medium. These results provide a new method for determination and improve information on the metabolization ratios for a better knowledge of the metabolic pathways and their toxicity.


Asunto(s)
Éteres Difenilos Halogenados , Contaminantes Orgánicos Persistentes , Humanos , Células Hep G2 , Hidroxilación , Éteres Difenilos Halogenados/análisis , Biotransformación
14.
Environ Res ; 216(Pt 2): 114571, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243047

RESUMEN

Few epidemiological studies have focused on prenatal phthalates (PAEs) and polybrominated diphenyl ethers (PBDEs) exposure to neonatal health in China. This study aimed to assess the associations between prenatal PAEs and PBDEs exposure and neonatal health in Guangxi, a Zhuang autonomous region of China. Concentrations of 4 PAEs metabolites (mPAEs) and 5 PBDEs congeners were measured in the serum of 267 healthy pregnant women. Birth outcomes and clinical data of neonates were collected after delivery. Mono-(2-Ethylhexyl) phthalate (MEHP) (81.52%) and BDE47 (35.21%) were the mPAEs and PBDEs congeners with the highest detection rate in serum. Prenatal exposures to mono-n-butyl phthalate (MBP), MEHP, and ΣmPAEs were negatively associated with birth weight (BW), birth length (BL), and gestational age (GA). Higher exposures to MBP, MEHP, and ΣmPAEs were associated with an increased odds ratio (OR) for low birth weight (LBW), but exposure to BDE28 exhibited the opposite effect. Moreover, higher exposures to MBP, MEHP, ΣmPAEs, BDE99, and ΣPBDEswere associated with an increased OR for premature birth (PTB) (P < 0.05). In contrast to MBP exposure, BDE28 exposure was associated with a higher OR for neonatal jaundice (NNJ) (P < 0.05). The interaction analysis showed a positive interaction between monoethyl phthalate (MEP) and BDE28 on the risk of NNJ and positive interaction between ΣmPAEs and BDE47 on the risk of NNJ. In addition, there are ethnicity-specific associations of prenatal PBDEs exposure with neonatal health in individuals of Zhuang and Han nationalities, and boy neonates were more sensitive to prenatal PBDEs exposure than girl neonates. The results revealed that prenatal exposure to mPAEs and PBDEs might have adverse effects on neonatal development, and the effects might be ethnicity- and sex-specific.


Asunto(s)
Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Cohorte de Nacimiento , China/epidemiología , Estudios de Cohortes , Éteres Difenilos Halogenados/toxicidad , Salud del Lactante , Exposición Materna/efectos adversos , Ácidos Ftálicos/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología
15.
Environ Res ; 216(Pt 4): 114779, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370816

RESUMEN

Evidence indicates that individual or groups of polybrominated diphenyl ethers (PBDEs) are associated with risk of breast cancer (BC). Epidemiological studies of PBDEs and BC progression are scarce. This study aimed to investigate the relationships between PBDE burdens in adipose tissues and prognostic biomarkers of BC as well as progression-free survival (PFS) of patients for the first time. The concentrations of 14 PBDE congeners in breast adipose tissues of 183 cases from the eastern area of southern China were analyzed by gas chromatography-mass spectrometry (GC-MS). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression models for the associations between PBDE levels and prognostic biomarkers. Kaplan-Meier and Cox regression analyses were conducted to identify the correlations between PBDEs and PFS. The results showed that BDE-99 and 190 levels were positively associated with clinical stage and N stage respectively (OR = 2.61 [1.26-5.40], OR = 2.78 [1.04-7.46]). Concentrations of BDE-28 and BDE-183 were negatively associated with the expression of estrogen receptor (ER) (OR = 0.30 [0.11-0.81]; 0.39 [0.15-0.99]) and progesterone receptor (PR) (OR = 0.36 [0.14-0.92]; 0.37 [0.15-0.91]), and increased BDE-47 was associated with lower human epidermal growth factor receptor 2 (HER2) expression (OR = 0.44 [0.23-0.86]). Adipose levels of BDE-71, 99, 138, 153, 154 and total PBDEs were positively associated with p53 expression (all P < 0.05). Finally, BDE-47, 99 and 183 were considered as independent prognostic factors for shorter PFS in the Cox models (adjusted hazard ratios = 3.14 [1.26-7.82]; 2.25 [1.03-4.94]; 2.60 [1.08-6.25], respectively). The recurrence risk and prognosis of BC may be closely bound to the body burdens of certain PBDE congeners. Further epidemiological and experimental studies are needed for confirmation.


Asunto(s)
Neoplasias de la Mama , Éteres Difenilos Halogenados , Humanos , Femenino , Éteres Difenilos Halogenados/análisis , Neoplasias de la Mama/epidemiología , Supervivencia sin Progresión , Pronóstico , Tejido Adiposo/química , China/epidemiología , Hospitales , Biomarcadores
16.
Environ Res ; 239(Pt 1): 117308, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37813138

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) are intentionally produced persistent organic pollutants (POPs) that are resistant to environmental degradation. Previous in-vitro and in-vivo studies have shown that POPs can induce oxidative stress, which is linked to neurodegenerative diseases, cardiovascular diseases, and cancer. However, findings in epidemiological studies are inconsistent and an evidence synthesis study is lacking to summarize the existing literature and explore research gaps. OBJECTIVE: We evaluated the effects of PFAS, PCBs, OCPs, and PBDEs, on oxidative stress biomarkers in epidemiological studies. METHODS: A literature search was conducted in PubMed, Embase, and Cochrane CENTRAL to identify all published studies related to POPs and oxidative stress up to December 7th, 2022. We included human observational studies reporting at least one exposure to POPs and an oxidative stress biomarker of interest. Random-effects meta-analyses on standardized regression coefficients and effect direction plots with one-tailed sign tests were used for quantitative synthesis. RESULTS: We identified 33 studies on OCPs, 35 on PCBs, 49 on PFAS, and 12 on PBDEs. Meta-analyses revealed significant positive associations of α-HCH with protein carbonyls (0.035 [0.017, 0.054]) and of 4'4-DDE with malondialdehyde (0.121 [0.056, 0.187]), as well as a significant negative association between 2'4-DDE and total antioxidant capacity (TAC) (-0.042 [-0.079, -0.004]), all ß [95%CI]. Sign tests showed a significant positive association between PCBs and malondialdehyde (pone-tailed = 0.03). Additionally, we found significant negative associations of OCPs with acetylcholine esterase (pone-tailed = 0.02) and paraoxonase-1 (pone-tailed = 0.03). However, there were inconsistent associations of OCPs with superoxide dismutase, glutathione peroxidase, and catalase. CONCLUSIONS: Higher levels of OCPs were associated with increased levels of oxidative stress through increased pro-oxidant biomarkers involving protein oxidation, DNA damage, and lipid peroxidation, as well as decreased TAC. These findings have the potential to reveal the underlying mechanisms of POPs toxicity.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Humanos , Antioxidantes , Biomarcadores , Contaminantes Ambientales/toxicidad , Fluorocarburos/toxicidad , Éteres Difenilos Halogenados/toxicidad , Hidrocarburos Clorados/toxicidad , Malondialdehído , Estrés Oxidativo , Plaguicidas/toxicidad , Bifenilos Policlorados/toxicidad
17.
Ecotoxicol Environ Saf ; 263: 115245, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451097

RESUMEN

Polybrominated diphenyl ether (PBDE) contamination is common in aquatic environments and can severely damage aquatic organisms. However, there is a lack of information on the response and self-adaptation mechanisms of these organisms. Chlorella pyrenoidosa was treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), causing significant growth inhibition, pigment reduction, oxidative stress, and chloroplast atrophy. Photosynthetic damage contributed to inhibition, as indicated by Fv/Fm, Chl a fluorescence induction, photosynthetic oxygen evolution activity, and photosystem subunit stoichiometry. Here, Chl a fluorescence induction and quinone electron acceptor (QA-) reoxidation kinetics showed that the PSII donor and acceptor sides were insensitive to BDE47. Quantitative analyses of D1 and PsaD proteins illustrated that PSII and PSI complexes were the main primary targets of photosynthesis inhibition by BDE47. Significant modulation of PSII complex might have been caused by the potential binding of BDE47 on D1 protein, and molecular docking was performed to investigate this. Increased activation of antioxidant defense systems and photosystem repair as a function of exposure time indicated a positive resistance to BDE47. After a 5-day exposure, 23 % of BDE47 was metabolized. Our findings suggest that C. pyrenoidosa has potential as a bioremediator for wastewater-borne PBDEs and can improve our understanding of ecological risks to microalgae.


Asunto(s)
Chlorella , Éteres Difenilos Halogenados , Éteres Difenilos Halogenados/toxicidad , Éteres Difenilos Halogenados/metabolismo , Chlorella/metabolismo , Simulación del Acoplamiento Molecular , Fotosíntesis , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo
18.
Ecotoxicol Environ Saf ; 267: 115615, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890256

RESUMEN

Polybrominated diphenyl ether flame retardants are known to have adverse effects on the development of organisms. We investigated the molecular mechanisms associated with the developmental hazards of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in zebrafish, as well as the behavioral and morphological alterations involved, focusing on endoplasmic reticulum stress (ERS), oxidative stress, and apoptosis. Our study revealed behavioral alterations in zebrafish exposed to BDE-47, including impaired motor activity, reduced exploration, and abnormal swimming patterns. In addition, we observed malformations in craniofacial regions and other developmental abnormalities that may be associated with ERS-induced cellular dysfunction. BDE-47 exposure showed apparent changes in ERS, oxidative stress, and apoptosis biomarkers at different developmental stages in zebrafish through gene expression analysis and enzyme activity assays. The study indicated that exposure to BDE-47 results in ERS, as supported by the upregulation of ERS-related genes and increased activity of ERS markers. In addition, oxidative stress-related genes showed different expression patterns, suggesting that oxidative stress is involved in the BDE-47 toxic effects. Moreover, an assessment of apoptotic biomarkers revealed an imbalance in the expression levels of pro- and anti-apoptotic genes, suggesting that BDE-47 exposure activated the apoptotic pathway. These results highlight the complex interactions between ERS, oxidative stress, apoptosis, behavioral alterations, and morphological malformations following BDE-47 exposure in zebrafish. Understanding the mechanisms of toxicity of developmental hazards is essential to elucidate the toxicological effects of environmental contaminants. The knowledge can help develop strategies to mitigate their adverse effects on the health of ecosystems and humans.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Éter , Humanos , Animales , Pez Cebra , Ecosistema , Éteres de Etila , Éteres Difenilos Halogenados/toxicidad , Estrés del Retículo Endoplásmico , Biomarcadores
19.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959791

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants. PBDEs and their derivatives, hydroxylated PBDEs (OH-PBDEs), can bind to hormone receptors and impact hormone secretion, transportation, and metabolism, leading to endocrine disruption and the development of various diseases. They have particularly strong interference effects on thyroid hormones. This study used decabromodiphenyl ether (BDE-209); 2,2',4,4'-tetrabromodiphenyl ether (BDE-47); and 6-OH-BDE-47 as representative compounds of PBDEs and their derivatives, OH-PBDEs. A fluorescence probe, fluorescein-isothiocyanate-L-thyroxine (FITC-T4, F-T4), specific for binding to transthyretin (TTR), a thyroid transport protein, was prepared. The binding capacity of PBDEs and their derivatives, OH-PBDEs, to TTR was quantitatively measured using fluorescence spectroscopy. The principle of quenching the fluorescence intensity of F-T4 after binding to TTR was used to analyze the competitive interaction between the probe and BDE-209, BDE-47, and 6-OH-BDE-47, thereby evaluating the toxic effects of PBDEs and their derivatives on the thyroid system. Additionally, AutoDock molecular docking software (1.5.6) was used to further analyze the interference mechanism of OH-PBDEs on T4. The results of the study are as follows: (1) Different types of PBDEs and OH-PBDEs exhibit varying degrees of interference with T4. Both the degree of bromination and hydroxylation affect their ability to competitively bind to TTR. Higher bromination and hydroxylation degrees result in stronger competitive substitution. (2) The competitive substitution ability of the same disruptor varies at different concentrations. Higher concentrations lead to stronger substitution ability, but there is a threshold beyond which the substitution ability no longer increases. (3) When OH-PBDEs have four or more bromine atoms and exhibit the most structural similarity to T4, their binding affinity to TTR is stronger than that of T4.


Asunto(s)
Éteres Difenilos Halogenados , Hormonas Tiroideas , Éteres Difenilos Halogenados/química , Simulación del Acoplamiento Molecular , Hidroxilación
20.
Bull Environ Contam Toxicol ; 110(2): 52, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36729178

RESUMEN

Understanding the release of pollutants from the formal e-waste dismantling site could provide the basic information and potential risk to guide the normative regulation of the process. In this study, the distribution of typical polybrominated diphenyl ethers (PBDEs) and heavy metals in a relocating site of a formal e-waste dismantling company was firstly investigated down to the saturated zone, with a maximum depth of 3.0 m. The mean concentrations of Σ13PBDEs were ranged from 2.815 to 7.178 ng/g, with a peak value of 7.178 ng/g in storage area. BDE-209 was the predominant congener of PBDEs in the soil, with the value ranged from 1.688 to 2.483 ng/g. A higher pollution of PBDEs and HMs was presented in the storage area. The risk assessment of PBDEs mostly posed a low environmental risk (RQ ≤ 0.01) and pentaBDE was found to be the most harmful driver for the potential environmental risk.


Asunto(s)
Residuos Electrónicos , Contaminantes Ambientales , Metales Pesados , Monitoreo del Ambiente , Éteres Difenilos Halogenados/análisis , Residuos Electrónicos/análisis , Metales Pesados/análisis , China
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda