Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.068
Filtrar
1.
Plant J ; 117(1): 193-211, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37812678

RESUMEN

Soil salinity severely threatens plant growth and crop yields. The utilization of PGPR is an effective strategy for enhancing plant salt tolerance, but the mechanisms involved in this process have rarely been reported. In this study, we investigated the effects of Bacillus subtilis CNBG-PGPR-1 on improving plant salt tolerance and elucidated the molecular pathways involved. The results showed that CNBG-PGPR-1 significantly improved the cellular homeostasis and photosynthetic efficiency of leaves and reduced ion toxicity and osmotic stress caused by salt in tomato. Transcriptome analysis uncovered that CNBG-PGPR-1 enhanced plant salt tolerance through the activation of complex molecular pathways, with plant hormone signal transduction playing an important role. Comparative analysis and pharmacological experiments confirmed that the ethylene pathway was closely related to the beneficial effect of CNBG-PGPR-1 on improving plant salt tolerance. Furthermore, we found that methionine, a precursor of ethylene synthesis, significantly accumulated in response to CNBG-PGPR-1 in tomato. Exogenous L-methionine largely mimicked the beneficial effects of CNBG-PGPR-1 and activated the expression of ethylene pathway-related genes, indicating CNBG-PGPR-1 induces methionine accumulation to regulate the ethylene pathway in tomato. Finally, CNBG-PGPR-1 reduced salt-induced ROS by activating ROS scavenger-encoding genes, mainly involved in GSH metabolism and POD-related genes, which were also closely linked to methionine metabolism. Overall, our studies demonstrate that CNBG-PGPR-1-induced methionine is a key regulator in enhancing plant salt tolerance through the ethylene pathway and ROS scavenging, providing a novel understanding of the mechanism by which beneficial microbes improve plant salt tolerance.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Bacillus subtilis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Metionina , Tolerancia a la Sal , Etilenos/metabolismo , Racemetionina
2.
BMC Genomics ; 25(1): 424, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684959

RESUMEN

Salinity impacts crop growth and productivity and lowers the activities of rhizosphere microbiota. The identification and utilization of habitat-specific salinity-adapted plant growth-promoting rhizobacteria (PGPR) are considered alternative strategies to improve the growth and yields of crops in salinity-affected coastal agricultural fields. In this study, we characterize strain L1I39T, the first Aquabacter species with PGPR traits isolated from a salt-tolerant pokkali rice cultivated in brackish environments. L1I39T is positive for 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation and can promote pokkali rice growth by supplying fixed nitrogen under a nitrogen-deficient seawater condition. Importantly, enhanced plant growth and efficient root colonization were evident in L1I39T-inoculated plants grown under 20% seawater but not in zero-seawater conditions, identifying brackish conditions as a key local environmental factor critical for L1I39T-pokkali rice symbiosis. Detailed physiological studies revealed that L1I39T is well-adapted to brackish environments. In-depth genome analysis of L1I39T identified multiple gene systems contributing to its plant-associated lifestyle and brackish adaptations. The 16S rRNA-based metagenomic study identified L1I39T as an important rare PGPR taxon. Based on the polyphasic taxonomy analysis, we established strain L1I39T as a novel Aquabacter species and proposed Aquabacter pokkalii sp nov. Overall, this study provides a better understanding of a marine-adapted PGPR strain L1I39T that may perform a substantial role in host growth and health in nitrogen-poor brackish environments.


Asunto(s)
Fijación del Nitrógeno , Oryza , Filogenia , Raíces de Plantas , Oryza/microbiología , Oryza/genética , Oryza/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Rizosfera , Salinidad , Adaptación Fisiológica/genética , Simbiosis , ARN Ribosómico 16S/genética
3.
BMC Genomics ; 25(1): 289, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500021

RESUMEN

BACKGROUND: Rahnella perminowiae S11P1 and Variovorax sp. S12S4 are two plant growth-promoting rhizobacteria that were previously isolated from the rhizosphere of Crocus sativus L. (saffron), and have demonstrated interesting PGP activities and promising results when used as inoculants in field trials. To further elucidate the molecular mechanisms underlying their beneficial effects on plant growth, comprehensive genome mining of S11P1 and S12S4 and comparative genomic analysis with closely related strains were conducted. RESULTS: Functional annotation of the two strains predicted a large number of genes involved in auxin and siderophore production, nitrogen fixation, sulfur metabolism, organic acid biosynthesis, pyrroloquinoline quinone production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, volatile organic compounds production, and polyamine biosynthesis. In addition, numerous genes implicated in plant-bacteria interactions, such as those involved in chemotaxis and quorum sensing, were predicted. Moreover, the two strains carried genes involved in bacterial fitness under abiotic stress conditions. Comparative genomic analysis revealed an open pan-genomic structure for the two strains. COG annotation showed that higher fractions of core and accessory genes were involved in the metabolism and transport of carbohydrates and amino acids, suggesting the metabolic versatility of the two strains as effective rhizosphere colonizers. Furthermore, this study reports the first comparison of Multilocus sequence analysis (MLSA) and core-based phylogenies of the Rahnella and Variovorax genera. CONCLUSIONS: The present study unveils the molecular mechanisms underlying plant growth promotion and biocontrol activity of S11P1 and S12S4, and provides a basis for their further biotechnological application in agriculture.


Asunto(s)
Alphaproteobacteria , Crocus , Rahnella , Rizosfera , Desarrollo de la Planta , Bacterias , Genómica , Raíces de Plantas/metabolismo , Microbiología del Suelo
4.
BMC Plant Biol ; 24(1): 821, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218905

RESUMEN

To address salinity stress in plants in an eco-friendly manner, this study investigated the potential effects of salinity-resistant bacteria isolated from saline agricultural soils on the growth of cucumber (Cucumis sativus, cv. Royal) seedlings. A greenhouse factorial experiment was conducted based on a completely randomized design (CRD) with two factors, salinity at four levels and five bacterial treatments, with three replications (n = 3). Initially, fifty bacterial isolates were screened for their salinity and drought tolerance, phosphate solubilization activity, along with production of auxin, siderophore and hydrogen cyanide. Isolates K4, K14, K15, and C8 exhibited the highest resistance to salinity and drought stresses in vitro. Isolates C8 and K15 demonstrated the highest auxin production capacity, generating 2.95 and 2.87 µg mL- 1, respectively, and also exhibited significant siderophore production capacities (by 14% and 11%). Additionally, isolates C8 and K14 displayed greater phosphate solubilization activities, by 184.64 and 122.11 µg mL- 1, respectively. The statistical analysis revealed that the selected four potent isolates significantly enhanced all growth parameters of cucumber plants grown under salinity stress conditions for six weeks. Plant height increased by 41%, fresh and dry weights by 35% and 7%, respectively, and the leaf area index by 85%. The most effective isolate, C8, was identified as Bacillus subtilis based on the 16 S rDNA amplicon sequencing. This study demonstrated that inoculating cucumber seedlings with halotolerant bacterial isolates, such as C8 (Bacillus subtilis), possessing substantial plant growth-promoting properties significantly alleviated salinity stress by enhancing plant growth parameters. These findings suggest a promising eco-friendly strategy for improving crop productivity in saline agricultural environments.


Asunto(s)
Cucumis sativus , Tolerancia a la Sal , Plantones , Cucumis sativus/microbiología , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/fisiología , Plantones/crecimiento & desarrollo , Plantones/microbiología , Plantones/fisiología , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/clasificación , Microbiología del Suelo , Fosfatos/metabolismo , Sideróforos/metabolismo , Ácidos Indolacéticos/metabolismo , Salinidad , Sequías
5.
BMC Plant Biol ; 24(1): 546, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872113

RESUMEN

BACKGROUND: Apple Replant Disease (ARD) is common in major apple-growing regions worldwide, but the role of rhizosphere microbiota in conferring ARD resistance and promoting plant growth remains unclear. RESULTS: In this study, a synthetic microbial community (SynCom) was developed to enhance apple plant growth and combat apple pathogens. Eight unique bacteria selected via microbial culture were used to construct the antagonistic synthetic community, which was then inoculated into apple seedlings in greenhouse experiments. Changes in the rhizomicroflora and the growth of aboveground plants were monitored. The eight strains, belonging to the genera Bacillus and Streptomyces, have the ability to antagonize pathogens such as Fusarium oxysporum, Rhizoctonia solani, Botryosphaeria ribis, and Physalospora piricola. Additionally, these eight strains can stably colonize in apple rhizosphere and some of them can produce siderophores, ACC deaminase, and IAA. Greenhouse experiments with Malus hupehensis Rehd indicated that SynCom promotes plant growth (5.23%) and increases the nutrient content of the soil, including soil organic matter (9.25%) and available K (1.99%), P (7.89%), and N (0.19%), and increases bacterial richness and the relative abundance of potentially beneficial bacteria. SynCom also increased the stability of the rhizosphere microbial community, the assembly of which was dominated by deterministic processes (|ß NTI| > 2). CONCLUSIONS: Our results provide insights into the contribution of the microbiome to pathogen inhibition and host growth. The formulation and manipulation of similar SynComs may be a beneficial strategy for promoting plant growth and controlling soil-borne disease.


Asunto(s)
Malus , Enfermedades de las Plantas , Rizosfera , Malus/microbiología , Malus/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Microbiología del Suelo , Microbiota/fisiología , Rhizoctonia/fisiología , Agentes de Control Biológico , Bacillus/fisiología , Antibiosis
6.
Planta ; 260(4): 79, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39182196

RESUMEN

MAIN CONCLUSION: Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.


Asunto(s)
Ácido Abscísico , Arabidopsis , Microbacterium , Estrés Salino , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Ácido Abscísico/metabolismo , Microbacterium/genética , Microbacterium/fisiología , Tolerancia a la Sal/genética , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
7.
Planta ; 259(6): 135, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678496

RESUMEN

MAIN CONCLUSION: Synthetic consortia performed better in promoting Schisandra chinensis growth than individual strains, and this result provides valuable information for the development of synthetic microbial fertilizers. Schisandra chinensis is an herbal medicine that can treat numerous diseases. However, the excessive reliance on chemical fertilizers during the plantation of S. chinensis has severely restricted the development of the S. chinensis planting industry. Plant growth-promoting rhizobacteria (PGPR) can promote the growth of a wide range of crops, and synthetic consortia of them are frequently superior to those of a single strain. In this study, we compared the effects of four PGPR and their synthetic consortia on S. chinensis growth. The pot experiment showed that compared with the control, synthetic consortia significantly increased the plant height, biomass, and total chlorophyll contents of S. chinensis, and their combined effects were better than those of individual strains. In addition, they improved the rhizosphere soil fertility (e.g., TC and TN contents) and enzyme activities (e.g., soil urease activity) and affected the composition and structure of soil microbial community significantly, including promoting the enrichment of beneficial microorganisms (e.g., Actinobacteria and Verrucomicrobiota) and increasing the relative abundance of Proteobacteria, a dominant bacterial phylum. They also enhanced the synergistic effect between the soil microorganisms. The correlation analysis between soil physicochemical properties and microbiome revealed that soil microorganisms participated in regulating soil fertility and promoting S. chinensis growth. This study may provide a theoretical basis for the development of synthetic microbial fertilizers for S. chinensis.


Asunto(s)
Fertilizantes , Schisandra , Microbiología del Suelo , Suelo , Schisandra/crecimiento & desarrollo , Schisandra/metabolismo , Schisandra/fisiología , Suelo/química , Rizosfera , Biomasa , Consorcios Microbianos , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Microbiota , Clorofila/metabolismo
8.
Appl Environ Microbiol ; 90(6): e0076024, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38775579

RESUMEN

Motile plant-associated bacteria use chemotaxis and dedicated chemoreceptors to navigate gradients in their surroundings and to colonize host plant surfaces. Here, we characterize a chemoreceptor that we named Tlp2 in the soil alphaproteobacterium Azospirillum brasilense. We show that the Tlp2 ligand-binding domain is related to the 4-helix bundle family and is conserved in chemoreceptors found in the genomes of many soil- and sediment-dwelling alphaproteobacteria. The promoter of tlp2 is regulated in an NtrC- and RpoN-dependent manner and is most upregulated under conditions of nitrogen fixation or in the presence of nitrate. Using fluorescently tagged Tlp2 (Tlp2-YFP), we show that this chemoreceptor is present in low abundance in chemotaxis-signaling clusters and is prone to degradation. We also obtained evidence that the presence of ammonium rapidly disrupts Tlp2-YFP localization. Behavioral experiments using a strain lacking Tlp2 and variants of Tlp2 lacking conserved arginine residues suggest that Tlp2 mediates chemotaxis in gradients of nitrate and nitrite, with the R159 residue being essential for Tlp2 function. We also provide evidence that Tlp2 is essential for root surface colonization of some plants (teff, red clover, and cowpea) but not others (wheat, sorghum, alfalfa, and pea). These results highlight the selective role of nitrate sensing and chemotaxis in plant root surface colonization and illustrate the relative contribution of chemoreceptors to chemotaxis and root surface colonization.IMPORTANCEBacterial chemotaxis mediates host-microbe associations, including the association of beneficial bacteria with the roots of host plants. Dedicated chemoreceptors specify sensory preferences during chemotaxis. Here, we show that a chemoreceptor mediating chemotaxis to nitrate is important in the beneficial soil bacterium colonization of some but not all plant hosts tested. Nitrate is the preferred nitrogen source for plant nutrition, and plants sense and tightly control nitrate transport, resulting in varying nitrate uptake rates depending on the plant and its physiological state. Nitrate is thus a limiting nutrient in the rhizosphere. Chemotaxis and dedicated chemoreceptors for nitrate likely provide motile bacteria with a competitive advantage to access this nutrient in the rhizosphere.


Asunto(s)
Azospirillum brasilense , Proteínas Bacterianas , Quimiotaxis , Nitratos , Raíces de Plantas , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Azospirillum brasilense/fisiología , Nitratos/metabolismo , Raíces de Plantas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
9.
BMC Microbiol ; 24(1): 327, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242527

RESUMEN

BACKGROUND: Plant growth-promoting rhizobacteria (PGPR), as a group of environmentally friendly bacteria growing in the rhizosphere of plants, play an important role in plant growth and development and resistance to environmental stresses. However, their limited understanding has led to the fact that their large-scale use in agriculture is still scarce, and the mechanisms by which beneficial bacteria are selected by plants and how they interact with them are still unclear. METHOD: In this study, we investigated the interaction between the auxin-producing strain Bacillus aryabhattai LAD and maize roots, and performed transcriptomic and metabolomic analyses of Bacillus aryabhattai LAD after treatment with maize root secretions(RS). RESULTS: Our results show that there is a feedback effect between the plant immune system and bacterial auxin. Bacteria activate the immune response of plant roots to produce reactive oxygen species(ROS), which in turn stimulates bacteria to synthesize IAA, and the synthesized IAA further promotes plant growth. Under the condition of co-culture with LAD, the main root length, seedling length, root surface area and root volume of maize increased by 197%, 107%, 89% and 75%, respectively. In addition, the results of transcriptome metabolome analysis showed that LAD was significantly enriched in amino acid metabolism, carbohydrate metabolism and lipid metabolism pathways after RS treatment, including 93 differentially expressed genes and 45 differentially accumulated metabolites. CONCLUSION: Our findings not only provide a relevant model for exploring the effects of plant-soil microbial interactions on plant defense functions and thereby promoting plant growth, but also lay a solid foundation for the future large-scale use of PGPR in agriculture for sustainable agricultural development.


Asunto(s)
Bacillus , Ácidos Indolacéticos , Raíces de Plantas , Especies Reactivas de Oxígeno , Zea mays , Zea mays/microbiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Bacillus/metabolismo , Bacillus/genética , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Ácidos Indolacéticos/metabolismo , Rizosfera , Microbiología del Suelo , Transcriptoma , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo
10.
BMC Microbiol ; 24(1): 261, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004720

RESUMEN

BACKGROUND: The excessive application of chemical fertilizers in the cultivation of Astragalus mongholicus Bunge results in a reduction in the quality of the medicinal plant and compromises the sustainable productivity of the soil. PGPB inoculant is a hot topic in ecological agriculture research. In the cultivation of Astragalus mongholicus, the screened nitrogen-fixing bacteria can promote plant growth, however, whether it can promote the accumulation of main bioactive components remains unknown. In this study, mixed inoculants containing 5 strains of growth promoting bacteria (Rhizobium T16 , Sinorhizobium T21 , Bacillus J1 , Bacillus G4 and Arthrobacter J2) were used in the field experiment. The metabolic substances in the root tissues of Astragalus mongholicus were identified during the harvest period by non-targeted metabolomics method, and the differential metabolites between groups were identified by statistical analysis. Meanwhile, high-throughput sequencing was performed to analyze the changes of rhizosphere soil and endophytic microbial community structure after mixed microbial treatment. RESULTS: The results of non-targeted metabolism indicated a significant increase in the levels of 26 metabolites after treatment including 13 flavonoids, 3 saponins and 10 other components. The contents of three plant hormones (abscisic acid, salicylic acid and spermidine) also increased after treatment, which presumed to play an important role in regulating plant growth and metabolism. Studies on endosphere and rhizosphere bacterial communities showed that Rhzobiaceae, Micromonosporaceae, and Hypomicrobiaceae in endophytic, and Oxalobactereae in rhizosphere were significantly increased after treatment. These findings suggest their potential importance in plant growth promotion and secondary metabolism regulation. CONCLUSIONS: This finding provides a basis for developing nitrogen-fixing bacteria fertilizer and improving the ecological planting efficiency of Astragalus mongholicus.


Asunto(s)
Planta del Astrágalo , Microbiota , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Planta del Astrágalo/microbiología , Planta del Astrágalo/metabolismo , Bacterias Fijadoras de Nitrógeno/metabolismo , Bacterias Fijadoras de Nitrógeno/genética , Saponinas/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Metabolómica , Arthrobacter/metabolismo , Arthrobacter/genética , Endófitos/metabolismo , Endófitos/genética , Rhizobium/metabolismo
11.
Plant Cell Environ ; 47(6): 1941-1956, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38369767

RESUMEN

While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.


Asunto(s)
Glycine max , Indoles , Raíces de Plantas , Estrés Salino , Streptomyces , Glycine max/fisiología , Glycine max/microbiología , Glycine max/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Streptomyces/fisiología , Raíces de Plantas/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Indoles/metabolismo , Tolerancia a la Sal , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
12.
Arch Microbiol ; 206(6): 282, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806859

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) offer an eco-friendly alternative to agrochemicals for better plant growth and development. Here, we evaluated the plant growth promotion abilities of actinobacteria isolated from the tea (Camellia sinensis) rhizosphere of Darjeeling, India. 16 S rRNA gene ribotyping of 28 isolates demonstrated the presence of nine different culturable actinobacterial genera. Assessment of the in vitro PGP traits revealed that Micrococcus sp. AB420 exhibited the highest level of phosphate solubilization (i.e., 445 ± 2.1 µg/ml), whereas Kocuria sp. AB429 and Brachybacterium sp. AB440 showed the highest level of siderophore (25.8 ± 0.1%) and IAA production (101.4 ± 0.5 µg/ml), respectively. Biopriming of maize seeds with the individual actinobacterial isolate revealed statistically significant growth in the treated plants compared to controls. Among them, treatment with Paenarthrobacter sp. AB416 and Brachybacterium sp. AB439 exhibited the highest shoot and root length. Biopriming has also triggered significant enzymatic and non-enzymatic antioxidative defense reactions in maize seedlings both locally and systematically, providing a critical insight into their possible role in the reduction of reactive oxygen species (ROS) burden. To better understand the role of actinobacterial isolates in the modulation of plant defense, three selected actinobacterial isolates, AB426 (Brevibacterium sp.), AB427 (Streptomyces sp.), and AB440 (Brachybacterium sp.) were employed to evaluate the dynamics of induced systemic resistance (ISR) in maize. The expression profile of five key genes involved in SA and JA pathways revealed that bio-priming with actinobacteria (Brevibacterium sp. AB426 and Brachybacterium sp. AB440) preferably modulates the JA pathway rather than the SA pathway. The infection studies in bio-primed maize plants resulted in a delay in disease progression by the biotrophic pathogen Ustilago maydis in infected maize plants, suggesting the positive efficacy of bio-priming in aiding plants to cope with biotic stress. Conclusively, this study unravels the intrinsic mechanisms of PGPR-mediated ISR dynamics in bio-primed plants, offering a futuristic application of these microorganisms in the agricultural fields as an eco-friendly alternative.


Asunto(s)
Actinobacteria , Camellia sinensis , Rizosfera , Semillas , Microbiología del Suelo , Zea mays , Zea mays/microbiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Semillas/microbiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Camellia sinensis/microbiología , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/genética , Camellia sinensis/metabolismo , India , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal , ARN Ribosómico 16S/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-38441415

RESUMEN

Two novel bacterial strains, designated as COR-2T and CR-8, were isolated from paddy soil. These isolates were aerobic, Gram-stain-negative, non-spore-forming, non-motile, rod-shaped, and formed orange-coloured colonies. Phylogenetic analysis based on 16S rRNA gene sequences showed that two strains formed a clear phylogenetic lineage with the genus Erythrobacter. Strains COR-2T and CR-8 showed 99.9 % 16S rRNA gene sequence similarity. Both strains had the highest 16S rRNA gene similarity of 99.1-99.7 % to Erythrobacter colymbi TPW-24T, Erythrobacter donghaensis SW-132T and Erythrobacter tepidarius DSM 10594T, respectively. The genome of strain COR-2T comprised 3 559 918 bp and the genomic DNA G + C content was 67.7 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain COR-2T and its closely related species of the genus Erythrobacter were 79.3-85.5% and 24.1-29.1 %, respectively. The major respiratory quinone was Q-10, while the major fatty acids were C18 : 1 ω7c and C17 : 1 ω6c. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two unidentified phospholipids and eight unidentified lipids. Based on phylogenetic and phenotypic considerations, the two strains [COR-2T (type strain; = KACC 22941T=JCM 35529T) and CR-8 (= KACC 22945=JCM 35530)] are considered to represent novel species of the genus Erythrobacter, for which the name Erythrobacter oryzae sp. nov. is proposed.


Asunto(s)
Oryza , Sphingomonadaceae , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
14.
Int Microbiol ; 27(4): 1151-1168, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38172302

RESUMEN

Soil salinity has been one of the significant barriers to improving rice production and quality. According to reports, Bacillus spp. can be utilized to boost plant development in saline soil, although the molecular mechanisms behind the interaction of microbes towards salt stress are not fully known. Variations in rice plant protein expression in response to salt stress and plant growth-promoting rhizobacteria (PGPR) inoculations were investigated using a proteomic method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Findings revealed that 54 salt-responsive proteins were identified by mass spectrometry analysis (LC-MS/MS) with the Bacillus spp. interaction, and the proteins were functionally classified as gene ontology. The initial study showed that all proteins were labeled by mass spectrometry analysis (LC-MS/MS) with Bacillus spp. interaction; the proteins were functionally classified into six groups. Approximately 18 identified proteins (up-regulated, 13; down-regulated, 5) were involved in the photosynthetic process. An increase in the expression of eight up-regulated and two down-regulated proteins in protein synthesis known as chaperones, such as the 60 kDa chaperonin, the 70 kDa heat shock protein BIP, and calreticulin, was involved in rice plant stress tolerance. Several proteins involved in protein metabolism and signaling pathways also experienced significant changes in their expression. The results revealed that phytohormones regulated the manifestation of various chaperones and protein abundance and that protein synthesis played a significant role in regulating salt stress. This study also described how chaperones regulate rice salt stress, their different subcellular localizations, and the activity of chaperones.


Asunto(s)
Bacillus , Oryza , Proteínas de Plantas , Estrés Salino , Oryza/microbiología , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bacillus/metabolismo , Proteómica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Espectrometría de Masas en Tándem , Microbiología del Suelo
15.
J Appl Microbiol ; 135(10)2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39317668

RESUMEN

AIMS: Volatile organic compounds (VOCs) have an important function in plant growth-promoting rhizobacteria (PGPR) development and plant growth. This study aimed to identify VOCs of the PGPR strain, Stutzerimonas stutzeri NRCB010, and investigate their effects on NRCB010 biofilm formation, swarming motility, colonization, and tomato seedling growth. METHODS AND RESULTS: Solid-phase microextraction and gas chromatography-mass spectrometry were performed to identify the VOCs produced during NRCB010 fermentation. A total of 28 VOCs were identified. Among them, seven (e.g. γ-valerolactone, 3-octanone, mandelic acid, 2-heptanone, methyl palmitate, S-methyl thioacetate, and 2,3-heptanedione), which smell well, are beneficial for plant, or as food additives, and without serious toxicities were selected to evaluate their effects on NRCB010 and tomato seedling growth. It was found that most of these VOCs positively influenced NRCB010 swarming motility, biofilm formation, and colonization, and the tomato seedling growth. Notably, γ-valerolactone and S-methyl thioacetate exhibited the most positive performances. CONCLUSION: The seven NRCB010 VOCs, essential for PGPR and crop growth, are potential bioactive ingredients within microbial fertilizer formulations. Nevertheless, the long-term sustainability and replicability of the positive effects of these compounds across different soil and crop types, particularly under field conditions, require further investigation.


Asunto(s)
Plantones , Solanum lycopersicum , Compuestos Orgánicos Volátiles , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Cromatografía de Gases y Espectrometría de Masas , Biopelículas/crecimiento & desarrollo , Pseudomonas stutzeri/crecimiento & desarrollo , Pseudomonas stutzeri/metabolismo , Fermentación , Microbiología del Suelo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Microextracción en Fase Sólida
16.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38906841

RESUMEN

AIMS: Climate change is endangering olive groves. Farmers are adapting by exploring new varieties of olive trees and examining the role of microbiomes in plant health.The main objectives of this work were to determine the primary factors that influence the microbiome of olive trees and to analyze the connection between the rhizosphere and endosphere compartments. METHODS AND RESULTS: The rhizosphere and xylem sap microbiomes of two olive tree varieties were characterized by next-generation 16S rRNA amplicon sequencing, and soil descriptors were analyzed. Bacterial communities in the rhizosphere of olive trees were more diverse than those found in the xylem sap. Pseudomonadota, Actinobacteriota, Acidobacteriota, and Bacillota were the dominant phyla in both compartments. At the genus level, only very few taxa were shared between soil and sap bacterial communities. CONCLUSIONS: The composition of the bacteriome was more affected by the plant compartment than by the olive cultivar or soil properties, and a direct route from the rhizosphere to the endosphere could not be confirmed. The large number of plant growth-promoting bacteria found in both compartments provides promising prospects for improving agricultural outcomes through microbiome engineering.


Asunto(s)
Bacterias , Microbiota , Olea , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Xilema , Olea/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Xilema/microbiología , Raíces de Plantas/microbiología , Suelo/química
17.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38341275

RESUMEN

AIMS: The study aims to explore antifungal properties of bacillibactin siderophore produced by the plant growth-promoting rhizobacterium (PGPR) Bacillus subtilis against fungal phytopathogens Alternaria porri and Fusarium equiseti isolated from Solanum lycopersicum and Solanum melongena plants. METHODS AND RESULTS: Alternaria porri and F. equiseti were isolated from infected plants of eggplant and tomato, respectively. A plate assay was employed to assess the effect of bacillibactin against the phytopathogens. The antifungal potential of the PGPR was evaluated by estimation of dry fungal biomass, visualization of cellular deformity using compound and scanning electron microscopy, antioxidative enzyme assay and analysis of membrane damage via using lipid peroxidation. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was employed to investigate changes in intracellular iron content. The impact of bacillibactin on pathogenesis was evaluated by infecting detached leaves of S. lycopersicum and S. melongena plants with both the pathogens and treating the infected leaves with bacillibactin. Leaves were further investigated for ROS accumulation, extent of necrosis and cell death. Our findings revealed significant damage to the hyphal structure of A. porri and F. equiseti following treatment with bacillibactin. Biomass reduction, elevated antioxidative enzyme levels, and membrane damage further substantiated the inhibitory effects of the siderophore on fungal growth. ICP-AES analysis indicates an increase in intracellular iron content suggesting enhanced iron uptake facilitated by bacillibactin. Moreover, application of 1500 µg ml-1 bacillibactin on infected leaves demonstrated a substantial inhibition of ROS accumulation, necrosis, and cell death upon bacillibactin treatment. CONCLUSIONS: This study confirms the potent antagonistic activity of bacillibactin against both the phytopathogens A. porri and F. equiseti growth, supporting its potential as a promising biological control agent for fungal plant diseases. Bacillibactin-induced morphological, physiological, and biochemical alterations in the isolated fungi and pathogen-infected leaves highlight the prospects of bacillibactin as an effective and sustainable solution to mitigate economic losses associated with fungal infections in vegetable crops.


Asunto(s)
Alternaria , Solanum lycopersicum , Solanum , Antifúngicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Solanum/metabolismo , Sideróforos/farmacología , Productos Agrícolas/metabolismo , Hierro , Necrosis , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
18.
Appl Microbiol Biotechnol ; 108(1): 313, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683244

RESUMEN

To avoid the unreasonable use of chemical fertilizer, an environmentally friendly means of improving soil fertility is required. This study explored the role of the plant growth-promoting rhizosphere bacteria (PGPR) strain Bacillus velezensis SAAS-63 in improving nutrient stress in lettuce. Compared with no inoculation, B. velezensis SAAS-63 inoculants exhibited significantly increased fresh weight, root length, and shoot height under nutrient deficiency, as well as improved antioxidant activities and proline contents. The exogenous addition of B. velezensis SAAS-63 also significantly increased the accumulation of macroelements and micronutrients in lettuce. To elucidate the resistance mechanisms induced by B. velezensis SAAS-63 under nutrient stress, high-throughput sequencing and multi-omics analysis were performed. Inoculation with B. velezensis SAAS-63 altered the microbial community of the rhizosphere and increased the relative abundances of Streptomyces, Actinoallomurus, Verrucomicrobia, and Chloroflexi. It is worth noting that the inoculant SAAS-63 can affect plant rhizosphere metabolism. The inoculant changed the metabolic flow of phenylpropanoid metabolic pathway under nutrient deficiency and promoted phenylalanine to participate more in the synthesis of lignin precursors and coumarin substances by inhibiting the synthesis of flavone and isoflavone, thus improving plant resistance. This study showed that the addition of inoculant SAAS-63 could help plants recruit microorganisms to decompose and utilize trehalose and re-established the carbon metabolism of the plant rhizosphere. Additionally, microbes were found to be closely related to the accumulation of metabolites based on correlation analysis. The results indicated that the addition of PGPRs has an important role in regulating soil rhizosphere microbes and metabolism, providing valuable information for understanding how PGPRs affect complex biological processes and enhance plant adaptation to nutrient deficiency. KEY POINTS: • Inoculation with SAAS-63 significantly promoted plant growth under nutrient-deficient conditions • Inoculation with SAAS-63 affected rhizosphere microbial diversity and community structure • Inoculation with SAAS-63 affected plant rhizosphere metabolism and induced plants to synthesize substances that resist stress.


Asunto(s)
Bacillus , Lactuca , Nutrientes , Rizosfera , Microbiología del Suelo , Estrés Fisiológico , Bacillus/metabolismo , Bacillus/genética , Lactuca/microbiología , Lactuca/crecimiento & desarrollo , Nutrientes/metabolismo , Raíces de Plantas/microbiología , Microbiota , Multiómica
19.
Antonie Van Leeuwenhoek ; 117(1): 92, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949726

RESUMEN

Biological control is a promising approach to enhance pathogen and pest control to ensure high productivity in cash crop production. Therefore, PGPR biofertilizers are very suitable for application in the cultivation of tea plants (Camellia sinensis) and tobacco, but it is rarely reported so far. In this study, production of a consortium of three strains of PGPR were applied to tobacco and tea plants. The results demonstrated that plants treated with PGPR exhibited enhanced resistance against the bacterial pathogen Pseudomonas syringae (PstDC3000). The significant effect in improving the plant's ability to resist pathogen invasion was verified through measurements of oxygen activity, bacterial colony counts, and expression levels of resistance-related genes (NPR1, PR1, JAZ1, POD etc.). Moreover, the application of PGPR in the tea plantation showed significantly reduced population occurrences of tea green leafhoppers (Empoasca onukii Matsuda), tea thrips (Thysanoptera:Thripidae), Aleurocanthus spiniferus (Quaintanca) and alleviated anthracnose disease in tea seedlings. Therefore, PGPR biofertilizers may serve as a viable biological control method to improve tobacco and tea plant yield and quality. Our findings revealed part of the mechanism by which PGPR helped improve plant biostresses resistance, enabling better application in agricultural production.


Asunto(s)
Nicotiana , Control Biológico de Vectores , Enfermedades de las Plantas , Pseudomonas syringae , Animales , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Nicotiana/microbiología , Pseudomonas syringae/fisiología , Control Biológico de Vectores/métodos , Camellia sinensis/microbiología , Camellia sinensis/crecimiento & desarrollo , Insectos/microbiología , Thysanoptera/microbiología , Resistencia a la Enfermedad , Desarrollo de la Planta , Agentes de Control Biológico , Hemípteros/microbiología
20.
Plant Cell Rep ; 43(2): 49, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302760

RESUMEN

KEY MESSAGE: Paenibacillus lentimorbus reprograms auxin signaling and metabolic pathways for modulating root system architecture to mitigate nutrient deficiency in maize crops. The arable land across the world is having deficiency and disproportionate nutrients, limiting crop productivity. In this study, the potential of plant growth-promoting rhizobacteria (PGPR) viz., Pseudomonas putida, Paenibacillus lentimorbus, and their consortium was explored for growth promotion in maize (Zea mays) under nutrient-deficient conditions. PGPR inoculation improved the overall health of plants under nutrient-deficient conditions. The PGPR inoculation significantly improved the root system architecture and also induced changes in root cortical aerenchyma. Based on plant growth and physiological parameters inoculation with P. lentimorbus performed better as compared to P. putida, consortium, and uninoculated control. Furthermore, expression of auxin signaling (rum1, rul1, lrp1, rtcs, rtcl) and root hair development (rth)-related genes modulated the root development process to improve nutrient acquisition and tolerance to nutrient-deficient conditions in P. lentimorbus inoculated maize plants. Further, GC-MS analysis indicated the involvement of metabolites including carbohydrates and organic acids due to the interaction between maize roots and P. lentimorbus under nutrient-deficient conditions. These findings affirm that P. lentimorbus enhance overall plant growth by modulating the root system of maize to provide better tolerance to nutrient-deficient condition.


Asunto(s)
Bacillus , Paenibacillus , Zea mays , Zea mays/genética , Redes y Vías Metabólicas , Nutrientes , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda