Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Trends Biochem Sci ; 49(7): 569-572, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796312

RESUMEN

Autophagy sequesters cytoplasmic portions into autophagosomes. While selective cargo is engulfed by elongation of cup-shaped isolation membranes (IMs), the morphogenesis of non-selective IMs remains elusive. Based on recent observations, we propose a novel model for autophagosome morphogenesis wherein active regulation of the IM rim serves the physiological roles of autophagy.


Asunto(s)
Autofagosomas , Autofagia , Morfogénesis , Autofagosomas/metabolismo , Animales , Humanos
2.
Bioessays ; 46(6): e2400038, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724256

RESUMEN

Autophagy, an essential cellular process for maintaining cellular homeostasis and eliminating harmful cytoplasmic objects, involves the de novo formation of double-membraned autophagosomes that engulf and degrade cellular debris, protein aggregates, damaged organelles, and pathogens. Central to this process is the phagophore, which forms from donor membranes rich in lipids synthesized at various cellular sites, including the endoplasmic reticulum (ER), which has emerged as a primary source. The ER-associated omegasomes, characterized by their distinctive omega-shaped structure and accumulation of phosphatidylinositol 3-phosphate (PI3P), play a pivotal role in autophagosome formation. Omegasomes are thought to serve as platforms for phagophore assembly by recruiting essential proteins such as DFCP1/ZFYVE1 and facilitating lipid transfer to expand the phagophore. Despite the critical importance of phagophore biogenesis, many aspects remain poorly understood, particularly the complete range of proteins involved in omegasome dynamics, and the detailed mechanisms of lipid transfer and membrane contact site formation.


Asunto(s)
Autofagosomas , Autofagia , Retículo Endoplásmico , Fosfatos de Fosfatidilinositol , Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Animales , Fosfatos de Fosfatidilinositol/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(43): e2205314119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252028

RESUMEN

Autophagy is an intracellular degradation system for cytoplasmic constituents which is mediated by the formation of a double-membrane organelle termed the autophagosome and its subsequent fusion with the lysosome/vacuole. The formation of the autophagosome requires membrane from the endoplasmic reticulum (ER) and is tightly regulated by a series of autophagy-related (ATG) proteins and lipids. However, how the ER contacts autophagosomes and regulates autophagy remain elusive in plants. In this study, we identified and demonstrated the roles of Arabidopsis oxysterol-binding protein-related protein 2A (ORP2A) in mediating ER-autophagosomal membrane contacts and autophagosome biogenesis. We showed that ORP2A localizes to both ER-plasma membrane contact sites (EPCSs) and autophagosomes, and that ORP2A interacts with both the ER-localized VAMP-associated protein (VAP) 27-1 and ATG8e on the autophagosomes to mediate the membrane contact sites (MCSs). In ORP2A artificial microRNA knockdown (KD) plants, seedlings display retarded growth and impaired autophagy levels. Both ATG1a and ATG8e accumulated and associated with the ER membrane in ORP2A KD lines. Moreover, ORP2A binds multiple phospholipids and shows colocalization with phosphatidylinositol 3-phosphate (PI3P) in vivo. Taken together, ORP2A mediates ER-autophagosomal MCSs and regulates autophagy through PI3P redistribution.


Asunto(s)
Arabidopsis , MicroARNs , Oxiesteroles , Arabidopsis/genética , Arabidopsis/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Retículo Endoplásmico/metabolismo , MicroARNs/metabolismo , Oxiesteroles/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(43): e2200085119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252030

RESUMEN

Autophagy is a multiple fusion event, initiating with autophagosome formation and culminating with fusion with endo-lysosomes in a Ca2+-dependent manner. The source of Ca2+ and the molecular mechanism by which Ca2+ is provided for this process are not known. The intracellular Ca2+ permeable channel transient receptor potential mucolipin 3 (TRPML3) localizes in the autophagosome and interacts with the mammalian autophagy-related protein 8 (ATG8) homolog GATE16. Here, we show that lipid-regulated TRPML3 is the Ca2+ release channel in the phagophore that provides the Ca2+ necessary for autophagy progress. We generated a TRPML3-GCaMP6 fusion protein as a targeted reporter of TRPML3 compartment localization and channel function. Notably, TRPML3-GCaMP6 localized in the phagophores, the level of which increased in response to nutrient starvation. Importantly, phosphatidylinositol-3-phosphate (PI3P), an essential lipid for autophagosome formation, is a selective regulator of TRPML3. TRPML3 interacted with PI3P, which is a direct activator of TRPML3 current and Ca2+ release from the phagophore, to promote and increase autophagy. Inhibition of TRPML3 suppressed autophagy even in the presence of excess PI3P, while activation of TRPML3 reversed the autophagy inhibition caused by blocking PI3P. Moreover, disruption of the TRPML3-PI3P interaction abolished both TRPML3 activation by PI3P and the increase in autophagy. Taken together, these results reveal that TRPML3 is a downstream effector of PI3P and a key regulator of autophagy. Activation of TRPML3 by PI3P is the critical step providing Ca2+ from the phagophore for the fusion process, which is essential for autophagosome biogenesis.


Asunto(s)
Autofagosomas , Autofagia , Animales , Autofagosomas/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Fosfatos/metabolismo
5.
EMBO Rep ; 23(12): e55851, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36285521

RESUMEN

The Hippo pathway is an evolutionarily conserved developmental pathway that controls organ size by integrating diverse regulatory inputs, including actomyosin-mediated cytoskeletal tension. Despite established connections between the actomyosin cytoskeleton and the Hippo pathway, the upstream regulation of actomyosin in the Hippo pathway is less defined. Here, we identify the phosphoinositide-3-phosphatase Myotubularin (Mtm) as a novel upstream regulator of actomyosin that functions synergistically with the Hippo pathway during growth control. Mechanistically, Mtm regulates membrane phospholipid PI(3)P dynamics, which, in turn, modulates actomyosin activity through Rab11-mediated vesicular trafficking. We reveal PI(3)P dynamics as a novel mode of upstream regulation of actomyosin and establish Rab11-mediated vesicular trafficking as a functional link between membrane lipid dynamics and actomyosin activation in the context of growth control. Our study also shows that MTMR2, the human counterpart of Drosophila Mtm, has conserved functions in regulating actomyosin activity and tissue growth, providing new insights into the molecular basis of MTMR2-related peripheral nerve myelination and human disorders.


Asunto(s)
Actomiosina , Vía de Señalización Hippo , Humanos
6.
EMBO J ; 38(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30936093

RESUMEN

Membrane targeting of autophagy-related complexes is an important step that regulates their activities and prevents their aberrant engagement on non-autophagic membranes. ATG16L1 is a core autophagy protein implicated at distinct phases of autophagosome biogenesis. In this study, we dissected the recruitment of ATG16L1 to the pre-autophagosomal structure (PAS) and showed that it requires sequences within its coiled-coil domain (CCD) dispensable for homodimerisation. Structural and mutational analyses identified conserved residues within the CCD of ATG16L1 that mediate direct binding to phosphoinositides, including phosphatidylinositol 3-phosphate (PI3P). Mutating putative lipid binding residues abrogated the localisation of ATG16L1 to the PAS and inhibited LC3 lipidation. On the other hand, enhancing lipid binding of ATG16L1 by mutating negatively charged residues adjacent to the lipid binding motif also resulted in autophagy inhibition, suggesting that regulated recruitment of ATG16L1 to the PAS is required for its autophagic activity. Overall, our findings indicate that ATG16L1 harbours an intrinsic ability to bind lipids that plays an essential role during LC3 lipidation and autophagosome maturation.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/fisiología , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Endosomas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Proteínas de Unión a Fosfato/fisiología , Enzimas Ubiquitina-Conjugadoras/fisiología , Proteínas de Unión al GTP rab/fisiología
7.
Biochem Biophys Res Commun ; 674: 27-35, 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37393641

RESUMEN

Intrinsic or acquired chemoresistance represents a major obstacle in cancer treatment. Multiple mechanisms can contribute to cancer cells' resistance to chemotherapy. Among them, an aberrantly strengthened DNA repair mechanism is responsible for a large proportion of drug resistance to alkylating agents and radiation therapy. In cancer cells, damping overactivated DNA repair system can overcome survival advantages conferred by chromosomal translocations or mutations and lead to cytostatic effects or cytotoxic. Therefore, selectively targeting DNA repair system in cancer cells holds promise for overcoming chemoresistance. In this study, we revealed that the endonuclease Flap Endonuclease 1 (FEN1), essential for DNA replication and repair, directly interacts with phosphatidylinositol 3-phosphate [PI(3)P], and FEN1-R378 is the primary PI(3)P-binding site. PI(3)P-binding deficient FEN1 mutant (FEN1-R378A) cells exhibited abnormal chromosomal structures and were hypersensitized to DNA damage. The PI(3)P-mediated FEN1 functionality was essential for repairing DNA damages caused by multiple mechanisms. Furthermore, VPS34, the major PI(3)P synthesizing enzyme, was negatively associated with patients' survival in various cancer types, and VPS34 inhibitors significantly sensitized chemoresistant cancer cells to genotoxic agents. These findings open up an avenue for counteracting chemoresistance by targeting VPS34-PI(3)P-mediated DNA repair pathway, and call for assessing the efficacy of this strategy in patients suffering from chemoresistance-mediated cancer recurrence in clinical trials.

8.
Biochem Biophys Res Commun ; 679: 116-121, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37683456

RESUMEN

Increased phosphoinositide signaling is commonly associated with cancers. While "one-drug one-target" has been a major drug discovery strategy for cancer therapy, a "one-drug multi-targets" approach for phosphoinositide enzymes has the potential to offer a new therapeutic approach. In this study, we sought a new way to target phosphoinositides metabolism. Using a high-throughput phosphatidylinositol 5-phosphate 4-kinase-alpha (PI5P4Kα) assay, we have identified that the immunosuppressor KRP203/Mocravimod induces a significant perturbation in phosphoinositide metabolism in U87MG glioblastoma cells. Despite high sequence similarity of PI5P4K and PI4K isozymes, in vitro kinase assays showed that KRP203 activates some (e.g., PI5P4Kα, PI4KIIß) while inhibiting other phosphoinositide kinases (e.g., PI5P4Kß, γ, PI4KIIα, class I PI3K-p110α, δ, γ). Furthermore, KRP203 enhances PI3P5K/PIKFYVE's substrate selectivity for phosphatidylinositol (PI) while preserving its selectivity for PI(3)P. At cellular levels, 3 h of KRP203 treatment induces a prominent increase of PI(3)P and moderate increase of PI(5)P, PI(3,5)P2, and PI(3,4,5)P3 levels in U87MG cells. Collectively, the finding of multimodal activity of KRP203 towards multi-phosphoinositide kinases may open a novel basis to modulate cellular processes, potentially leading to more effective treatments for diseases associated with phosphoinositide signaling pathways.

9.
Acta Pharmacol Sin ; 43(10): 2511-2526, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35217810

RESUMEN

Increasing evidence shows that autophagy impairment is involved in the pathogenesis and progression of neurodegenerative diseases including Parkinson's disease (PD). We previously identified a natural alkaloid named corynoxine B (Cory B) as a neuronal autophagy inducer. However, its brain permeability is relatively low, which hinders its potential use in treating PD. Thus we synthesized various derivatives of Cory B to find more potent autophagy inducers with improved brain bioavailability. In this study, we evaluated the autophagy-enhancing effect of CB6 derivative and its neuroprotective action against PD in vitro and in vivo. We showed that CB6 (5-40 µM) dose-dependently accelerated autophagy flux in cultured N2a neural cells through activating the PIK3C3 complex and promoting PI3P production. In MPP+-treated PC12 cells, CB6 inhibited cell apoptosis and increased cell viability by inducing autophagy. In MPTP-induced mouse model of PD, oral administration of CB6 (10, 20 mg· kg-1· d-1, for 21 days) significantly improved motor dysfunction and prevented the loss of dopaminergic neurons in the striatum and substantia nigra pars compacta. Collectively, compound CB6 is a brain-permeable autophagy enhancer via PIK3C3 complex activation, which may help the prevention or treatment of PD.


Asunto(s)
Alcaloides , Fármacos Neuroprotectores , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Alcaloides/farmacología , Animales , Autofagia , Fosfatidilinositol 3-Quinasas Clase III/farmacología , Neuronas Dopaminérgicas , Indoles , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/patología , Ratas , Compuestos de Espiro
10.
Cell Mol Life Sci ; 78(5): 2131-2143, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32809042

RESUMEN

Macroautophagy (hereafter referred to as autophagy) is a highly conserved catabolic eukaryotic pathway that is critical for stress responses and homeostasis. Atg18, one of the core proteins involved in autophagy, belongs to the PROPPIN family and is composed of seven WD40 repeats. Together with Atg2, Atg18 participates in the elongation of phagophores and the recycling of Atg9 in yeast. Despite extensive studies on the PROPPIN family, the structure of Atg18 from Saccharomyces cerevisiae has not been determined. Here, we report the structure of ScAtg18 at a resolution of 2.8 Å. Based on bioinformatics and structural analysis, we found that the 7AB loop of ScAtg18 is extended in Atg18, in comparison to other members of the PROPPIN family. Genetic analysis revealed that the 7AB loop of ScAtg18 is required for autophagy. Biochemical and biophysical experiments indicated that the 7AB loop of ScAtg18 is critical for interaction with ScAtg2 and the recruitment of ScAtg2 to the autophagy-initiating site. Collectively, our results show that the 7AB loop of ScAtg18 is a new binding site for Atg2 and is of functional importance to autophagy.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Autofagosomas/genética , Autofagia/genética , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Sitios de Unión/genética , Cristalografía por Rayos X , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Fluorescente , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
11.
EMBO J ; 36(14): 2018-2033, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28550152

RESUMEN

The double-membrane-bound autophagosome is formed by the closure of a structure called the phagophore, origin of which is still unclear. The endoplasmic reticulum (ER) is clearly implicated in autophagosome biogenesis due to the presence of the omegasome subdomain positive for DFCP1, a phosphatidyl-inositol-3-phosphate (PI3P) binding protein. Contribution of other membrane sources, like the plasma membrane (PM), is still difficult to integrate in a global picture. Here we show that ER-plasma membrane contact sites are mobilized for autophagosome biogenesis, by direct implication of the tethering extended synaptotagmins (E-Syts) proteins. Imaging data revealed that early autophagic markers are recruited to E-Syt-containing domains during autophagy and that inhibition of E-Syts expression leads to a reduction in autophagosome biogenesis. Furthermore, we demonstrate that E-Syts are essential for autophagy-associated PI3P synthesis at the cortical ER membrane via the recruitment of VMP1, the stabilizing ER partner of the PI3KC3 complex. These results highlight the contribution of ER-plasma membrane tethers to autophagosome biogenesis regulation and support the importance of membrane contact sites in autophagy.


Asunto(s)
Autofagosomas/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Biogénesis de Organelos , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Proteínas Portadoras/metabolismo , Perros , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Proteínas de la Membrana/metabolismo , Sinaptotagminas/metabolismo
12.
EMBO J ; 35(16): 1779-92, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27370208

RESUMEN

Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti-bacterial autophagy relies on the core autophagy machinery, cargo receptors, and "eat-me" signals such as galectin-8 and ubiquitin that label bacteria as autophagy cargo. Anti-bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti-bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella-associated "eat-me" signals, including host-derived glycans and K48- and K63-linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host.


Asunto(s)
Autofagia , Proteínas Portadoras/metabolismo , Citosol/microbiología , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Salmonella typhimurium/inmunología , Animales , Humanos , Ratones , Proteínas de Unión a Fosfato
13.
Infect Immun ; 87(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30962397

RESUMEN

Legionella pneumophila and other Legionella species replicate intracellularly using the Icm/Dot type IV secretion system. In L. pneumophila this system translocates >300 effectors into host cells and in the Legionella genus thousands of effectors were identified, the function of most of which is unknown. Fourteen L. pneumophila effectors were previously shown to specifically bind phosphoinositides (PIs) using dedicated domains. We found that PI-binding domains of effectors are usually not homologous to one another; they are relatively small and located at the effectors' C termini. We used the previously identified Legionella effector domains (LEDs) with unknown function and the above characteristics of effector PI-binding domains to discover novel PI-binding LEDs. We identified three predicted PI-binding LEDs that are present in 14 L. pneumophila effectors and in >200 effectors in the Legionella genus. Using an in vitro protein-lipid overlay assay, we found that 11 of these L. pneumophila effectors specifically bind phosphatidylinositol 3-phosphate (PI3P), almost doubling the number of L. pneumophila effectors known to bind PIs. Further, we identified in each of these newly discovered PI3P-binding LEDs conserved, mainly positively charged, amino acids that are essential for PI3P binding. Our results indicate that Legionella effectors harbor unique domains, shared by many effectors, which directly mediate PI3P binding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Legionella pneumophila/química , Legionella pneumophila/genética , Unión Proteica , Dominios Proteicos , Alineación de Secuencia
14.
J Theor Biol ; 472: 110-123, 2019 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-31002776

RESUMEN

Mycobacterium tuberculosis (Mtb) is a highly successful intracellular pathogen because of its ability to modulate host's anti-microbial pathways. Phagocytosis acts as the first line of defence against microbial infection. However, Mtb inhibits Phosphatidylinositol 3-phosphate (PI3P) oscillations which is required for phagolysosomal fusion. Here we attempted to understand the mechanisms by which Mtb eliminates phagosome-lysosome fusion. To address this, we built a four dimensional ordinary differential equation model and explored the contribution of PI3P during Mtb phagocytosis. Using this model, we identified some sensitive parameters that influence the dynamics of host-pathogen interactions. We observed that PI3P dynamics can be controlled by regulating the intracellular calcium oscillations. Some plausible methods to restore PI3P oscillations are ER flux rate, recruitment rate of proteins, like Rab GTPase, and cooperativity coefficient of calcium dependent consumption of calmodulin. Further, we investigated whether modulation of these pathways is a potential therapeutic intervention strategy. Here we showed that RyR2 agonist caffeine stimulated calcium influx and inhibited growth of intracellular Mtb in macrophages. Taken together, we demonstrate that modulation of host calcium level is a plausible strategy for killing of intracellular Mtb.


Asunto(s)
Calcio/metabolismo , Citosol/metabolismo , Espacio Intracelular/microbiología , Modelos Biológicos , Mycobacterium tuberculosis/crecimiento & desarrollo , Cafeína/farmacología , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Fosfatos de Fosfatidilinositol/metabolismo , Reproducibilidad de los Resultados , Células THP-1 , Factores de Virulencia/metabolismo
15.
J Cell Sci ; 128(2): 207-17, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25568150

RESUMEN

Autophagy is a pivotal cytoprotective process that secures cellular homeostasis, fulfills essential roles in development, immunity and defence against pathogens, and determines the lifespan of eukaryotic organisms. However, autophagy also crucially contributes to the development of age-related human pathologies, including cancer and neurodegeneration. Macroautophagy (hereafter referred to as autophagy) clears the cytoplasm by stochastic or specific cargo recognition and destruction, and is initiated and executed by autophagy related (ATG) proteins functioning in dynamical hierarchies to form autophagosomes. Autophagosomes sequester cytoplasmic cargo material, including proteins, lipids and organelles, and acquire acidic hydrolases from the lysosomal compartment for cargo degradation. Prerequisite and essential for autophagosome formation is the production of phosphatidylinositol 3-phosphate (PtdIns3P) by phosphatidylinositol 3-kinase class III (PI3KC3, also known as PIK3C3) in complex with beclin 1, p150 (also known as PIK3R4; Vps15 in yeast) and ATG14L. Members of the human WD-repeat protein interacting with phosphoinositides (WIPI) family play an important role in recognizing and decoding the PtdIns3P signal at the nascent autophagosome, and hence function as autophagy-specific PtdIns3P-binding effectors, similar to their ancestral yeast Atg18 homolog. The PtdIns3P effector function of human WIPI proteins appears to be compromised in cancer and neurodegeneration, and WIPI genes and proteins might present novel targets for rational therapies. Here, we summarize the current knowledge on the roles of the four human WIPI proteins, WIPI1-4, in autophagy. This article is part of a Focus on Autophagosome biogenesis. For further reading, please see related articles: 'ERES: sites for autophagosome biogenesis and maturation?' by Jana Sanchez-Wandelmer et al. (J. Cell Sci. 128, 185-192) and 'Membrane dynamics in autophagosome biogenesis' by Sven R. Carlsson and Anne Simonsen (J. Cell Sci. 128, 193-205).


Asunto(s)
Autofagia/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Fagosomas/genética , Fosfatos de Fosfatidilinositol/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Relacionadas con la Autofagia , Beclina-1 , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas Nucleares/metabolismo , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Factores de Transcripción/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(22): 8293-8, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843126

RESUMEN

In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Polaridad Celular/fisiología , Hierro/metabolismo , Metales/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/fisiología , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Homeostasis/fisiología , Cuerpos Multivesiculares/metabolismo , Fenotipo , Raíces de Plantas/citología , Plantas Modificadas Genéticamente , Suelo , Técnicas del Sistema de Dos Híbridos
17.
Int J Mol Sci ; 18(4)2017 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406455

RESUMEN

The Arabidopsisthaliana pathogenesis-related 1 (PR1) is an important defense protein, so far it has only been detected in extracellular space and its subcellular sorting and transport remain unexplained. Using a green fluorescent protein (GFP) tagged full length, as well as a C-terminus truncated version of PR1, we observed that when expressed ectopically in Nicotiana benthamiana leaves, PR1 co-localizes only partially with Golgi markers, and much more prominently with the late endosome (LE)/multivesicular body (MVB) FYVE marker. The C-truncated version PR1ΔC predominantly localized to the endoplasmic reticulum (ER). The same localizations were found for stable Arabidopsis transformants with expression of PR1 and PR1ΔC driven by the native promoter. We conclude that the A. thaliana PR1 (AtPR1) undergoes an unconventional secretion pathway, starting from the C-terminus-dependent sorting from the ER, and utilizing further transportation via phosphatidyl-inositol-3-phosphate (PI(3)P) positive LE/MVB-like vesicles. The homology model of the PR1 structure shows that the cluster of positively charged amino acid residues (arginines 60, 67, 137, and lysine 135) could indeed interact with negatively charged phospholipids of cellular membranes. It remains to be resolved whether Golgi and LE/MVB localization reflects an alternative sorting or trafficking succession, and what the role of lipid interactions in it will be.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Fosfatos de Fosfatidilinositol/metabolismo , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Nicotiana/metabolismo
18.
J Biol Chem ; 290(35): 21676-89, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26134565

RESUMEN

Receptor-mediated endocytosis 8 (RME-8) is a DnaJ domain containing protein implicated in translocation of Hsc70 to early endosomes for clathrin removal during retrograde transport. Previously, we have demonstrated that RME-8 associates with early endosomes in a phosphatidylinositol 3-phosphate (PI(3)P)-dependent fashion. In this study, we have now identified amino acid determinants required for PI(3)P binding within a region predicted to adopt a pleckstrin homology-like fold in the N terminus of RME-8. The ability of RME-8 to associate with PI(3)P and early endosomes is largely abolished when residues Lys(17), Trp(20), Tyr(24), or Arg(26) are mutated resulting in diffuse cytoplasmic localization of RME-8 while maintaining the ability to interact with Hsc70. We also provide evidence that RME-8 PI(3)P binding regulates early endosomal clathrin dynamics and alters the steady state localization of the cation-independent mannose 6-phosphate receptor. Interestingly, RME-8 endosomal association is also regulated by the PI(3)P-binding protein SNX1, a member of the retromer complex. Wild type SNX1 restores endosomal localization of RME-8 W20A, whereas a SNX1 variant deficient in PI(3)P binding disrupts endosomal localization of wild type RME-8. These results further highlight the critical role for PI(3)P in the RME-8-mediated organizational control of various endosomal activities, including retrograde transport.


Asunto(s)
Clatrina/metabolismo , Endosomas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Fosfatidilinositoles/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos , Células HEK293 , Proteínas del Choque Térmico HSC70/metabolismo , Células HeLa , Humanos , Fosfatos de Inositol/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Transporte de Proteínas , Receptor IGF Tipo 2/metabolismo , Sintaxina 1/metabolismo
19.
J Cell Sci ; 126(Pt 8): 1806-19, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23444364

RESUMEN

The sarcoplasmic reticulum (SR) is a specialized form of endoplasmic reticulum (ER) in skeletal muscle and is essential for calcium homeostasis. The mechanisms involved in SR remodeling and maintenance of SR subdomains are elusive. In this study, we identified myotubularin (MTM1), a phosphoinositide phosphatase mutated in X-linked centronuclear myopathy (XLCNM, or myotubular myopathy), as a key regulator of phosphatidylinositol 3-monophosphate (PtdIns3P) levels at the SR. MTM1 is predominantly located at the SR cisternae of the muscle triads, and Mtm1-deficient mouse muscles and myoblasts from XLCNM patients exhibit abnormal SR/ER networks. In vivo modulation of MTM1 enzymatic activity in skeletal muscle using ectopic expression of wild-type or a dead-phosphatase MTM1 protein leads to differential SR remodeling. Active MTM1 is associated with flat membrane stacks, whereas dead-phosphatase MTM1 mutant promotes highly curved cubic membranes originating from the SR and enriched in PtdIns3P. Overexpression of a tandem FYVE domain with high affinity for PtdIns3P alters the shape of the SR cisternae at the triad. Our findings, supported by the parallel analysis of the Mtm1-null mouse and an in vivo study, reveal a direct function of MTM1 enzymatic activity in SR remodeling and a key role for PtdIns3P in promoting SR membrane curvature in skeletal muscle. We propose that alteration in SR remodeling is a primary cause of X-linked centronuclear myopathy. The tight regulation of PtdIns3P on specific membrane subdomains may be a general mechanism to control membrane curvature.


Asunto(s)
Músculo Esquelético/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Western Blotting , Línea Celular , Inmunoprecipitación , Masculino , Ratones , Microscopía Electrónica de Transmisión , Músculo Esquelético/ultraestructura , Unión Proteica , Proteínas Tirosina Fosfatasas no Receptoras/genética
20.
J Cell Sci ; 126(Pt 6): 1333-44, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23378027

RESUMEN

Myotubularin-related 2 (MTMR2) is a 3-phosphoinositide lipid phosphatase with specificity towards the D-3 position of phosphoinositol 3-phosphate [PI(3)P] and phosphoinositol 3,5-bisphosphate lipids enriched on endosomal structures. Recently, we have shown that phosphorylation of MTMR2 on Ser58 is responsible for its cytoplasmic sequestration and that a phosphorylation-deficient variant (S58A) targets MTMR2 to Rab5-positive endosomes resulting in PI(3)P depletion and an increase in endosomal signaling, including a significant increase in ERK1/2 activation. Using in vitro kinase assays, cellular MAPK inhibitors, siRNA knockdown and a phosphospecific-Ser58 antibody, we now provide evidence that ERK1/2 is the kinase responsible for phosphorylating MTMR2 at position Ser58, which suggests that the endosomal targeting of MTMR2 is regulated through an ERK1/2 negative feedback mechanism. Surprisingly, treatment with multiple MAPK inhibitors resulted in a MTMR2 localization shift from Rab5-positive endosomes to the more proximal APPL1-positive endosomes. This MTMR2 localization shift was recapitulated when a double phosphorylation-deficient mutant (MTMR2 S58A/S631A) was characterized. Moreover, expression of this double phosphorylation-deficient MTMR2 variant led to a more sustained and pronounced increase in ERK1/2 activation compared with MTMR2 S58A. Further analysis of combinatorial phospho-mimetic mutants demonstrated that it is the phosphorylation status of Ser58 that regulates general endosomal binding and that the phosphorylation status of Ser631 mediates the endosomal shuttling between Rab5 and APPL1 subtypes. Taken together, these results reveal that MTMR2 compartmentalization and potential subsequent effects on endosome maturation and endosome signaling are dynamically regulated through MAPK-mediated differential phosphorylation events.


Asunto(s)
Endosomas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Transporte de Proteínas , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anticuerpos Fosfo-Específicos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Células HEK293 , Células HeLa , Humanos , Imidazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Mutación/genética , Fosforilación/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Piridinas/farmacología , ARN Interferente Pequeño/genética , Proteínas de Unión al GTP rab5/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda