Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Macromol Rapid Commun ; : e2400553, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225663

RESUMEN

Durable functionalization on polypropylene (PP) surfaces is always a key problem to besolved. Coatings with low surface energy peel off easily especially under extreme conditions, owing to their weak adhesion. In this paper, side groups of both polyhedral oligomeric silsesquioxane (POSS) and alkane are grafted to polypentafluorophenyl methacrylate (PFP), and then PP blends with these side-group modified PFP are obtained through a melt-blending process. It is found that POSS can result in surface segregation and provide hydrophobicity in blends. Microfibers are formed because of the orientation effect during the tensile testing, which furtherly promotes mechanical strength. Significantly, alkaneside-groups can be entangled with PP segments, which brings about cross linking. Therefore, with crosslinking and synchronous orientation of POSS, the elongation at the break of blends is greatly increased up to 974%. The final blend demonstrates quite durable hydrophobicity under many extreme conditions, such as repeated tape peeling, ultrasonic washing, strong friction, and soaking in strong acid (pH = 1), strong alkali (pH = 14) and alcohol. The heat and UV resistance of the blend are also obviously improved. This study will develop anovel and facile strategy to endow PP with durable hydrophobicity as well as greatly enhanced mechanical properties.

2.
Macromol Rapid Commun ; 45(5): e2300601, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232689

RESUMEN

This study provides a comprehensive overview of the preparation methods for polyhedral oligomeric silsesquioxane (POSS) monomers and polymer/POSS nanocomposites. It focuses on the latest advancements in using POSS to design polymer nanocomposites with reduced dielectric constants. The study emphasizes exploring the potential of POSS, either alone or in combination with other materials, to decrease the dielectric constant and dielectric loss of various polymers, including polyimides, bismaleimide resins, poly(aryl ether)s, polybenzoxazines, benzocyclobutene resins, polyolefins, cyanate ester resins, and epoxy resins. In addition, the research investigates the impact of incorporating POSS on improving the thermal properties, mechanical properties, surface properties, and other aspects of these polymers. The entire study is divided into two parts, discussing systematically the role of POSS in reducing dielectric constants during the preparation of POSS composites using both physical blending and chemical synthesis methods. The goal of this research is to provide valuable strategies for designing a new generation of low dielectric constant materials suitable for large-scale integrated circuits in the semiconductor materials domain.


Asunto(s)
Nanocompuestos , Polímeros , Polímeros/química , Nanocompuestos/química
3.
Mikrochim Acta ; 191(3): 153, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393379

RESUMEN

This study introduces aptamer-functionalized polyhedral oligomeric silsesquioxane (POSS) nanoparticles for adenosine triphosphate (ATP) detection where the POSS nanoparticles were synthesized in a one-step, continuous flow microfluidic reactor utilizing thermal polymerization. A microemulsion containing POSS monomers was generated in the microfluidic reactor which was designed to prevent clogging by using a continuous oil flow around the emulsion during thermal polymerization. Surfaces of POSS nanoparticles were biomimetically modified by polydopamine. The aptamer sequence for ATP was successfully attached to POSS nanoparticles. The aptamer-modified POSS nanoparticles were tested for affinity-based biosensor applications using ATP as a model molecule. The nanoparticles were able to capture ATP molecules successfully with an affinity constant of 46.5 [Formula: see text]M. Based on this result, it was shown, for the first time, that microfluidic synthesis of POSS nanoparticles can be utilized in designing aptamer-functionalized nanosystems for biosensor applications. The integration of POSS in biosensing technologies not only exemplifies the versatility and efficacy of these nanoparticles but also marks a significant contribution to the field of biorecognition and sample preparation.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Compuestos de Organosilicio , Adenosina Trifosfato , Microfluídica , Oligonucleótidos
4.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256086

RESUMEN

Chemo-mild photothermal synergistic therapy can effectively inhibit tumor growth under mild hyperthermia, minimizing damage to nearby healthy tissues and skin while ensuring therapeutic efficacy. In this paper, we develop a multifunctional study based on polyhedral oligomeric sesquisiloxane (POSS) that exhibits a synergistic therapeutic effect through mild photothermal and chemotherapy treatments (POSS-SQ-DOX). The nanoplatform utilizes SQ-N as a photothermal agent (PTA) for mild photothermal, while doxorubicin (DOX) serves as the chemotherapeutic drug for chemotherapy. By incorporating POSS into the nanoplatform, we successfully prevent the aggregation of SQ-N in aqueous solutions, thus maintaining its excellent photothermal properties both in vitro and in vivo. Furthermore, the introduction of polyethylene glycol (PEG) significantly enhances cell permeability, which contributes to the remarkable therapeutic effect of POSS-SQ-DOX NPs. Our studies on the photothermal properties of POSS-SQ-DOX NPs demonstrate their high photothermal conversion efficiency (62.3%) and stability, confirming their suitability for use in mild photothermal therapy. A combination index value (CI = 0.72) verified the presence of a synergistic effect between these two treatments, indicating that POSS-SQ-DOX NPs exhibited significantly higher cell mortality (74.7%) and tumor inhibition rate (72.7%) compared to single chemotherapy and mild photothermal therapy. This observation highlights the synergistic therapeutic potential of POSS-SQ-DOX NPs. Furthermore, in vitro and in vivo toxicity tests suggest that the absence of cytotoxicity and excellent biocompatibility of POSS-SQ-DOX NPs provide a guarantee for clinical applications. Therefore, utilizing near-infrared light-triggering POSS-SQ-DOX NPs can serve as chemo-mild photothermal PTA, while functionalized POSS-SQ-DOX NPs hold great promise as a novel nanoplatform that may drive significant advancements in the field of chemo-mild photothermal therapy.


Asunto(s)
Neoplasias , Terapia Fototérmica , Humanos , Bioensayo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Estado de Salud
5.
Chem Rec ; 23(8): e202200291, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36703550

RESUMEN

This paper describes the author's recent work on the preparation and properties of thermally stable ionic liquids (ILs) containing siloxane frameworks. Quaternary ammonium and imidazolium salt-type ILs containing random oligosilsesquioxane frameworks were successfully prepared via the hydrolytic condensation of the corresponding organotrialkoxysilanes by using an aqueous superacid bis(trifluoromethanesulfonyl)imide (HNTf2 ) solution as a catalyst and solvent. Imidazolium salt-type ILs containing polyhedral oligomeric silsesquioxane (POSS) frameworks were also prepared through a reaction similar to that described above by using a water/methanol mixed solution of HNTf2 . In addition, amorphous POSSs with two types of ionic groups randomly distributed in the side chain were prepared. These POSSs were ILs exhibiting fluidity at relatively low temperatures. Furthermore, imidazolium and ammonium salt-type ILs containing cyclic oligosiloxane frameworks were prepared through a reaction similar to that of the corresponding organodialkoxysilanes. The thermal decomposition temperatures of the above ILs containing siloxane frameworks were higher than those of general ILs.

6.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003729

RESUMEN

The glass transition in polyurethanes is a complicated phenomenon governed by a multitude of factors, including the microphase separation, which in turn depends strongly on the molar mass of the hard and soft segments, as well as the presence of additives. In this work, we study the effects of the segments' length on the microphase separation and consequently on the calorimetric and dynamic glass transition of a polyurethane with aliphatic, "flexible" hard segments. It is found that the dependence of the calorimetric glass transition follows the same principles as those in systems with aromatic hard segments. Strikingly, however, the dynamic glass transition, as studied by dielectric spectroscopy, shows a slowing down of its dynamics despite a decrease in Tg. This discrepancy is discussed in terms of the strong dielectric response of the flexible segments, especially those close to the interface between the hard domains and soft phase, as opposed to a weak thermal one. In addition, polyhedral oligomeric silsesquioxanes (POSS) are introduced in the soft phase of the three matrices as crosslinking centres. This modification has no visible effect on the calorimetric glass transition; nevertheless, it affects the microphase separation and the dielectric response in a non-monotonic manner.


Asunto(s)
Materiales Biocompatibles , Poliuretanos , Poliuretanos/química , Materiales Biocompatibles/química , Vitrificación
7.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762263

RESUMEN

In this paper, a new type of borasilsesquioxanes was synthesized through a condensation process, and its reactivity in catalytic hydrosilylation reactions with silanes, siloxanes, and silsesquioxanes was investigated. The obtained compounds were mostly obtained in >90% yield. They were fully characterized using spectroscopic (1H, 13C, 29Si NMR) and spectrometric (MALDI-TOF-MS) methods. The next stage of the research involved studying the thermogravimetric properties of the borasilsesquioxanes. By analyzing the different stages of decomposition using spectroscopic techniques (NMR, ATR-FTIR, Raman) and microscopic imaging, it was found that the structure of the borasilsesquioxanes changed during the pyrolysis process and polymer compounds were formed.


Asunto(s)
Polímeros , Siloxanos , Siloxanos/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Silanos/química
8.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901923

RESUMEN

Recently, silsesquioxanes (SSQ) and polyhedral oligomeric silsesquioxanes (POSS) have gained much interest in the area of biomaterials, mainly due to their intrinsic properties such as biocompatibility, complete non-toxicity, the ability to self-assemble and to form a porous structure, facilitating cell proliferation, creating a superhydrophobic surface, osteoinductivity, and ability to bind hydroxyapatite. All the above has resulted in new developments in medicine. However, the application of POSS-containing materials in dentistry is still at initial stage and deserves a systematic description to ensure future development. Significant problems, such as reduction of polymerization shrinkage, water absorption, hydrolysis rate, poor adhesion and strength, unsatisfactory biocompatibility, and corrosion resistance of dental alloys, can be addressed by the design of multifunctional POSS-containing materials. Because of the presence of silsesquioxanes, it is possible to obtain smart materials that allow the stimulation of phosphates deposition and repairing of micro-cracks in dental fillings. Hybrid composites result in materials exhibiting shape memory, as well as antibacterial, self-cleaning, and self-healing properties. Moreover, introducing POSS into polymer matrix allows for materials for bone reconstruction, and wound healing. This review covers the recent developments in the field of POSS application in dental materials and gives the future perspectives within a promising field of biomedical material science and chemical engineering.


Asunto(s)
Materiales Biocompatibles , Polímeros , Ensayo de Materiales , Materiales Biocompatibles/química , Polímeros/química
9.
Molecules ; 28(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513322

RESUMEN

Trisilanolphenyl-polyhedral oligomeric silsesquioxane titanium (Ti-Ph-POSS) was synthesized through the corner-capping reaction, and Ti-Ph-POSS was dispersed in benzoxazine (BZ) to prepare Ti-Ph-POSS/PBZ composite materials. Ti-Ph-POSS could catalyze the ring-opening polymerization (ROP) of BZ and reduce the curing temperature of benzoxazine. In addition, Ti immobilized on the Ti-Ph-POSS cage could form covalent bonds with the N or O atoms on polybenzoxazine, improving the thermal stability of PBZ. The catalytic activity of the Ti-Ph-POSS/BZ mixtures was assessed and identified through 1H nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FTIR) analyses, while thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) were used to determine the thermal properties of the composite. It was found that PBZ exhibited a higher glass transition temperature (Tg) and better thermal stability when Ti-Ph-POSS was added. The curing behavior of the Ti-Ph-POSS/BZ mixtures showed that the initial (Ti) and peak (Tp) curing temperatures sharply decreased as the content of Ti-Ph-POSS and the heating rate increased. The curing kinetics of these Ti-Ph-POSS/BZ systems were analyzed using the Kissinger method, and the morphology of Ti-Ph-POSS/PBZ was determined via scanning electron microscopy (SEM). It was found that the Ti-Ph-POSS particles were well distributed in the composites. When the content exceeded 2 wt%, several Ti-Ph-POSS particles could not react with benzoxazine and were only dispersed within the PBZ matrix, resulting in aggregation of the Ti-Ph-POSS molecules.

10.
Molecules ; 28(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36615535

RESUMEN

Glutathione S-transferases (GSTs) are important type-II detoxification enzymes that protect DNA and proteins from damage and are often used as protein tags for the expression of fusion proteins. In the present work, octa-aminopropyl caged polyhedral oligomeric silsesquioxane (OA-POSS) was prepared via acid-catalyzed hydrolysis of 3-aminopropyltriethoxysilane and polymerized on the surface of graphene oxide (GO) through an amidation reaction. Glutathione (GSH) was then modified to GO-POSS through a Michael addition reaction to obtain a GSH-functionalized GO-POSS composite (GPG). The structure and characteristics of the as-prepared GPG composite were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravity analysis, and surface charge analysis. The specific binding interactions between glutathione and GST gave GPG favorable adsorption selectivity towards GST, and other proteins did not affect GST adsorption. The adsorption behavior of GST on the GPG composite conformed to the Langmuir isotherm model, and the adsorption capacity of GST was high up to 364.94 mg g-1 under optimal conditions. The GPG-based solid-phase adsorption process was applied to the extraction of GST from a crude enzyme solution of pig liver, and high-purity GST was obtained via SDS-PAGE identification.


Asunto(s)
Glutatión , Transferasas , Animales , Porcinos , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Glutatión/metabolismo
11.
Chirality ; 34(1): 61-69, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34749440

RESUMEN

Helical polymers present some interesting and distinctive properties, and one of the most distinguished applications of them is the chiral recognition and resolution of enantiomers. In this work, star-shaped hybrid helical poly (phenyl isocyanide) (PPI) with polyhedral oligomeric silsesquioxanes (POSS) as the core was designed and synthesized by "grafting to" strategy. The homoarm star-shaped hybrid POSS-(PPI)8 was first obtained by the click reaction between azide-modified POSS (POSS-(N3 )8 ) and alkynyl-modified PPI (PPI-Alkynyl). The hybrid POSS-(PPI)8 was with predominated left-handed helical conformation and exhibited excellent ability in the enantioselective crystallization of racemic compounds. In the meantime, heteroarm star-shaped hybrid (PEG)4 -POSS-(PPI)4 was prepared by the click reaction of POSS-(N3 )8 with PPI-Alkynyl and alkynyl-modified poly (ethylene glycol) (PEG-Alkynyl). The hybrid (PEG)4 -POSS-(PPI)4 was amphiphilic, and it could self-assemble to form spherical micelles in aqueous solutions.


Asunto(s)
Micelas , Polímeros , Cristalización , Estereoisomerismo , Agua
12.
Molecules ; 27(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36144673

RESUMEN

In this study, we prepared a difunctionalized cyanate ester double-decker silsesquioxane (DDSQ-OCN) cage with a char yield and thermal decomposition temperature (Td) which were both much higher than those of a typical bisphenol A dicyanate ester (BADCy, without the DDSQ cage) after thermal polymerization. Here, the inorganic DDSQ nanomaterial improved the thermal behavior through a nano-reinforcement effect. Blending the inorganic DDSQ-OCN cage into the epoxy resin improved its thermal and mechanical stabilities after the ring-opening polymerization of the epoxy units during thermal polymerization. The enhancement in the physical properties arose from the copolymerization of the epoxy and OCN units to form the organic/inorganic covalently bonded network structure, as well as the hydrogen bonding of the OH groups of the epoxy with the SiOSi moieties of the DDSQ units. For example, the epoxy/DDSQ-OCN = 1/1 hybrid, prepared without Cu(II)-acac as a catalyst, exhibited a glass transition temperature, thermal decomposition temperature (Td), and char yield (166 °C, 427 °C, and 51.0 wt%, respectively) that were significantly higher than those obtained when applying typical organic curing agents in the epoxy resin. The addition of Cu(II)-acac into the epoxy/BADCy and epoxy/DDSQ-OCN hybrids decreased the thermal stability (as characterized by the values of Td and the char yields) because the crosslinking density and post-hardening also decreased during thermal polymerization; nevertheless, it accelerated the thermal polymerization to a lower curing peak temperature, which is potentially useful for real applications as epoxy molding compounds.

13.
Molecules ; 27(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35209229

RESUMEN

Compounds of the silsesquioxane type are attractive material precursors. High molecular weights and well-defined structures predestine them to create ceramics with a controlled composition at the molecular level. New molecular precursors of ceramic materials with the ratio of Si:Ge = 7:1 atoms were obtained. The influence of organic substituents on the thermal decomposition processes of germasilsesquioxanes was investigated. Some of the structures obtained are characterized by a high non-volatile residue after the thermal decomposition process. The introduction of the germanium atom to the structure of the silsesquioxane molecular cage reduces the thermal stability of the obtained structures.

14.
Angew Chem Int Ed Engl ; 61(1): e202110417, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34693589

RESUMEN

We report carbene insertion into Si-H bonds of polyhedral oligomeric silsesquioxanes (POSS) for the synthesis of highly functionalized siloxane nanomaterials. Dirhodium(II) carboxylates catalyze insertion of aryl-diazoacetates as carbene precursors to afford POSS structures containing both ester and aryl groups as orthogonal functional handles for further derivatization of POSS materials. Four diverse and structurally varied silsesquioxane core scaffolds with one, three, or eight Si-H bonds were evaluated with diazo reactants to produce a total of 20 new POSS compounds. Novel diazo compounds containing a fluorinated octyl group and boron-dipyrromethene (BODIPY) chromophore demonstrate the use of highly functionalized substrates. Transformations of aryl(ester)-functionalized POSS compounds derived from this method are demonstrated, including ester hydrolysis and Suzuki-Miyaura cross-coupling.

15.
Nanotechnology ; 33(8)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34787111

RESUMEN

In this work, two silicon nanostructures were doped into polymer/nematic liquid crystal composites to regulate the electric-optical performance. Commercial SiO2nanoparticles and synthesized thiol polyhedral oligomeric silsesquioxane (POSS-SH) were chosen as the dopants to afford the silicon nanostructures. SiO2nanoparticles were physically dispersed in the composites and the nanostructure from POSS-SH was implanted into the polymer matrix of the composites via photoinduced thiol-ene crosslinking. Scanning electron microscopy results indicated that the implantation of POSS microstructure into the polymer matrix was conducive to obtaining the uniform porous polymer microstructures in the composites while the introduction of SiO2nanoparticles led to the loose and heterogeneous polymer morphologies. The electric-optical performance test results also demonstrated that the electric-optical performance regulation effect of POSS microstructure was more obvious than that of SiO2nanoparticles. The driving voltage was reduced by almost 80% if the concentration of POSS-SH in the composite was nearly 8 wt% and the sample could be completely driven by the electric field whose voltage was lower than the safe voltage for continuous contact (24 V). This work could provide a creative approach for the regulation of electric-optical performance for polymer/nematic liquid crystal composites and the fabrication of low voltage-driven PDLC films for smart windows.

16.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34948170

RESUMEN

The high photodynamic effect of the Newman strain of the S. aureus and of clinical strains of S. aureus MRSA 12673 and E. coli 12519 are observed for new cationic light-activated phenosafranin polyhedral oligomeric silsesquioxane (POSS) conjugates in vitro. Killing of bacteria was achieved at low concentrations of silsesquioxanes (0.38 µM) after light irradiation (λem. max = 522 nm, 10.6 mW/cm2) for 5 min. Water-soluble POSS-photosensitizers are synthesized by chemically coupling a phenosafranin dye (PSF) (3,7-diamino-5-phenylphenazine chloride) to an inorganic silsesquioxane cage activated by attachment of succinic anhydride rings. The chemical structure of conjugates is confirmed by 1H, 13C NMR, HRMS, IR, fluorescence spectroscopy and UV-VIS analyzes. The APDI and daunorubicin (DAU) synergy is investigated for POSSPSFDAU conjugates. Confocal microscopy experiments indicate a site of intracellular accumulation of the POSSPSF, whereas iBuPOSSPSF and POSSPSFDAU accumulate in the cell wall or cell membrane. Results from the TEM study show ruptured S. aureus cells with leaking cytosolic mass and distorted cells of E. coli. Bacterial cells are eradicated by ROS produced upon irradiation of the covalent conjugates that can kill the bacteria by destruction of cellular membranes, intracellular proteins and DNA through the oxidative damage of bacteria.


Asunto(s)
Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Fenazinas/farmacología , Antibacterianos/farmacología , Bacterias/metabolismo , Cationes/metabolismo , Membrana Celular/metabolismo , Escherichia coli/efectos de los fármacos , Fenazinas/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos
17.
Molecules ; 27(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35011280

RESUMEN

Advanced organic-inorganic materials-composites, nanocomposites, and hybrids with various compositions offer unique properties required for biomedical applications. One of the most promising inorganic (nano)additives are polyhedral oligomeric silsesquioxanes (POSS); their biocompatibility, non-toxicity, and phase separation ability that modifies the material porosity are fundamental properties required in modern biomedical applications. When incorporated, chemically or physically, into polyurethane matrices, they substantially change polymer properties, including mechanical properties, surface characteristics, and bioactivity. Hence, this review is dedicated to POSS-PU composites that have recently been developed for applications in the biomedical field. First, different modes of POSS incorporation into PU structure have been presented, then recent developments of PU/POSS hybrids as bio-active composites for scaffolds, cardiovascular stents, valves, and membranes, as well as in bio-imaging and cancer treatment, have been described. Finally, characterization and methods of modification routes of polyurethane-based materials with silsesquioxanes were presented.


Asunto(s)
Nanocompuestos/química , Compuestos de Organosilicio/química , Poliuretanos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Materiales Biocompatibles/química , Biotecnología , Desarrollo de Medicamentos , Estructura Molecular , Compuestos de Organosilicio/síntesis química , Polimerizacion , Poliuretanos/síntesis química
18.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34210013

RESUMEN

The subject of the research was the production of silsesquioxane modified rigid polyurethane (PUR) foams (POSS-Cl) with chlorine functional groups (chlorobenzyl, chloropropyl, chlorobenzylethyl) characterized by reduced flammability. The foams were prepared in a one-step additive polymerization reaction of isocyanates with polyols, and the POSS modifier was added to the reaction system in an amount of 2 wt.% polyol. The influence of POSS was analyzed by performing a series of tests, such as determination of the kinetics of foam growth, determination of apparent density, and structure analysis. Compressive strength, three-point bending strength, hardness, and shape stability at reduced and elevated temperatures were tested, and the hydrophobicity of the surface was determined. The most important measurement was the determination of the thermal stability (TGA) and the flammability of the modified systems using a cone calorimeter. The obtained results, after comparing with the results for unmodified foam, showed a large influence of POSS modifiers on the functional properties, especially thermal and fire-retardant, of the obtained PUR-POSS-Cl systems.

19.
Molecules ; 26(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34361544

RESUMEN

In this work the analysis on the stabilization activities of some natural antioxidants (rosemary extract, capsaicin, quercetin or oleanolic acid) is presented. A similar contribution of an inorganic structure-polyhedral oligomeric silsesquioxane (POSS) nanoparticles-is also evaluated. The stabilization effects on the oxidation protection were investigated for several formulations based on ethylene-propylene-diene-terpolymer (EPDM). The samples were examined in pristine state or after γ-irradiation, when the accelerated degradation scission of polymer macromolecules followed by the mitigation of oxidation. Three evaluation procedures: chemiluminescence, FTIR spectroscopy and thermal analysis were applied for the characterization of stability efficiency. The delaying effect of oxidative aging in EPDM matrix is illustrated by the values of activation energy, which are correlated with the type and concentration of embedded compounds. The durability of studied EPDM formulations is discussed for the assessment of material life. The improved behavior of structured hybrids useful for the optimization application regimes is essentially based on the antioxidant properties of polyphenolic components in the cases of natural antioxidants or on the penetration of free radical intermediates into the free volumes of POSS.

20.
Molecules ; 26(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34299387

RESUMEN

The functionalization of mono- and octahydrospherosilicate with vinylboranes and allylboranes via hydrosilylation reaction in the presence of a Karstedt's platinum (0) catalyst is presented. This is the catalytic route to obtain a new class of silsesquioxanes containing boron atoms in their structure in high yields (>90%) and with satisfactory selectivity. The obtained compounds were fully characterized by spectroscopic (1H, 13C, 29Si NMR) and spectrometric methods (MALDI-TOF-MS), as well as thermal analysis (TGA). The obtained compounds were subjected to thermal tests, characterizing the processes of melting, thermal evaporation, sublimation and thermal decomposition.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda