Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Photosynth Res ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037691

RESUMEN

Mg2+, the most abundant divalent cation in living cells, plays a pivotal role in numerous enzymatic reactions and is of particular importance for organisms performing oxygenic photosynthesis. Its significance extends beyond serving as the central ion of the chlorophyll molecule, as it also acts as a counterion during the light reaction to balance the proton gradient across the thylakoid membranes. In this study, we investigated the effects of Mg2+ limitation on the physiology of the well-known model microorganism Synechocystis sp. PCC6803. Our findings reveal that Mg2+ deficiency triggers both morphological and functional changes. As seen in other oxygenic photosynthetic organisms, Mg2+ deficiency led to a decrease in cellular chlorophyll concentration. Moreover, the PSI-to-PSII ratio decreased, impacting the photosynthetic efficiency of the cell. In line with this, Mg2+ deficiency led to a change in the proton gradient built up across the thylakoid membrane upon illumination.

2.
Mol Cell Proteomics ; 20: 100162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34655801

RESUMEN

Light is essential for photosynthetic organisms and is involved in the regulation of protein synthesis and degradation. The significance of light-regulated protein degradation is exemplified by the well-established light-induced degradation and repair of the photosystem II reaction center D1 protein in higher plants and cyanobacteria. However, systematic studies of light-regulated protein degradation events in photosynthetic organisms are lacking. Thus, we conducted a large-scale survey of protein degradation under light or dark conditions in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis) using the isobaric labeling-based quantitative proteomics technique. The results revealed that 79 proteins showed light-regulated degradation, including proteins involved in photosystem II structure or function, quinone binding, and NADH dehydrogenase. Among these, 25 proteins were strongly dependent on light for degradation. Moreover, the light-dependent degradation of several proteins was sensitive to photosynthetic electron transport inhibitors (DCMU and DBMIB), suggesting that they are influenced by the redox state of the plastoquinone (PQ) pool. Together, our study comprehensively cataloged light-regulated protein degradation events, and the results serve as an important resource for future studies aimed at understanding light-regulated processes and protein quality control mechanisms in cyanobacteria.


Asunto(s)
Proteínas Bacterianas/efectos de la radiación , Luz , Synechocystis , Proteolisis
3.
Photosynth Res ; 153(1-2): 71-82, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35389175

RESUMEN

The redox state of the plastoquinone (PQ) pool is a known sensor for retrograde signaling. In this paper, we asked, "does the redox state of the PQ pool modulate the saturation state of thylakoid lipids?" Data from fatty acid composition and mRNA transcript abundance analyses suggest a strong connection between these two aspects in a model marine diatom. Fatty acid profiles of Phaeodactylum tricornutum exhibited specific changes when the redox state of the PQ pool was modulated by light and two chemical inhibitors [3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB)]. Data from liquid chromatography with tandem mass spectrometry (LC-MS/MS) indicated a ca. 7-20% decrease in the saturation state of all four conserved thylakoid lipids in response to an oxidized PQ pool. The redox signals generated from an oxidized PQ pool in plastids also increased the mRNA transcript abundance of nuclear-encoded C16 fatty acid desaturases (FADs), with peak upregulation on a timescale of 6 to 12 h. The connection between the redox state of the PQ pool and thylakoid lipid saturation suggests a heretofore unrecognized retrograde signaling pathway that couples photosynthetic electron transport and the physical state of thylakoid membrane lipids.


Asunto(s)
Diatomeas , Plastoquinona , Benzoquinonas , Cromatografía Liquida , Diatomeas/metabolismo , Dibromotimoquinona/metabolismo , Diurona/farmacología , Transporte de Electrón , Ácido Graso Desaturasas/análisis , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/análisis , Luz , Lípidos , Oxidación-Reducción , Plastoquinona/metabolismo , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem , Tilacoides/metabolismo
4.
Ecotoxicol Environ Saf ; 204: 111136, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32798755

RESUMEN

High temperature can lead to increased production of excess light energy, thus reducing photosynthetic capacity in plants. Photosynthetic cyclic electron flow (CEF) in photosystem I (PSI) can effectively protect photosystems, but its physiological mechanism under high temperature is poorly understood. In this study, antimycin A (AA) and thenoyltrifluoroacetone (TTFA) were used to inhibit PGR5-and NDH-dependent CEF pathways, respectively, to reveal the photoprotective functions of CEF for PSII in tobacco leaves under high temperature stress (37 °C, HT). High temperatures caused decreases in maximal photochemistry efficiency (Fv/Fm) and damaged photosystem II (PSII) in tobacco leaves. Under AA inhibition of PGR5-dependent CEF, high temperature increased the fluorescence intensity of point O (Fo) in OJIP curves, i.e., the energy absorption per active reaction center (ABS/RC), the trapping rate of the reaction center (TRo/RC), and the electron transport efficiency per reaction center (ETo/RC) in tobacco leaves. High temperature induced an increase in the hydrogen peroxide content and a decrease in pigment content in tobacco leaves. Under the high temperature treatment, inhibition of PGR5-dependent CEF reduced the activities of the PSII reaction center significantly, destroyed the oxygen-evolving complex (OEC), and impeded photosynthetic electron transfer from PSII to the plastoquinone (PQ) pool in tobacco leaves. The TTFA treatment inhibited the NDH-dependent pathway under high temperature conditions, with the relative fluorescence intensity of point I (VI) decreased significantly, and the content of hydrogen peroxide and superoxide anion increased significantly. Additionally, Fo and the redox degree of the PSII donor side (Wk) increased, and pigment content decreased compared to the control, but with little change compared to high temperature treatment, indicating that the inhibition of the NDH-dependent pathway directly weakened the capacity of the PQ pool to lead to the accumulation of reactive oxygen species (ROS) in tobacco leaves. In conclusion, CEF alleviated damage to the photosynthetic apparatus in tobacco leaves by increasing PSII heat dissipation, reducing ROS production, and maintaining the stability of the PQ pool to accommodate photosynthetic electron flow.


Asunto(s)
Calor , Nicotiana/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/metabolismo , Transporte de Electrón , Electrones , Fluorescencia , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Temperatura , Nicotiana/fisiología
5.
J Exp Bot ; 66(22): 7151-64, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26324464

RESUMEN

Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light.


Asunto(s)
Aclimatación , Peróxido de Hidrógeno/metabolismo , Luz , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Transducción de Señal , Aclimatación/efectos de la radiación , Hordeum , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/efectos de la radiación , Hojas de la Planta/metabolismo , Transducción de Señal/efectos de la radiación
6.
J Exp Bot ; 64(12): 3669-79, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23956412

RESUMEN

Isochorismate synthase 1 (ICS1) is a crucial enzyme in the salicylic acid (SA) synthesis pathway, and thus it is important for immune defences. The ics1 mutant is used in experiments on plant-pathogen interactions, and ICS1 is required for the appropriate hypersensitive disease defence response. However, ICS1 also takes part in the synthesis of phylloquinone, which is incorporated into photosystem I and is an important component of photosynthetic electron transport in plants. Therefore, photosynthetic and molecular analysis of the ics1 mutant in comparison with wild-type and SA-degrading transgenic NahG Arabidopsis thaliana plants was performed. Photosynthetic parameters in the ics1 mutant, when compared with the wild type, were changed in a manner observed previously for state transition-impaired plants (STN7 kinase recessive mutant, stn7). In contrast to stn7, deregulation of the redox status of the plastoquinone pool (measured as 1-q p) in ics1 showed significant variation depending on the leaf age. SA-degrading transgenic NahG plants targeted to the cytoplasm or chloroplasts displayed normal (wild-type-like) state transition. However, ics1 plants treated with a phylloquinone precursor displayed symptoms of phenotypic reversion towards the wild type. ics1 also showed altered thylakoid structure with an increased number of stacked thylakoids per granum which indicates the role of ICS1 in regulation of state transition. The results presented here suggest the role of ICS1 in integration of the chloroplast ultrastructure, the redox status of the plastoquinone pool, and organization of the photosystems, which all are important for optimal immune defence and light acclimatory responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Transferasas Intramoleculares/genética , Fotosíntesis , Vitamina K 1/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Transporte de Electrón , Transferasas Intramoleculares/metabolismo , Luz , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ácido Salicílico/metabolismo , Tilacoides/enzimología , Tilacoides/metabolismo
7.
Genes (Basel) ; 14(12)2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38136973

RESUMEN

A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.


Asunto(s)
Citocromos b , Synechocystis , Transporte de Electrón/genética , Synechocystis/genética , Synechocystis/metabolismo , Oxidación-Reducción , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Plastoquinona/química
8.
J Photochem Photobiol B ; 128: 27-34, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23995216

RESUMEN

Photosynthetic organisms during acclimation to light, differences in the amount of energy absorbed by photosystems leads to an imbalance in the energy distribution between photosystem (PS) II and PSI. Here, we describe the changes in fast chlorophyll (Chl) a fluorescence transients (OJIP) in wild type and stn7 under state I and state II light conditions. Fluorescence quenching in the OJIP transients recorded from state II exposed wt leaves is due to mobilization of LHCII to PSI. Similar kind of quenching was not observed in stn7 plants exposed to state II light. OJIP transients can be used to study the changes in Chl a fluorescence upon state transitions in A. thaliana. Immunoblotting and 2 dimensional gel electrophoresis studies have shown that phosphorylated Lhcb2 under state II condition exhibited 4 isoforms, whereas dephosphorylated Lhcb2 exhibited 3 isoforms in state I. Phosphorylation and migration of LHCII to PSI resulted in changes in the pigment protein profile of the thylakoid membranes in state II from wt. The increase in circular dichroism (CD) signals at 663 nm and 679 nm was due to association of chirally active trimeric LHCII to PSI-LHCI supercomplex leading to macro-aggregation of pigment-pigment complexes in state II pre-illuminated conditions in wt A. thaliana.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/química , Clorofila/metabolismo , Clorofila A , Dicroismo Circular , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Fosforilación , Complejo de Proteína del Fotosistema I/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda