Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
J Virol ; : e0104824, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212384

RESUMEN

Pseudorabies virus (PRV) utilizes multiple strategies to inhibit type I interferon (IFN-I) production and signaling to achieve innate immune evasion. Among several other functions, mitochondria serve as a crucial immune hub in the initiation of innate antiviral responses. It is currently unknown whether PRV inhibits innate immune responses by manipulating mitochondria. In this study, we found that PRV infection damages mitochondrial structure and function, as shown by mitochondrial membrane potential depolarization, reduction in mitochondrial numbers, and an imbalance in mitochondrial dynamics. In addition, PRV infection triggered PINK1-Parkin-mediated mitophagy to eliminate the impaired mitochondria, which resulted in a suppression of IFN-I production, thereby promoting viral replication. Furthermore, we found that mitophagy resulted in the degradation of the mitochondrial antiviral signaling protein, which is located on the mitochondrial outer membrane. In conclusion, the data of the current study indicate that PRV-induced mitophagy represents a previously uncharacterized PRV evasion mechanism of the IFN-I response, thereby promoting virus replication.IMPORTANCEPseudorabies virus (PRV), a pathogen that induces different disease symptoms and is often fatal in domestic animals and wildlife, has caused great economic losses to the swine industry. Since 2011, different PRV variant strains have emerged in Asia, against which current commercial vaccines may not always provide optimal protection in pigs. In addition, there are indications that some of these PRV variant strains may sporadically infect people. In the current study, we found that PRV infection causes mitochondria injury. This is associated with the induction of mitophagy to eliminate the damaged mitochondria, which results in suppressed antiviral interferon production and signaling. Hence, our study reveals a novel mechanism that is used by PRV to antagonize the antiviral host immune response, providing a theoretical basis that may contribute to the research toward and development of new vaccines and antiviral drugs.

2.
J Virol ; 98(5): e0048324, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38639486

RESUMEN

Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.


Asunto(s)
Herpesvirus Suido 1 , Inmunidad Innata , Miosina Tipo IIA no Muscular , Seudorrabia , Animales , Humanos , Ratones , Línea Celular , ADN Viral/inmunología , Células HEK293 , Herpesvirus Suido 1/inmunología , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/inmunología , Miosina Tipo IIA no Muscular/metabolismo , Nucleotidiltransferasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Seudorrabia/inmunología , Seudorrabia/virología , Transducción de Señal , Porcinos
3.
Cell Tissue Res ; 395(2): 199-210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38087072

RESUMEN

Spatial transcriptomics is a technique that provides insight into gene expression profiles in tissue sections while retaining structural information. We have employed this method to study the pathological conditions related to red and melanized focal changes in farmed Atlantic salmon (Salmo salar). Our findings support a model where similar molecular mechanisms are involved in both red and melanized filet discolorations and genes associated with several relevant pathways show distinct expression patterns in both sample types. Interestingly, there appears to be significant cellular heterogeneity in the foci investigated when looking at gene expression patterns. Some of the genes that show differential spatial expression are involved in cellular processes such as hypoxia and immune responses, providing new insight into the nature of muscle melanization in Atlantic salmon.


Asunto(s)
Enfermedades de los Peces , Infecciones por Reoviridae , Salmo salar , Animales , Infecciones por Reoviridae/patología , Salmo salar/genética , Músculo Esquelético/patología , Perfilación de la Expresión Génica , Transcriptoma/genética , Enfermedades de los Peces/patología
4.
Vet Res ; 55(1): 84, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965634

RESUMEN

Pseudorabies virus (PRV) has evolved multiple strategies to evade host antiviral responses to benefit virus replication and establish persistent infection. Recently, tripartite motif 26 (TRIM26), a TRIM family protein, has been shown to be involved in a broad range of biological processes involved in innate immunity, especially in regulating viral infection. Herein, we found that the expression of TRIM26 was significantly induced after PRV infection. Surprisingly, the overexpression of TRIM26 promoted PRV production, while the depletion of this protein inhibited virus replication, suggesting that TRIM26 could positively regulate PRV infection. Further analysis revealed that TRIM26 negatively regulates the innate immune response by targeting the RIG-I-triggered type I interferon signalling pathway. TRIM26 was physically associated with MAVS independent of viral infection and reduced MAVS expression. Mechanistically, we found that NDP52 interacted with both TRIM26 and MAVS and that TRIM26-induced MAVS degradation was almost entirely blocked in NDP52-knockdown cells, demonstrating that TRIM26 degrades MAVS through NDP52-mediated selective autophagy. Our results reveal a novel mechanism by which PRV escapes host antiviral innate immunity and provide insights into the crosstalk among virus infection, autophagy, and the innate immune response.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Autofagia , Inmunidad Innata , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Porcinos , Replicación Viral , Humanos , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
5.
Vet Res ; 55(1): 68, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807225

RESUMEN

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Asunto(s)
Herpesvirus Suido 1 , Ensamble de Virus , Liberación del Virus , Proteínas de Unión al GTP rab , Animales , Ratones , Línea Celular , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/metabolismo , Seudorrabia/virología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Porcinos , Enfermedades de los Porcinos/virología , Ensamble de Virus/genética , Liberación del Virus/genética
6.
Methods ; 218: 224-232, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37678514

RESUMEN

Heart rate variability (HRV) is an important indicator of autonomic nervous system activity and can be used for the identification of affective states. The development of remote Photoplethysmography (rPPG) technology has made it possible to measure pulse rate variability (PRV) using a camera without any sensor-skin contact, which is highly correlated to HRV, thus, enabling contactless assessment of emotional states. In this study, we employed ten machine learning techniques to identify emotions using camera-based PRV features. Our experimental results show that the best classification model achieved a coordination correlation coefficient of 0.34 for value recognition and 0.36 for arousal recognition. The rPPG-based measurement has demonstrated promising results in detecting HAHV (high-arousal high-valence) emotions with high accuracy. Furthermore, for emotions with less noticeable variations, such as sadness, the rPPG-based measure outperformed the baseline deep network for facial expression analysis.


Asunto(s)
Emociones , Aprendizaje Automático , Frecuencia Cardíaca , Piel
7.
BMC Vet Res ; 20(1): 9, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172819

RESUMEN

BACKGROUND: The only natural hosts of Pseudorabies virus (PRV) are members of the family Suidae (Sus scrofa scrofa). In mammals, the infection is usually fatal and typically causes serious neurologic disease. This study describes four Aujeszky's disease cases in free-ranging Italian wolves (Canis lupus italicus). In Italy, the wolf is a strictly protected species and is in demographic expansion. CASE PRESENTATION: Three wolves (Wolf A, B, and C) were found in a regional park in Northern Italy, and one (Wolf D) was found in Central Italy. Wolf A and D were alive at the time of the finding and exhibited a fatal infection with epileptic seizures and dyspnoea, dying after a few hours. Wolf B presented scratching lesions under the chin and a detachment of the right earlobe, whilst Wolf C was partially eaten. The wolves showed hepatic congestion, diffuse enteritis, moderate pericardial effusion, severe bilateral pneumonia, and diffuse hyperaemia in the brain. The diagnostic examinations included virological analyses and detection of toxic molecules able to cause serious neurological signs. All four wolves tested positive for pseudorabies virus (PrV). The analysed sequences were placed in Italian clade 1, which is divided into two subclades, "a" and "b". The sequences of Wolf A, B, and C were closely related to other Italian sequences in the subclade b, originally obtained from wild boars and hunting dogs. The sequence from Wolf D was located within the same clade and was closely related to the French hunting dog sequences belonging to group 4. CONCLUSION: Results showed the presence of PrV strains currently circulating in wild boars and free-ranging Italian wolves. The genetic characterisation of the PrV UL44 sequences from the four wolves confirmed the close relationship with the sequences from wild boars and hunting dogs. This fact supports a possible epidemiological link with the high PrV presence in wild boars and the possibility of infection in wolves through consumption of infected wild boar carcasses or indirect transmission. To the best of our knowledge, this study is the first detection of Pseudorabies virus in free-ranging Italian wolves in northern and central Italy.


Asunto(s)
Enfermedades de los Perros , Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Lobos , Perros , Animales , Porcinos , Herpesvirus Suido 1/genética , Seudorrabia/diagnóstico , Seudorrabia/epidemiología , Seudorrabia/patología , Italia/epidemiología , Sus scrofa
8.
J Fish Dis ; 47(1): e13874, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37828712

RESUMEN

Viral diseases are a serious problem in Atlantic salmon (Salmo salar L.) farming in Norway, often leading to reduced fish welfare and increased mortality. Disease outbreaks in salmon farms may lead to spread of viruses to the surrounding environment. There is a public concern that viral diseases may negatively affect the wild salmon populations. Pancreas disease (PD) caused by salmonid alphavirus (SAV) and heart and skeletal muscle inflammation (HSMI) caused by piscine orthoreovirus-1 (PRV-1) are common viral diseases in salmon farms in western Norway. In the current study, we investigated the occurrence of SAV and PRV-1 infections in 651 migrating salmon post-smolt collected from three fjord systems (Sognefjorden, Osterfjorden and Hardangerfjorden) located in western Norway in 2013 and 2014 by real-time RT-PCR. Of the collected post-smolts, 303 were of wild origin and 348 were hatchery-released. SAV was not detected in any of the tested post-smolt, but PRV-1 was detected in 4.6% of them. The Ct values of PRV-1 positive fish were usually high (mean 32.0; range: 20.1-36.8). PRV-1 prevalence in post-smolts from the three fjords was 6.1% in Sognefjorden followed by 4.8% in Osterfjorden and 2.3% in Hardangerfjorden. The prevalence PRV-1 was significantly higher in wild (6.9%) compared to hatchery-released post-smolt (2.6%). The occurrence of PRV-1 infection in the fish was lowest in the Hardangerfjorden which has the highest fish farming intensity. Our results suggest that SAV infection are uncommon in migrating smolt while PRV-1 infection can be detected at low level. These findings suggest that migrating smolts were at low risk from SAV or PRV-1 released from salmon farms located in their migration routes in 2013 and 2014.


Asunto(s)
Alphavirus , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Salmo salar , Animales , Enfermedades de los Peces/epidemiología , Orthoreovirus/genética , Infecciones por Reoviridae/epidemiología , Infecciones por Reoviridae/veterinaria , Noruega/epidemiología
9.
BMC Biol ; 21(1): 114, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208758

RESUMEN

This paper is a response to Polinski, M. P. et al. Innate antiviral defense demonstrates high energetic efficiency in a bony fish. BMC Biology 19, 138 (2021). https://doi.org/10.1186/s12915-021-01069-2.


Asunto(s)
Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Animales , Infecciones por Reoviridae/veterinaria , Orthoreovirus/fisiología , Salmón
10.
J Virol ; 96(6): e0217821, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35045266

RESUMEN

The assembly and egress of alphaherpesviruses, including herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), within neurons is poorly understood. A key unresolved question is the structure of the viral particle that moves by anterograde transport along the axon, and two alternative mechanisms have been described. In the "married" model, capsids acquire their envelopes in the cell body and then traffic along axons as enveloped virions within a bounding organelle. In the "separate" model, nonenveloped capsids travel from the cell body into and along the axon, eventually encountering their envelopment organelles at a distal site, such as the nerve cell terminal. Here, we describe an "envelopment trap" to test these models using the dominant negative terminal endosomal sorting complex required for transport (ESCRT) component VPS4-EQ. Green fluorescent protein (GFP)-tagged VPS4-EQ was used to arrest HSV-1 or PRV capsid envelopment, inhibit downstream trafficking, and GFP-label envelopment intermediates. We found that GFP-VPS4-EQ inhibited trafficking of HSV-1 capsids into and along the neurites and axons of mouse CAD cells and rat embryonic primary cortical neurons, consistent with egress via the married pathway. In contrast, transport of HSV-1 capsids was unaffected in the neurites of human SK-N-SH neuroblastoma cells, consistent with the separate mechanism. Unexpectedly, PRV (generally thought to utilize the married pathway) also appeared to employ the separate mechanism in SK-N-SH cells. We propose that apparent differences in the methods of HSV-1 and PRV egress are more likely a reflection of the host neuron in which transport is studied rather than true biological differences between the viruses themselves. IMPORTANCE Alphaherpesviruses, including herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), are pathogens of the nervous system. They replicate in the nerve cell body and then travel great distances along axons to reach nerve termini and spread to adjacent epithelial cells; however, key aspects of how these viruses travel along axons remain controversial. Here, we test two alternative mechanisms for transport, the married and separate models, by blocking envelope assembly, a critical step in viral egress. When we arrest formation of the viral envelope using a mutated component of the cellular ESCRT apparatus, we find that entry of viral particles into axons is blocked in some types of neurons but not others. This approach allows us to determine whether envelope assembly occurs prior to entry of viruses into axons or afterwards and, thus, to distinguish between the alternative models for viral transport.


Asunto(s)
Alphaherpesvirinae , Complejos de Clasificación Endosomal Requeridos para el Transporte , Herpesvirus Humano 1 , Herpesvirus Suido 1 , Neuronas , Alphaherpesvirinae/metabolismo , Animales , Axones/virología , Línea Celular Tumoral , Células Cultivadas , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Suido 1/fisiología , Humanos , Ratones , Neuronas/virología , Ratas , Ensamble de Virus/fisiología , Internalización del Virus
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda