Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Transl Med ; 20(1): 461, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209172

RESUMEN

Abdominal aortic aneurysm (AAA) represents the serious vascular degenerative disorder, which causes high incidence and mortality. Alpha-ketoglutarate (AKG), a crucial metabolite in the tricarboxylic acid (TCA) cycle, has been reported to exert significant actions on the oxidative stress and inflammation. However, its role in AAA still remains elusive. Herein, we examined the effects of AKG on the formation of AAA. The study established an elastase-induced mouse abdominal aortic aneurysms model as well as a TNF-α-mediated vascular smooth muscle cells (VSMCs) model, respectively. We displayed that AKG pre-treatment remarkably prevented aneurysmal dilation assessed by diameter and volume and reduced aortic rupture. In addition, it was also observed that AKG treatment suppressed the development of AAA by attenuating the macrophage infiltration, elastin degradation and collagen fibers remodeling. In vitro, AKG potently decreased TNF-α-induced inflammatory cytokines overproduction, more apoptotic cells and excessive superoxide. Mechanistically, we discovered that upregulation of vpo1 in AAA was significantly suppressed by AKG treatment. By exploring the RNA-seq data, we found that AKG ameliorates AAA mostly though inhibiting oxidative stress and the inflammatory response. PXDN overexpression neutralized the inhibitory effects of AKG on ROS generation and inflammatory reaction in MOVAS. Furthermore, AKG treatment suppressed the expression of p-ERK1/2, 3-Cl Tyr in vivo and in vitro. ERK activator disrupted the protective of AKG on TNF-α-induced VSMCs phenotypic switch. Conclusively, AKG can serve as a beneficial therapy for AAA through regulating PXDN/HOCL/ERK signaling pathways.


Asunto(s)
Aneurisma de la Aorta Abdominal , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aneurisma de la Aorta Abdominal/metabolismo , Colágeno/metabolismo , Citocinas/metabolismo , Desoxirribonucleósidos , Modelos Animales de Enfermedad , Elastina/metabolismo , Inflamación/metabolismo , Ácidos Cetoglutáricos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Elastasa Pancreática/metabolismo , Nucleósidos de Purina , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxidos/metabolismo , Ácidos Tricarboxílicos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751434

RESUMEN

Despite dramatic progress in cancer diagnosis and treatment, the five-year survival rate of oral squamous cell carcinoma (OSCC) is still only about 50%. Thus, the need for elucidating the molecular mechanisms underlying OSCC is urgent. We previously identified the peroxidasin gene (PXDN) as one of several novel genes associated with OSCC. Although the PXDN protein is known to act as a tumor-promoting factor associated with the Warburg effect, its function and role in OSCC are poorly understood. In this study, we investigated the expression, function, and relationship with the Warburg effect of PXDN in OSCC. In immunohistochemical analysis of OSCC specimens, we observed that elevated PXDN expression correlated with lymph node metastasis and a diffuse invasion pattern. High PXDN expression was confirmed as an independent predictor of poor prognosis by multivariate analysis. The PXDN expression level correlated positively with that of pyruvate kinase (PKM2) and heme oxygenase-1 (HMOX1) and with lactate and ATP production. No relationship between PXDN expression and mitochondrial activation was observed, and PXDN expression correlated inversely with reactive oxygen species (ROS) production. These results suggest that PXDN might be a tumor progression factor causing a Warburg-like effect in OSCC.


Asunto(s)
Neoplasias de la Boca/metabolismo , Peroxidasas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Efecto Warburg en Oncología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Pronóstico
3.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234468

RESUMEN

Peroxidasin (PXDN), a human homolog of Drosophila PXDN, belongs to the family of heme peroxidases and has been found to promote oxidative stress in cardiovascular tissue, however, its role in prostate cancer has not been previously elucidated. We hypothesized that PXDN promotes prostate cancer progression via regulation of metabolic and oxidative stress pathways. We analyzed PXDN expression in prostate tissue by immunohistochemistry and found increased PXDN expression with prostate cancer progression as compared to normal tissue or cells. PXDN knockdown followed by proteomic analysis revealed an increase in oxidative stress, mitochondrial dysfunction and gluconeogenesis pathways. Additionally, Liquid Chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics confirmed that PXDN knockdown induced global reprogramming associated with increased oxidative stress and decreased nucleotide biosynthesis. We further demonstrated that PXDN knockdown led to an increase in reactive oxygen species (ROS) associated with decreased cell viability and increased apoptosis. Finally, PXDN knockdown decreased colony formation on soft agar. Overall, the data suggest that PXDN promotes progression of prostate cancer by regulating the metabolome, more specifically, by inhibiting oxidative stress leading to decreased apoptosis. Therefore, PXDN may be a biomarker associated with prostate cancer and a potential therapeutic target.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Estrés Oxidativo , Peroxidasa/metabolismo , Neoplasias de la Próstata/metabolismo , Apoptosis , Línea Celular Tumoral , Gluconeogénesis , Humanos , Masculino , Metabolómica , Neoplasias de la Próstata/patología , Proteómica , Peroxidasina
4.
Aging (Albany NY) ; 16(6): 5567-5580, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38517371

RESUMEN

BACKGROUND: CR6-interacting factor 1 (CRIF1), a multifunctional protein that affects mitochondrial function and cell senescence, plays a regulatory role in heart-related diseases. However, whether CRIF1 participates in myocardial senescence by regulating mitochondrial function remains unclear. METHODS: Doxorubicin (DOX)-induced C57BL/6 mice to construct mouse myocardial senescence model, and the myocardial function indicators including lactate dehydrogenase (LDH) and Creatine kinase isoform MB (CK-MB) were assessed. The expression of CRIF1 was detected by western blot. Myocardial pathological changes were examined by transthoracic echocardiography and haematoxylin and eosin (H&E) staining. Cell senescence was detected by SA-ß-gal staining. JC-1 staining was used to detect mitochondrial membrane potential. Biochemical kits were used to examine oxidative stress-related factors. Additionally, AC16 cardiomyocytes were treated with DOX to mimic the cellular senescence model in vitro. Cell activity was detected by cell counting kit-8 (CCK-8) assay. Co-immunoprecipitation (CO-IP) was used to verify the relationship between CRIF1 and peroxidasin (PXDN). RESULTS: The CRIF1 expression was significantly decreased in DOX-induced senescent mice and AC16 cells. Overexpression of CRIF1 significantly ameliorated DOX-induced myocardial dysfunction and myocardial senescence. Additionally, CRIF1 overexpression attenuated DOX-induced oxidative stress and myocardial mitochondrial dysfunction. Consistently, CRIF1 overexpression also inhibited DOX-induced oxidative stress and senescence in AC16 cells. Moreover, CRIF1 was verified to bind to PXDN and inhibited PXDN expression. The inhibitory effects of CRIF1 overexpression on DOX-induced oxidative stress and senescence in AC16 cells were partly abolished by PXDN expression. CONCLUSIONS: CRIF1 plays a protective role against DOX-caused mitochondrial dysfunction and myocardial senescence partly through downregulating PXDN.


Asunto(s)
Desoxirribonucleósidos , Doxorrubicina , Enfermedades Mitocondriales , Nucleósidos de Purina , Ratones , Animales , Ratones Endogámicos C57BL , Doxorrubicina/toxicidad , Miocardio/metabolismo , Estrés Oxidativo , Miocitos Cardíacos/metabolismo , Enfermedades Mitocondriales/metabolismo , Apoptosis
5.
Biomolecules ; 14(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39199364

RESUMEN

Early-life adversity (ELA) is characterized by exposure to traumatic events during early periods of life, particularly involving emotional, sexual and/or physical adversities during childhood. Mental disorders are strongly influenced by environmental and lifestyle-related risk factors including ELA. However, the molecular link between ELA and the risk of an adult mental disorder is still not fully understood. Evidence is emerging that long-lasting changes in the epigenetic processes regulating gene expression, such as DNA methylation, play an important role in the biological mechanisms linking ELA and mental disorders. Based on a recent study, we analyzed the DNA methylation of a specific CpG site within the gene PXDN-cg10888111-in blood in the context of ELA across a set of psychiatric disorders, namely Borderline Personality Disorder (BPD), Major Depressive Disorder (MDD) and Social Anxiety Disorder (SAD), and its potential contribution to their pathogenesis. We found significant hypermethylation in mentally ill patients with high levels of ELA compared to patients with low levels of ELA, whereas cg10888111 methylation in healthy control individuals was not affected by ELA. Further investigations revealed that this effect was driven by the MDD cohort. Providing a direct comparison of cg10888111 DNA methylation in blood in the context of ELA across three mental disorders, our results indicate the role of PXDN regulation in the response to ELA in the pathogenesis of mental disorders, especially MDD. Further studies will be needed to validate these results and decipher the corresponding biological network that is involved in the transmission of ELA to an adult mental disorder in general.


Asunto(s)
Metilación de ADN , Metilación de ADN/genética , Humanos , Adulto , Masculino , Femenino , Trastornos Mentales/genética , Experiencias Adversas de la Infancia , Epigénesis Genética , Islas de CpG/genética , Trastorno Depresivo Mayor/genética , Persona de Mediana Edad , Trastorno de Personalidad Limítrofe/genética
6.
Reprod Toxicol ; 119: 108409, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37209868

RESUMEN

Maternal smoking during pregnancy (MSDP) is a significant risk factor for the development of foetal, neonatal, and childhood morbidities. We hypothesized that infants exposed to MSDP have a distinct proteomic expression in their term placentas compared to infants without such an exposure. A total of 39 infants exposed (cord blood cotinine levels of >1 ng/mL) and 44 infants not exposed to MSDP were included in the study. Women with chronic disease, body mass index of > 30, or a history of uterine surgery were excluded. Total proteome abundance was analysed with quantitative mass spectrometry. For univariate analysis of differences in placental protein levels between groups, ANOVA with multiple testing corrections by the Benjamini-Hochberg method was used. For multivariate analysis, we used principal component analysis, partial least squares, lasso, random forest, and neural networks. The univariate analyses showed four differentially abundant proteins (PXDN, CYP1A1, GPR183, and KRT81) when heavy and moderate smoking groups were compared to non-smokers. With the help of machine learning, we found that an additional six proteins (SEPTIN3, CRAT, NAAA, CD248, CADM3, and ZNF648) were discriminants of MSDP. The placental abundance of these ten proteins together explained 74.1% of the variation in cord blood cotinine levels (p = 0.002). Infants exposed to MSDP showed differential abundance of proteins in term placentas. We report differential placental abundance of several proteins for the first time in the setting of MSDP. We believe that these findings supplement the current understanding of how MSDP affects the placental proteome.


Asunto(s)
Placenta , Proteoma , Recién Nacido , Humanos , Embarazo , Femenino , Niño , Placenta/metabolismo , Proteoma/metabolismo , Cotinina , Proteómica , Fumar/efectos adversos , Fumar/metabolismo , Antígenos de Neoplasias/metabolismo , Antígenos CD/metabolismo
7.
Front Genet ; 13: 990344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118855

RESUMEN

Peroxidase (PXDN), a specific extracellular matrix (ECM)-associated protein, has been determined as a tumor indicator and therapeutic target in various tumors. However, the effects of PXDN in prognostic performance and clinical implications in glioblastoma multiforme (GBM) remains unknown. Here, we assessed PXDN expression pattern and its performance on prognosis among GBM cases from TCGA and CGGA databases. PXDN was up-regulated within GBM samples in comparison with normal control. High PXDN expression was a dismal prognostic indicator in GBM. Single cell RNA analysis was conducted to detect the cell localization of PXDN. We also set up a PPI network to explore the interacting protein associated with PXDN, including TSKU, COL4A1 and COL5A1. Consistently, functional enrichment analysis revealed that several cancer hallmarks were enriched in the GBM cases with high PXDN expression, such as epithelial-mesenchymal transition (EMT), fatty acid metabolism, glycolysis, hypoxia, inflammatory response, and Wnt/beta-catenin signaling pathway. Next, this study analyzed the association of PXDN expression and immunocyte infiltration. PXDN expression was in direct proportion to the infiltrating degrees of NK cells resting, T cells regulatory, M0 macrophage, monocytes and eosinophils. The roles of PXDN on immunity were further estimated by PXDN-associated immunomodulators. In addition, four prognosis-related lncRNAs co-expressed with PXDN were identified. Finally, we observed that PXDN depletion inhibits GBM cell proliferation and migration by in vitro experiments. Our data suggested that PXDN has the potential to be a powerful prognostic biomarker, which might offer a basis for developing therapeutic targets for GBM.

8.
Phenomics ; 2(4): 254-260, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36939803

RESUMEN

Genetic alterations are a major cause of microphthalmos, while novel-related genes and mutations in microphthalmos have rarely been explored. To identify the underlying genetic defect responsible for microphthalmos eyes in two three-generation Chinese families, we screened 425 genes involved in common inherited non-syndromic eye diseases with next-generation sequencing-based target capture sequencing of the two probands of two three-generation Chinese families diagnosed with microphthalmos. Variants were filtered and analyzed to identify possible disease-causing variants before Sanger sequencing validation. We enrolled two families with microphthalmos (Family 1: microphthalmos with congenital ocular coloboma and Family 2: simple microphthalmos). Two novel heterozygous mutations, Peroxidasin (PXDN) c.3165C>T (p.Pro1055Pro) and PXDN c.2640C>G (p.Arg880Arg), were found in Family 1, and Crystallin Beta B2 (CRYBB2) c.481G>A (p.Gly161Arg) was found in Family 2, but none of the mutations were found in the unaffected individuals, who were phenotypically normal. Multiple orthologous sequence alignment (MSA) revealed that the CRYBB2 p.Gly161Arg mutation was a deleterious effect mutation. In conclusion, the three novel mutations found in our study extend our current understanding of the genetic basis of microphthalmos and provide early pre-symptomatic diagnosis and emphasize the significance of genetic diagnosis of microphthalmos.

9.
Front Oncol ; 12: 952849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982948

RESUMEN

Peroxidasin (PXDN), also known as vascular peroxidase-1, is a newly discovered heme-containing peroxidase; it is involved in the formation of extracellular mesenchyme, and it catalyzes various substrate oxidation reactions in humans. However, the role and specific mechanism of PXDN in tumor are unclear, and no systematic pan-cancer studies on PXDN have been reported to date. This study employed data from multiple databases, including The Cancer Genome Atlas and The Genotype-Tissue Expression, to conduct a specific pan-cancer analysis of the effects of PXDN expression on cancer prognosis. Further, we evaluated the association of PXDN expression with DNA methylation status, tumor mutation burden, and microsatellite instability. Additionally, for the first time, the relationship of PXDN with the tumor microenvironment and infiltration of fibroblasts and different immune cells within different tumors was explored, and the possible molecular mechanism of the effect was also discussed. Our results provide a comprehensive understanding of the carcinogenicity of PXDN in different tumors and suggest that PXDN may be a potential target for tumor immunotherapy, providing a new candidate that could improve cancer clinical diagnosis and treatment.

10.
Ophthalmic Genet ; 42(5): 624-630, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985410

RESUMEN

BACKGROUND: Since bi-allelic variants in the PXDN gene were first discovered in 2011 to be associated with anterior segment dysgenesis, a spectrum of ophthalmologic and systemic clinical manifestations has been described. This manuscript reports two distinct clinical phenotypes in monozygotic twin sisters, including the previously unreported ocular manifestation of bilateral primary aphakia, associated with novel compound heterozygous variants in the PXDN gene. MATERIALS AND METHODS: We used genome sequencing to study a non-consanguineous family with monozygotic twin sister probands: one presenting with bilateral microphthalmia, primary aphakia, total corneal opacification, congenital glaucoma, and complex systemic comorbidities; the other with anterior persistent fetal vasculature in the right eye, and Peters anomaly type 2 with cataract and iris coloboma in the left eye but no systemic issues. These findings were compared to published reports of PXDN-related ocular diseases upon comprehensive review of prior literature. RESULTS: In both affected sisters, genome sequencing identified two novel heterozygous variants in trans in the PXDN gene: c.1569_1570insT, predicting p.(Thr524TyrfsTer53), and c.3206 C > A, predicting p.(Ala1069Asp), respectively. No other potentially diagnostic variants were identified in any other genes. CONCLUSIONS: This report on two novel compound heterozygous variants in the PXDN gene associated with previously unreported clinical manifestations further expands the genotypic and phenotypic spectrum associated with this gene. Our finding of distinctive clinical phenotypes associated with identical compound heterozygous PXDN variants in monozygotic twins emphasizes the significant clinical variability that can occur, suggesting a potential role for stochastic developmental and/or epigenetic factors in the ultimate pathophysiologic pathway.


Asunto(s)
Enfermedades en Gemelos/genética , Anomalías del Ojo/genética , Mutación del Sistema de Lectura , Peroxidasas/genética , Gemelos Monocigóticos/genética , Niño , Femenino , Edad Gestacional , Implantes de Drenaje de Glaucoma , Heterocigoto , Humanos , Cristalino/cirugía , Linaje , Fenotipo , Trabeculectomía , Secuenciación Completa del Genoma
11.
Redox Biol ; 45: 102031, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34116361

RESUMEN

Reactive oxygen species (ROS) derived from NADPH oxidases (NOX) plays an essential role in advanced glycation end products (AGEs)-induced diabetic vascular endothelial dysfunction. Peroxidasin (PXDN, VPO1) is one member of peroxidases family that catalyzes hydrogen peroxide (H2O2) to hypochlorous acid (HOCl). This present study aimed to elucidate the role of PXDN in promoting vascular endothelial dysfunction induced by AGEs in diabetes mellitus. We found that, compared to non-diabetic (db/m) mice, PXDN expression was notably increased in db/db mice with impaired endothelium-dependent relaxation. Knockdown of PXDN in vivo through tail vein injection of siRNA restored the impaired endothelium-dependent relaxation function of db/db mice which is accompanied with up-regulation of eNOS Ser1177 phosphorylation and NO production. AGEs significantly elevated expression of PXDN and 3-Cl-Tyr, but decreased phosphorylation of Akt and eNOS and NO release in HUVECs. All these effects induced by AGEs were remarkable alleviated by silencing PXDN with small interfering RNAs. In addition, HOCl treatment alone as well as HOCl added with Akt inhibitor MK2206 inhibited phosphorylation of Akt and eNOS, reducing NO production. More importantly,AGEs-induced up-regulation of PXDN and 3-Cl-Tyr with endothelial dysfunction were transformed by NOX2 silencing and H2O2 scavengers. Thus, these results support the conclusion that PXDN promotes AGEs-induced diabetic vascular endothelial dysfunction by attenuating eNOS phosphorylation at Ser1177 via NOX2/HOCl/Akt pathway.


Asunto(s)
Diabetes Mellitus , Ácido Hipocloroso , Animales , Endotelio Vascular , Proteínas de la Matriz Extracelular , Productos Finales de Glicación Avanzada , Peróxido de Hidrógeno , Ratones , Óxido Nítrico Sintasa de Tipo III/genética , Peroxidasa , Proteínas Proto-Oncogénicas c-akt/genética , Peroxidasina
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda