Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Gene Med ; 26(9): e3737, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198937

RESUMEN

BACKGROUND: Lung cancer is a prevalent and severe form of malignant tumors worldwide. tRF-Leu-CAG, a recently discovered non-coding single-stranded small RNA derived from transfer RNA, has sparked interest in exploring its biological functions and potential molecular mechanisms in lung cancer. METHODS: The abundance of tRF-Leu-CAG was measured via quantitative real-time polymerase chain reaction (qRT-PCR) in 96 sets of lung cancer tissue samples obtained from clinical patients. Subsequently, both in vivo and in vitro experiments were conducted to validate the biological functions of tRF-Leu-CAG in lung cancer. Furthermore, an exploration of the potential target genes of tRF-Leu-CAG and its association with autophagy and drug resistance in lung cancer was undertaken. RESULTS: Our analysis revealed a significant upregulation of tRF-Leu-CAG in non-small cell lung cancer (NSCLC) tissues. Additionally, we observed that heightened expression of tRF-Leu-CAG significantly augmented the proliferation and migration of NSCLC cells, facilitated cell cycle progression, and suppressed apoptosis. Furthermore, we identified transcription elongation factor A3 (TCEA3) as a direct target gene of tRF-Leu-CAG. TCEA3 inhibited the proliferation and migration of NSCLC, and tRF-Leu-CAG promoted the proliferation and migration of NSCLC by mediating the silencing of TCEA3. Moreover, we demonstrated that the augmentation of paclitaxel resistance by tRF-Leu-CAG was contingent on autophagy. Finally, tRF-Leu-CAG notably accelerated tumor growth and promoted the process of epithelial-mesenchymal transition (EMT) in vivo. CONCLUSIONS: tRF-Leu-CAG promotes NSCLC tumor growth and metastasis by targeting TCEA3 and promotes paclitaxel resistance by enhancing cellular autophagy. These results provide potentially effective targets and therapeutic options for the clinical treatment of NSCLC.


Asunto(s)
Apoptosis , Autofagia , Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Animales , Humanos , Ratones , Apoptosis/genética , Autofagia/genética , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Femenino
2.
Bioorg Chem ; 143: 107056, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183685

RESUMEN

Antineoplastic agents that target tubulin have shown efficacy as chemotherapeutic drugs, yet they are often constrained by multidrug resistance (MDR) and unwanted side effects. A multi-targeted strategy demonstrates great potency in reducing toxicity and enhancing efficacy and provides an alternative way for attenuating MDR. In this study, a series of dual-targeted anti-cancer agents based on indole-chalcone derivatives and the camptothecin (CPT) scaffold were synthesized. Among them, 14-1 demonstrated superior anti-proliferative activity than its precursor 13-1, CPT or their physical mixtures against tested cancer cells, including multidrug-resistant variants, while exhibited moderate cytotoxicity toward human normal cells. Mechanistic studies revealed that 14-1 acted as a glutathione-responsive prodrug, inducing apoptosis by substantially enhancing intracellular uptake of CPT, inhibiting tubulin polymerization, increasing the accumulation of intracellular reactive oxygen species, and initiating a mitochondrion-dependent apoptotic pathway. Moreover, 14-1 notably induced autophagy and suppressed topoisomerase I activity to further promote apoptosis. Importantly, 14-1 displayed potent inhibitory effect on tumor growth in paclitaxel (PTX)-resistant colorectal cancer (HCT-116/PTX) xenograft models without inducing obvious toxicity compared with CPT- or combo-treated group. These results suggest that 14-1 holds promise as a novel candidate for anti-cancer therapy, particularly in PTX-resistant cancers.


Asunto(s)
Antineoplásicos , Chalconas , Neoplasias del Colon , Profármacos , Humanos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Camptotecina/farmacología , Línea Celular Tumoral , Chalconas/farmacología , Neoplasias del Colon/tratamiento farmacológico , Resistencia a Antineoplásicos , Glutatión , Paclitaxel/farmacología , Profármacos/farmacología , Tubulina (Proteína)/farmacología , Autofagia/efectos de los fármacos
3.
Acta Pharmacol Sin ; 45(5): 1060-1076, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228910

RESUMEN

Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Diterpenos , Resistencia a Antineoplásicos , Compuestos Epoxi , Proteínas Hedgehog , Factor Nuclear 1-alfa del Hepatocito , Neoplasias Pulmonares , Paclitaxel , Fenantrenos , Compuestos Epoxi/farmacología , Compuestos Epoxi/uso terapéutico , Humanos , Fenantrenos/farmacología , Fenantrenos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Diterpenos/farmacología , Diterpenos/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Hedgehog/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Animales , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Ratones Desnudos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Ratones , Ratones Endogámicos BALB C , Células A549
4.
Environ Toxicol ; 39(4): 2064-2076, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38095131

RESUMEN

OBJECTIVE: We aimed to determine the role of Troponin T1 (TNNT1) in paclitaxel (PTX) resistance and tumor progression in breast cancer (BC). METHODS: Differentially expressed genes were obtained from the GSE4298 and GSE90564 datasets. Hub genes were isolated from protein-protein interaction networks and further validated by real-time quantitative polymerase chain reaction. The effect of TNNT1 on PTX resistance was determined using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, transwell, flow cytometry assays, and subcutaneous xenografted tumor model. Western blotting was used to detect proteins associated with PTX resistance, apoptosis, migration, invasion, and other key pathways. Hematoxylin-eosin and immunohistochemical staining were used to evaluate the role of TNNT1 in tumors. RESULTS: After comprehensive bioinformatic analysis, we identified CCND1, IGF1, SFN, INHBA, TNNT1, and TNFSF11 as hub genes for PTX resistance in BC. TNNT1 plays a key role in BC and is upregulated in PTX-resistant BC cells. TNNT1 silencing inhibited PTX resistance, proliferation, migration, and invasion while promoting apoptosis of PTX-resistant BC cells. Tumor xenograft experiments revealed that TNNT1 silencing suppresses PTX resistance and tumor development in vivo. In addition, TNNT1 silencing inhibited the expression of proteins in the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma1 (RAF1) pathway in vivo. Treatment with a RAS/RAF1 pathway activator reversed the inhibitory effect of TNNT1 silencing on proliferation, migration, and invasion while promoting apoptosis of PTX resistance BC cells. CONCLUSION: Silencing of TNNT1 suppresses PTX resistance and BC progression by inhibiting the RAS/RAF1 pathway, which is a promising biomarker and therapeutic target for drug resistance in BC.


Asunto(s)
Neoplasias de la Mama , Fibrosarcoma , MicroARNs , Humanos , Femenino , Paclitaxel/farmacología , Neoplasias de la Mama/patología , Troponina T/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/farmacología , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Resistencia a Antineoplásicos/genética , Apoptosis/genética , Línea Celular Tumoral , Fibrosarcoma/genética , Fibrosarcoma/tratamiento farmacológico , Proliferación Celular , MicroARNs/genética
5.
Molecules ; 29(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38202856

RESUMEN

Paclitaxel is still used as a standard first-line treatment for ovarian cancer. Although paclitaxel is effective for many types of cancer, the emergence of chemoresistant cells represents a major challenge in chemotherapy. Our study aimed to analyze the cellular mechanism of dacomitinib, a pan-epidermal growth factor receptor (EGFR) inhibitor, which resensitized paclitaxel and induced cell cytotoxicity in paclitaxel-resistant ovarian cancer SKOV3-TR cells. We investigated the significant reduction in cell viability cotreated with dacomitinib and paclitaxel by WST-1 assay and flow cytometry analysis. Dacomitinib inhibited EGFR family proteins, including EGFR and HER2, as well as its downstream signaling proteins, including AKT, STAT3, ERK, and p38. In addition, dacomitinib inhibited the phosphorylation of Bad, and combination treatment with paclitaxel effectively suppressed the expression of Mcl-1. A 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay revealed a substantial elevation in cellular reactive oxygen species (ROS) levels in SKOV3-TR cells cotreated with dacomitinib and paclitaxel, which subsequently mediated cell cytotoxicity. Additionally, we confirmed that dacomitinib inhibits chemoresistance in paclitaxel-resistant ovarian cancer HeyA8-MDR cells. Collectively, our research indicated that dacomitinib effectively resensitized paclitaxel in SKOV3-TR cells by inhibiting EGFR signaling and elevating intracellular ROS levels.


Asunto(s)
Fluoresceínas , Neoplasias Ováricas , Paclitaxel , Quinazolinonas , Femenino , Humanos , Paclitaxel/farmacología , Especies Reactivas de Oxígeno , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis , Receptores ErbB
6.
Cancer Cell Int ; 23(1): 237, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821959

RESUMEN

BACKGROUND: Lysine Demethylase 2A (KDM2A) plays a crucial role in cancer cell growth, differentiation, metastasis, and the maintenance of cancer stemness. Our previous study found that cancer-secreted IL-6 can upregulate the expression of KDM2A to promote further the transition of cells into cancer-associated fibroblasts (CAFs). However, the molecular mechanism by which breast cancer-secreted IL-6 regulates the expression of KDM2A remains unclear. Therefore, this study aimed to elucidate the underlying molecular mechanism of IL-6 in regulating KDM2A expression in CAFs and KDM2A-mediated paclitaxel resistance in breast cancer. METHODS: The ectopic vector expression and biochemical inhibitor were used to analyze the KDM2A expression regulated by HS-578 T conditioned medium or IL-6 in mammary fibroblasts. Immunoprecipitation and chromatin immunoprecipitation assays were conducted to examine the interaction between STAT3 and NFκB p50. M2 macrophage polarization was assessed by analyzing M2 macrophage-specific markers using flow cytometry and RT-PCR. ESTIMATE algorithm was used to analyze the tumor microenvironment-dominant breast cancer samples from the TCGA database. The correlation between stromal KDM2A and CD163 + M2 macrophages was analyzed using the Pearson correlation coefficient. Cell viability was determined using trypan blue exclusion assay. RESULTS: IL-6 regulates gene expression via activation and dimerization of STAT3 or collaboration of STAT3 and NFκB. However, STAT3, a downstream transcription factor of the IL-6 signaling pathway, was directly complexed with NFκB p50, not NFκB p65, to upregulate the expression of KDM2A in CAFs. Enrichment analysis of immune cells/stromal cells using TCGA-breast cancer RNA-seq data unveiled a positive correlation between stromal KDM2A and the abundance of M2 macrophages. CXCR2-associated chemokines secreted by KDM2A-expressing CAFs stimulated M2 macrophage polarization, which in turn secreted CCL2 to increase paclitaxel resistance in breast cancer cells by activating CCR2 signaling. CONCLUSION: This study revealed the non-canonical molecular mechanism of IL-6 secreted by breast cancer upregulated KDM2A expression in CAFs via a novel STAT3/NFκB p50 axis, which STAT3 complexed with NFκB p50 in NFκB p50 binding motif of KDM2A promoter. KDM2A-expressing CAFs dominantly secreted the CXCR2-associated chemokines to promote M2 macrophage polarization and enhance paclitaxel resistance in breast cancer. These findings underscore the therapeutic potential of targeting the CXCR2 or CCR2 pathway as a novel strategy for paclitaxel-resistant breast cancer.

7.
Mol Cell Biochem ; 478(4): 835-850, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36107285

RESUMEN

Emerging numbers of endogenous circular RNAs (circRNAs) have gained much attention to serve as essential regulators in the carcinogenesis of human cancers. Unfortunately, the occurrence of paclitaxel (PTX) resistance to ovarian cancer remains to be responsible for the poor prognosis. Herein, the aim of our study is to reveal a dysregulation of a particular circRNA, circANKRD17 (has_circ_0007883), and its exact role involving in chemoresistance of ovarian cancer. Expression patterns of circANKRD17 in PTX-resistant ovarian cancer tissues and cell lines was examined using quantitative real-time PCR analysis. Role of circANKRD17 on drug resistance and cell viability was evaluated by CCK-8 assay. Colony formation was subjected to measure cell proliferation. Flow cytometry was employed to evaluate cell cycle either or cell apoptosis. Xenograft models were constructed for further in vivo confirmation. The cicrANKRD17/FUS/FOXR2 axis was demonstrated using bioinformatics analysis, RNA pull-down, as well as RNA immunoprecipitation assays. Dramatically high expressed circANKRD17 observed in ovarian cancer tissues and cells was correlated with PTX resistance, which indicated the poor prognosis. Functionally, knockdown of circANKRD17 decreased PTX resistance via inhibiting cell viability and inducing cell apoptosis. Mechanistically, circANKRD17 interacted with the RNA-binding protein, fused in sarcoma (FUS) to stabilize FOXR2. In summary, our study uncovered a novel machinery of circANKRD17/FUS/FOXR2 referring to ovarian cancer drug sensitivity and tumorigenesis, highlighting a potential strategy for circRNAs in chemoresistance.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , Paclitaxel/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , ARN Circular/genética , Carcinogénesis , Transformación Celular Neoplásica , Proliferación Celular , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Factores de Transcripción Forkhead , Proteína FUS de Unión a ARN
8.
Cell Biol Toxicol ; 39(6): 2953-2970, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37296288

RESUMEN

Paclitaxel treatment has been applied for late-stage nasopharyngeal carcinoma (NPC), but therapy failure usually occurs due to paclitaxel resistance. Besides, microRNAs (miRs) delivered by extracellular vesicles (EVs) have been demonstrated as promising biomarkers affecting cancer development. Our work clarified the role of bioinformatically predicted miR-183-5p, which could be delivered by EVs, in the paclitaxel resistance of NPC. Downstream targets of miR-183-5p were predicted in publicly available databases, followed by GO enrichment analysis. A confirmatory dual-luciferase reporter assay determined the targeting relationship between miR-183-5p and P-glycoprotein (P-gp). The shuttling of extracellular miR-183-5p was identified by immunofluorescence. EVs transferred miR-183-5p from paclitaxel-sensitive NPC cells to paclitaxel-resistant NPC cells. Furthermore, overexpression of miR-183-5p and under-expression of P-gp occurred in clinical samples and cells of NPC. High expression of miR-183-5p corresponded to better survival of paclitaxel-treated patients. The effects of manipulated expression of miR-183-5p on NPC cell activities, tumor growth, and paclitaxel resistance were investigated in vitro and in vivo. Its effect was achieved through negatively regulating drug transporters P-gp. Ectopically expressed miR-183-5p enhanced the cancer-suppressive effects of paclitaxel by targeting P-gp, corresponding to diminished cell viability and tumor growth. Taken together, this work goes to elucidate the mechanical actions of miR-183-5p delivered by EVs and its significant contribution towards paclitaxel sensitivity to NPC. 1. This study provides mechanistic insight into the role of miR-183-5p-containing EVs in NPC. 2. The intercellular transportation of miR-183-5p is mediated by EVs in NPC. 3. Overexpressing miR-183-5p facilitates the anti-tumor effects of paclitaxel in NPC. 4. miR-183-5p suppresses paclitaxel resistance of NPC cells by inhibiting P-gp.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , MicroARNs/genética , MicroARNs/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Vesículas Extracelulares/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
9.
J Biochem Mol Toxicol ; 37(8): e23380, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37132394

RESUMEN

Chemoresistance remains a major obstacle to the treatment of esophageal cancer (EC). Exosome-mediated transfer of long noncoding RNAs (lncRNAs) has recently been unveiled to correlate with the regulation of drug resistance in EC. This study aimed to investigate the physiological mechanisms by which exosome-encapsulated lncRNA myocardial infarction-associated transcript (MIAT) derived from tumor cells might mediate the paclitaxel (PTX) resistance of EC cells. First, MIAT was experimentally determined to be upregulated in PTX nonresponders and PTX-resistant EC cells. Silencing of MIAT in PTX-resistant EC cells decreased cell viability and enhanced apoptosis, corresponding to a reduced half-maximal inhibitory concentration (IC50 ) value. Next, exosomes were isolated from EC109 and EC109/T cells, and EC109 cells were cocultured with EC109/T-cell-derived exosomes. Accordingly, MIAT was revealed to be transmitted through exosomes from EC109/T cells to EC109 cells. Tumor-derived exosomes carrying MIAT increased the IC50 value of PTX and suppressed apoptosis in EC109 cells to promote PTX resistance. Furthermore, MIAT promoted the enrichment of TATA-box binding protein-associated Factor 1 (TAF1) in the promoter region of sterol regulatory element binding transcription factor 1 (SREBF1), as shown by a chromatin immunoprecipitation assay. This might be the mechanism by which MIAT could promote PTX resistance. Finally, in vivo experiments further confirmed that the knockdown of MIAT attenuated the resistance of EC cells to PTX. Collectively, these results indicate that tumor-derived exosome-loaded MIAT activates the TAF1/SREBF1 axis to induce PTX resistance in EC cells, providing a potential therapeutic target for overcoming PTX resistance in EC.


Asunto(s)
Neoplasias Esofágicas , Exosomas , MicroARNs , Infarto del Miocardio , ARN Largo no Codificante , Humanos , Paclitaxel/farmacología , Exosomas/metabolismo , Línea Celular Tumoral , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , ARN Largo no Codificante/genética , MicroARNs/genética , Proliferación Celular , Proteína 1 de Unión a los Elementos Reguladores de Esteroles
10.
Exp Cell Res ; 414(2): 113076, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35218722

RESUMEN

Determining the prognosis of patients remains a challenge due to the phenotypic and molecular diversities of hepatocellular carcinomas (HCC). We aimed to evaluate the role of SMYD5 in HCC. Wilcoxon signed-rank test and logistic regression analyzed the relationship between clinical pathologic features and SMYD5. We found that increased expression of SMYD5 in HCC was closely associated with high histologic grade, stage, T stage and nodal stage. Kaplan-Meier method, Cox regression, univariate analysis and multivariate analysis detected overall survival of TCGA-HCC patients. It turned out that high expression of SMYD5 predicted a worse prognosis in HCC. Gene Set Enrichment Analysis (GSEA) was applied via TCGA data set, which indicated that complement and coagulation cascades, fatty acid metabolism, primary bile acid biosynthesis, drug metabolism cytochrome P450, PPAR signaling pathway and retinol metabolism were differentially enriched in SMYD5 high expression phenotype. Interestingly, we proved that SMYD5 upregulation in HCC cells was induced by promoter hypo-methylation. Moreover, functional experiments demonstrated that SMYD5 silencing abrogated cell proliferation, migration and invasion and enhanced paclitaxel sensitivity in HCC. All findings implied that SMYD5 might be an underlying biomarker for prognosis and treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , Metilación
11.
Clin Exp Pharmacol Physiol ; 50(6): 431-442, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36732923

RESUMEN

Paclitaxel (PTX) resistance is a key cause of chemotherapy failure in patients with triple negative breast cancer (TNBC). The aim of this study is to investigate the effect and mechanism of long non-coding RNA (lncRNA) on the PTX resistance of TNBC cells through autophagy. MDA-MB-231 cells are used to induce the PTX-resistant TNBC cell line MDA-MB-231.PR (MDR) by increasing dose intermittently. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the mRNA levels of phosphoinositide-3-kinase class 3 (PIK3C3), miR-361-5p and lncRNA PRKCQ-AS1 in the cells, and Western blot analysis was used to detect the protein expressions of PIK3C3, autophagy-related, drug-resistant and apoptosis-related genes. MDC staining detected the formation of autophagic vacuoles. The interactions between miR-361-5p and PIK3C3 and between lncRNA PRKCQ-AS1 and miR-361-5p were verified by dual-luciferase assay. Cell viability, apoptosis, migration and invasion were assessed by performing MTT, flow cytometry assay, and transwell assay. The mRNA level of miR-361-5p and the autophagy and drug resistance levels of TNBC PTX-resistant cells were significantly up-regulated. miR-361-5p could target autophagy-related gene PIK3C3, and overexpression of miR-361-5p could down-regulate PIK3C3 protein expression and autophagy level and PTX resistance of MDR cells. LncRNA PRKCQ-AS1 was selected through bioanalysis, and miR-361-5p could target lncRNA PRKCQ-AS1. In addition, lncRNA PRKCQ-AS1 level was up-regulated in TNBC PTX-resistant cells, and knockdown of lncRNA PRKCQ-AS1 could weaken autophagy and drug resistance level and could promote cell apoptosis. Overexpression of lncRNA PRKCQ-AS1 reversed the pro-apoptotic effect and down-regulation of autophagy and resistance levels was induced by miR-361-5p. In vivo experiments were performed to verify the role of lncRNA PRKCQ-AS1. We demonstrate that down-regulation of lncRNA PRKCQ-AS1 weakened PTX resistance and promoted cell apoptosis by miR-361-5p/PIK3C3 mediated autophagy.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias de la Mama Triple Negativas/genética , Proteína Quinasa C-theta/genética , Proteína Quinasa C-theta/metabolismo , Paclitaxel/farmacología , Proliferación Celular , Línea Celular Tumoral , Autofagia , ARN Mensajero , Regulación Neoplásica de la Expresión Génica
12.
Int J Mol Sci ; 24(22)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38003694

RESUMEN

Epithelial ovarian cancer (EOC) is a lethal gynecological cancer, of which paclitaxel resistance is the major factor limiting treatment outcomes, and identification of paclitaxel resistance-related genes is arduous. We obtained transcriptomic data from seven paclitaxel-resistant ovarian cancer cell lines and corresponding sensitive cell lines. Define genes significantly up-regulated in at least three resistant cell lines, meanwhile they did not down-regulate in the other resistant cell lines as candidate genes. Candidate genes were then ranked according to the frequencies of significant up-regulation in resistant cell lines, defining genes with the highest rankings as paclitaxel resistance-related genes (PRGs). Patients were grouped based on the median expression of PRGs. The lipid metabolism-related gene set and the oncological gene set were established and took intersections with genes co-upregulated with PRGs, obtaining 229 co-upregulated genes associated with lipid metabolism and tumorigenesis. The PPI network obtained 19 highly confidential synergistic targets (interaction score > 0.7) that directly associated with CPT1A. Finally, FASN and SCD were up-stream substrate provider and competitor of CPT1A, respectively. Western blot and qRT-PCR results confirmed the over-expression of CPT1A, SCD and FASN in the A2780/PTX cell line. The inhibition of CPT1A, SCD and FASN down-regulated cell viability and migration, pharmacological blockade of CPT1A and SCD increased apoptosis rate and paclitaxel sensitivity of A2780/PTX. In summary, our novel bioinformatic methods can overcome difficulties in drug resistance evaluation, providing promising therapeutical strategies for paclitaxel-resistant EOC via taregting lipid metabolism-related enzymes.


Asunto(s)
Neoplasias Ováricas , Paclitaxel , Humanos , Femenino , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Metabolismo de los Lípidos/genética , Resistencia a Antineoplásicos/genética , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Apoptosis/genética , Acido Graso Sintasa Tipo I/metabolismo
13.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762332

RESUMEN

Innovative therapeutic strategies for esophageal squamous cell carcinoma (ESCC) are urgently required due to the limited effectiveness of standard chemotherapies. C-Terminal Binding Protein 1 (CtBP1) has been implicated in various cancers, including ESCC. However, the precise expression patterns and functional roles of CtBP1 in ESCC remain inadequately characterized. In this study, we aimed to investigate CtBP1 expression and its role in the resistance of ESCC to paclitaxel, an effective chemotherapeutic agent. Western blotting and immunofluorescence were applied to assess CtBP1 expression in the TE-1 and KYSE-50 cell lines. We observed the marked expression of CtBP1, which was associated with enhanced proliferation, invasion, and metastasis in these cell lines. Further, we successfully generated paclitaxel resistant ESCC cell lines and conducted cell viability assays. We employed the CRISPR/Cas9 genome editing system to disable the CtBP1 gene in ESCC cell lines. Through the analysis of the drug dose-response curve, we assessed the sensitivity of these cell lines in different treatment groups. Remarkably, CtBP1-disabled cell lines displayed not only improved sensitivity but also a remarkable inhibition of proliferation, invasion, and metastasis. This demonstrates that CtBP1 may promote ESCC cell malignancy and confer paclitaxel resistance. In summary, our study opens a promising avenue for targeted therapies, revealing the potential of CtBP1 inhibition to enhance the effectiveness of paclitaxel treatment for the personalized management of ESCC.

14.
Semin Cancer Biol ; 69: 109-128, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31891780

RESUMEN

Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , MicroARNs/genética , Nanopartículas/administración & dosificación , Nanotecnología/métodos , Paclitaxel/análogos & derivados , Péptidos/administración & dosificación , Receptores de Estrógenos/metabolismo , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Neoplasias de la Mama/patología , Simulación por Computador , Manejo de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Simulación del Acoplamiento Molecular , Nanopartículas/química , Paclitaxel/administración & dosificación , Paclitaxel/química , Péptidos/química
15.
Mol Cancer ; 21(1): 106, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477569

RESUMEN

BACKGROUND: Lung cancer is a kind of malignancy with high morbidity and mortality worldwide. Paclitaxel (PTX) is the main treatment for non-small cell lung cancer (NSCLC), and resistance to PTX seriously affects the survival of patients. However, the underlying mechanism and potential reversing strategy need to be further explored. METHODS: We identified ALDH2 as a PTX resistance-related gene using gene microarray analysis. Subsequently, a series of functional analysis in cell lines, patient samples and xenograft models were performed to explore the functional role, clinical significance and the aberrant regulation mechanism of ALDH2 in PTX resistance of NSCLC. Furthermore, the pharmacological agents targeting ALDH2 and epigenetic enzyme were used to investigate the diverse reversing strategy against PTX resistance. RESULTS: Upregulation of ALDH2 expression is highly associated with resistance to PTX using in vitro and in vivo analyses of NSCLC cells along with clinicopathological analyses of NSCLC patients. ALDH2-overexpressing NSCLC cells exhibited significantly reduced PTX sensitivity and increased biological characteristics of malignancy in vitro and tumor growth and metastasis in vivo. EHMT2 (euchromatic histone lysine methyltransferase 2) inhibition and NFYA (nuclear transcription factor Y subunit alpha) overexpression had a cooperative effect on the regulation of ALDH2. Mechanistically, ALDH2 overexpression activated the RAS/RAF oncogenic pathway. NSCLC/PTX cells re-acquired sensitivity to PTX in vivo and in vitro when ALDH2 was inhibited by pharmacological agents, including the ALDH2 inhibitors Daidzin (DZN)/Disulfiram (DSF) and JIB04, which reverses the effect of EHMT2. CONCLUSION: Our findings suggest that ALDH2 status can help predict patient response to PTX therapy and ALDH2 inhibition may be a promising strategy to overcome PTX resistance in the clinic.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Aldehído Deshidrogenasa Mitocondrial , Factor de Unión a CCAAT/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos/genética , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Factores de Transcripción
16.
Cancer Sci ; 113(8): 2616-2626, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35639349

RESUMEN

More than 90% of ovarian cancer deaths are due to relapse following development of chemoresistance. Our main objective is to better understand the molecular mechanism underlying paclitaxel resistance (taxol resistance, Txr) in ovarian cancer. Here, we observed that the linker histone H1.0 is upregulated in paclitaxel-resistant ovarian cancer cells. Knockdown of H1.0 significantly downregulates the androgen receptor (AR) and sensitizes paclitaxel-resistant SKOV3/Txr and 2774/Txr cell lines to paclitaxel. Conversely, ectopic expression of H1.0 upregulates AR and increases Txr in parental SKOV3 and MDAH2774 cells. Notably, H1.0 upregulation is associated with disease recurrence and poor survival in a subset of ovarian cancer subjects. Inhibition of PI3K significantly reduces H1.0 mRNA and protein levels in paclitaxel-resistant cells, suggesting the involvement of the PI3K/AKT signaling pathway. Knockdown of H1.0 and AR also downregulates the Txr genes ABCB1 and ABCG2 in paclitaxel-resistant cells. Our data show that H1.0 induces GCN5 expression and histone acetylation, thereby enhancing Txr gene transactivation. These findings suggest that Txr in ovarian cancer involves the PI3K/AKT pathway and leads to upregulation of histone H1.0, recruitment of GCN5 and AR, followed by upregulation of a subgroup of Txr genes that include ABCB1 and ABCG2. This study is the first report describing the relationship between histone H1.0 and GCN5 that cooperate to induce AR-dependent Txr in ovarian cancer cells.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Ováricas , Paclitaxel , Receptores Androgénicos , Factores de Transcripción p300-CBP , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Recurrencia Local de Neoplasia/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
17.
Drug Dev Res ; 83(2): 379-388, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34405891

RESUMEN

Apatinib has experienced a long-term study in enhancing the sensitivity of various cancer cells to chemotherapy drugs. Currently, researches show that apatinib could attenuate the resistance of gastric cancer (GC) cells to paclitaxel (PTX), but the mechanism has not been fully elucidated, which therefore was explored in this study. PTX-resistant GC cell, namely HGC-27R, was established by exposure to stepwise-increasing PTX. The cell viability of HGC-27 and HGC-27R under PTX or apatinib at different concentrations was assessed by CCK-8 assay, while scratching test and invasion assay were used for investigating the harmful influence of GC cells resistance to PTX. The function of apatinib in HGC-27R was studied by performing functional experiments (flow cytometry, scratching test, and invasion assay). Western blot was performed to measure the expressions of proteins concerning apoptosis, epithelial-mesenchymal transition and janus-activated kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. PTX-resistant GC cell, namely HGC-27R, was successively constructed. HGC-27R cells showed resistance to PTX by promoting migratory and invasive capabilities. Apatinib not only inhibited cell viability of HGC-27 and HGC-27R, but also combined with PTX to suppress that of HGC-27R. Apatinib enhanced apoptosis, diminished migration and invasion of HGC-27R cells, elevated proapoptotic protein expression, and reduced Bcl-2, vimentin, snail, MMP-3, MMP-2, and MMP-9 expressions. The phosphorylation of JAK2 and STAT3 was repressed by apatinib. JAK2 partially reversed the effect of apatinib on enhancing sensitivity of GC cells to PTX. Apatinib strengthened sensitivity of GC cells to PTX by inhibiting JAK/STAT3 signaling pathway.


Asunto(s)
Neoplasias Gástricas , Línea Celular Tumoral , Humanos , Quinasas Janus/metabolismo , Quinasas Janus/farmacología , Quinasas Janus/uso terapéutico , Paclitaxel/farmacología , Piridinas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo
18.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500387

RESUMEN

Drug resistance and metastasis are two major obstacles to cancer chemotherapy. During metastasis, cancer cells can survive as floating cells in the blood or lymphatic circulatory system, due to the acquisition of resistance to anoikis-a programmed cell death activated by loss of extracellular matrix attachment. The anoikis-resistant lung cancer cells also develop drug resistance. In this study, paclitaxel-encapsulated PLGA-lipid hybrid nanoparticles (PLHNPs) were formulated by nanoprecipitation combined with self-assembly. The paclitaxel-PLHNPs had an average particle size of 103.0 ± 1.6 nm and a zeta potential value of -52.9 mV with the monodisperse distribution. Cytotoxicity of the nanoparticles was evaluated in A549 human lung cancer cells cultivated as floating cells under non-adherent conditions, compared with A549 attached cells. The floating cells exhibited anoikis resistance as shown by a lack of caspase-3 activation, in contrast to floating normal epithelial cells. Paclitaxel tolerance was evident in floating cells which had an IC50 value of 418.56 nM, compared to an IC50 value of 7.88 nM for attached cells. Paclitaxel-PLHNPs significantly reduced the IC50 values in both attached cells (IC50 value of 0.11 nM, 71.6-fold decrease) and floating cells (IC50 value of 1.13 nM, 370.4-fold decrease). This report demonstrated the potential of PLHNPs to improve the efficacy of the chemotherapeutic drug paclitaxel, for eradicating anoikis-resistant lung cancer cells during metastasis.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Neoplasias Pulmonares/metabolismo , Células A549 , Lípidos/uso terapéutico , Línea Celular Tumoral
19.
J Cell Physiol ; 236(10): 6907-6919, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33655494

RESUMEN

Ovarian cancer (OC) remains the leading cause of cancer-related death among gynecological cancers. The present study examined the role of collagen type V alpha 1 (COL5A1) and the characteristics of COL5A1 as an oncogenic protein in OC. The association of COL5A1 with paclitaxel (PTX)-resistance and stemness in OC was also studied and the multidatabase and big data analyses of the prognostic value, coexpression network, genetic alterations, and tumor-infiltrating immune cells of COL5A1 were elucidated. We found that COL5A1 expression was high in OC cells and tissues. Knockdown of COL5A1 inhibited the proliferation and migration of OC cells. Further study also showed that COL5A1 was overexpressed in PTX-resistant OC cells compared to respective PTX-sensitive cells. Additionally, COL5A1 was more enriched in OC stem cell-like cells. Silencing COL5A1 expression decreased the OC cell resistance to PTX and inhibited the ability of OC-spheroid formation. Survival analysis predicted that the elevated COL5A1 expression was associated with a worse survival outcome and correlated to the tumor stage of OC patients. The estimating relative subsets of RNA transcripts (CIBERSORT) algorithm analysis also unveiled the correlation of several tumor-infiltrating immune cells with the expression of COL5A1. Taken together, our data demonstrate that COL5A1 is a biomarker to predict OC progression and PTX-resistance and represents a promising target for OC treatment.


Asunto(s)
Antineoplásicos/farmacología , Colágeno Tipo V/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno Tipo V/genética , Bases de Datos Genéticas , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Invasividad Neoplásica , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Microambiente Tumoral , Regulación hacia Arriba
20.
Breast Cancer Res Treat ; 185(2): 371-380, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32975708

RESUMEN

PURPOSE: Resistance to paclitaxel remains a major challenge in treating breast cancer. Our preclinical study suggested that TEKT4 germline variations in breast cancer are associated with paclitaxel resistance and increase vinorelbine sensitivity. This clinical trial compared the efficacy of paclitaxel and vinorelbine in breast cancer neoadjuvant chemotherapy. METHODS: In this open-label, single-center, phase II trial, female patients with human epidermal growth factor receptor 2 (HER2)-negative, stage IIB-IIIC breast cancer harboring TEKT4 germline variations were randomly assigned to the paclitaxel plus epirubicin (PE) or vinorelbine plus epirubicin (NE). The primary endpoint was the pathologic complete response (pCR) rate, and the secondary endpoints were the objective response rate (ORR) and safety. Targeted sequencing of a panel comprising 484 breast-related genes was performed to identify pCR-associated somatic mutations in each group. RESULTS: 91 Patients were assigned to PE (46 patients) or NE (45 patients). NE numerically increased the pCR rate (22.2% versus 8.7%, P = 0.074). The ORRs for NE and PE were 82.2% and 76.1%, respectively. Interestingly, NE (15.4%) showed a significantly higher pCR rate than PE (0%) in the hormone receptor (HR)-positive subgroup (P = 0.044). Both regimens were well tolerated, with grade 3 and 4 toxicities reported at the expected levels. The biomarker analysis showed that UNC13D mutation predicted the pCR rate in NE (P = 0.011). CONCLUSIONS: Although the primary endpoint was not met, NE might bring clinical benefit to HR-positive patients or patients simultaneously carrying UNC13D mutations.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama , Epirrubicina , Terapia Neoadyuvante , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Ciclofosfamida/uso terapéutico , Epirrubicina/uso terapéutico , Femenino , Humanos , Proteínas de la Membrana , Paclitaxel/efectos adversos , Receptor ErbB-2/genética , Trastuzumab/uso terapéutico , Resultado del Tratamiento , Vinorelbina/uso terapéutico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda