RESUMEN
Multidrug resistance (MDR) is a major challenge in cancer chemotherapy. Aiming at generating a small library of anticancer compounds for overcoming MDR, lycorine (1), a major Amaryllidaceae alkaloid isolated from Pancratium maritimum, was derivatized. Thirty-one new compounds (2-32) were obtained by chemical transformation of the hydroxyl groups of lycorine into mono- and di-carbamates. Compounds 1-32 were evaluated as MDR reversers, through the rhodamine-123 accumulation assay by flow cytometry and chemosensitivity assays, in resistant human colon adenocarcinoma cancer cells (Colo 320), overexpressing P-glycoprotein (P-gp, ABCB1). Significant inhibition of P-gp efflux activity was observed for the di-carbamate derivatives, mainly those containing aromatic substituents, at non-cytotoxic concentrations. Compound 5, bearing a benzyl substituent, and compounds 9 and 25, with phenethyl moieties, were among the most active, exhibiting strong inhibition at 2 µM, being more active than verapamil at 10-fold higher concentration. In drug combination assays, most compounds were able to synergize doxorubicin. Moreover, some derivatives showed a selective antiproliferative effect toward resistant cells, having a collateral sensitivity effect. In the ATPase assay, selected compounds (2, 5, 9, 19, 25, and 26) were shown to behave as inhibitors.
Asunto(s)
Adenocarcinoma , Alcaloides de Amaryllidaceae , Antineoplásicos , Neoplasias del Colon , Humanos , Alcaloides de Amaryllidaceae/farmacología , Adenocarcinoma/tratamiento farmacológico , Carbamatos/farmacología , Resistencia a Antineoplásicos , Neoplasias del Colon/tratamiento farmacológico , Resistencia a Múltiples Medicamentos , Subfamilia B de Transportador de Casetes de Unión a ATP , Antineoplásicos/farmacología , Antineoplásicos/química , Doxorrubicina/farmacología , Línea Celular TumoralRESUMEN
Aiming to find Amaryllidaceae alkaloids against breast cancer, including the highly aggressive triple-negative breast cancer, the phytochemical study of Pancratium maritimum was carried out. Several Amaryllidaceae-type alkaloids, bearing scaffolds of the haemanthamine-, homolycorine-, lycorine-, galanthamine-, and tazettine-type were isolated (3-11), along with one alkamide (2) and a phenolic compound (1). The antiproliferative effect of compounds (1-11) was evaluated by the sulforhodamine B assay against triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468, breast cancer cells MCF-7, and the non-malignant fibroblast (HFF-1) and breast (MCF12A) cell lines. The alkaloids 3, 5, 7, and 11 showed significant growth inhibitory effects against all breast cancer cell lines, with IC50 (half-maximal inhibitory concentration) values ranging from 0.73 to 16.3 µM. The homolycorine-type alkaloid 7 was selected for further investigation in MDA-MB-231 cells. In the annexin-V assay, compound 7 increased cell death by apoptosis, which was substantiated, in western blot analyses, by the increased expression of the pro-apoptotic protein Bax, and the decreased expression of the anti-apoptotic protein Bcl-xL. Consistently, it further stimulated mitochondrial reactive oxygen species (ROS) generation. The antiproliferative effect of compound 7 was also associated with G2/M cell cycle arrest, which was supported by an increase in the p21 protein expression levels. In MDA-MB-231 cells, compound 7 also exhibited synergistic effects with conventional chemotherapeutic drugs such as etoposide.
Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Alcaloides/farmacología , Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/farmacología , Anexinas , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Etopósido/farmacología , Femenino , Galantamina/farmacología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína X Asociada a bcl-2/metabolismoRESUMEN
BACKGROUND: Plants are an important natural source of compounds used in cancer therapy. Pancratium maritimum contains potential anti-cancer agents such as alkaloids. In this study, we investigated the anti-proliferative effects of P. maritimum extracts on MDA-MB-231 human epithelial adenocarcinoma cell line and on normal lymphocytes in vitro. METHODS: Leaves, flowers, roots, and bulbs of P. maritimum were collected and their contents were extracted and diluted to different concentrations that were applied on MDA-MB-231 cells and normal human lymphocytes cell in vitro for different intervals. Cells viability, proliferation, cell cycle distribution, apoptosis, and growth were evaluated by flow cytometry and microscopy. Parametric unpaired t-test was used to compare effects of plant extracts on treated cell cultures with untreated control cell cultures. IC50 was also calculated. RESULTS: P. maritimum extract had profound effects on MDA-MB-321 cells. It inhibited cell proliferation in a dose- and time-dependent manner. The IC50 values were 0.039, 0.035, and 0.026 mg/ml after 48, 72, and 96 hours of treatment with 0.1 mg/ml concentration of bulb extract, respectively. Those values were 0.051 and 0.03 mg/ml after 72 and 96 hours for root extract, respectively, and 0.048 mg/ml after 96 hours for flower extract. There were no significant effects of P. maritimum bulb extracts on normal lymphocytes proliferation. CONCLUSION: P. maritimum extract has anti-proliferative effects on MDA-MB-231 cell line in vitro. The effects imply the involvement of mechanisms that inhibits cell growth and arresting cells at S and G2/M phases. Cyclin B1, Bcl-2, and Ki67 expression was also affected.
RESUMEN
BACKGROUND: Multidrug resistance is the major obstacle to cancer chemotherapy. Modulation of P-glycoprotein and drug combination approaches have been considered important strategies to overcome drug resistance. PURPOSE: Aiming at generating a small library of Amaryllidaceae-type alkaloids to overcome drug resistance, two major alkaloids, isolated from Pancratium maritimum, lycorine (1), and 2α-10bα-dihydroxy-9-O-demethylhomolycorine (2), were derivatized, giving rise to nineteen derivatives (3 - 21). METHODS: The main chemical transformation of lycorine resulted from the cleavage of ring E of the diacetylated lycorine derivative (3) to obtain compounds that have carbamate and amine functions (5 - 16), while acylation of compound 2 provided derivatives 17 - 21. Compounds 1 - 21 were evaluated for their effects on cytotoxicity, and drug resistance reversal, using resistant human ovarian carcinoma cells (HOC/ADR), overexpressing P-glycoprotein (P-gp/ABCB1), as model. RESULTS: Excluding lycorine (1) (IC50 values of 1.2- 2.5 µM), the compounds were not cytotoxic or showed moderate/weak cytotoxicity. Chemo-sensitization assays were performed by studying the in vitro interaction between the compounds and the anticancer drug doxorubicin. Most of the compounds have shown synergistic interactions with doxorubicin. Compounds 5, 6, 9 - 14, bearing both carbamate and aromatic amine moieties, were found to have the highest sensitization rate, reducing the dose of doxorubicin 5-35 times, highlighting their potential to reverse drug resistance in combination chemotherapy. Selected compounds (4 - 6, 9 - 14, and 21), able of re-sensitizing resistant cancer cells, were further evaluated as P-gp inhibitors. Compound 11, which has a paramethoxy-N-methylbenzylamine moiety, was the strongest inhibitor. In the ATPase assay, compounds 9-11 and 13 behaved as verapamil, suggesting competitive inhibition of P-gp. At the same time, none of these compounds affected P-gp expression at the mRNA or protein level. CONCLUSIONS: This study provided evidence of the potential of Amaryllidaceae alkaloids as lead candidates for the development of MDR reversal agents.
Asunto(s)
Adenocarcinoma , Alcaloides , Alcaloides de Amaryllidaceae , Antineoplásicos , Fenantridinas , Humanos , Alcaloides de Amaryllidaceae/farmacología , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Alcaloides/farmacología , Carbamatos/farmacología , Línea Celular TumoralRESUMEN
Ten Amaryllidaceae alkaloids (AAs) were isolated for the first time from Pancratium maritimum collected in Calabria region, Italy. They belong to different subgroups of this family and were identified as lycorine, which is the main alkaloid, 9-O-demethyllycorine, haemanthidine, haemanthamine, 11-hydroxyvittatine, homolycorine, pancracine, obliquine, tazettine and vittatine. Haemanthidine was isolated as a scalar mixture of two 6-epimers, as already known also for other 6-hydroxycrinine alkaloids, but for the first time they were separated as 6,11-O,O'-di-p-bromobenzoyl esters. The evaluation of the cytotoxic and antiviral potentials of all isolated compounds was undertaken. Lycorine and haemanthidine showed cytotoxic activity on Hacat cells and A431 and AGS cancer cells while, pancracine exhibited selective cytotoxicity against A431 cells. We uncovered that in addition to lycorine and haemanthidine, haemanthamine and pancracine also possess antiretroviral abilities, inhibiting pseudotyped human immunodeficiency virus (HIV)−1 with EC50 of 25.3 µM and 18.5 µM respectively. Strikingly, all the AAs isolated from P. maritimum were able to impede dengue virus (DENV) replication (EC50 ranged from 0.34−73.59 µM) at low to non-cytotoxic concentrations (CC50 ranged from 6.25 µM to >100 µM). Haemanthamine (EC50 = 337 nM), pancracine (EC50 = 357 nM) and haemanthidine (EC50 = 476 nM) were the most potent anti-DENV inhibitors. Thus, this study uncovered new antiviral properties of P. maritimum isolated alkaloids, a significant finding that could lead to the development of new therapeutic strategies to fight viral infectious diseases.
Asunto(s)
Alcaloides , Antivirales , Alcaloides/farmacología , Antivirales/farmacología , Humanos , Italia , Extractos Vegetales/farmacologíaRESUMEN
Regarding our growing interest in identifying biologically active leads from Amaryllidaceous plants, the flowers of Pancratium maritimum L. (Amaryllidaceae) were investigated. Purification of the cytotoxic fractions of the alcoholic extract of the flowers gave a new glycoside, 3-[4-(ß-D-glucopyranosyloxy)phenyl]-2-(Z)-propenoic acid methyl ester (1), together with the previously reported compounds 3-methoxy-4-(ß-D-glucopyranosyloxy)benzoic acid methyl ester (2), 3-(4-methoxyphenyl)propan-1-ol-1-O-ß-D-glucopyranoside (3), (E)-3-(4-hydroxyphenyl)acrylic acid methyl ester (4), caffeic acid (5), dihydrocaffeic acid methyl ester (6), and pancratistatin (7). Interestingly, compounds 1 and 2 are phenolic-O-glycosides, while the glucose moiety in 3 is attached to the propanol side chain. This is the first report about the existence of 1-6 in the genus Pancratium. Further, glycosides 1-3 from the Amaryllidaceae family are reported on here for the first time. The structures of 1-7 were determined by analyses of their 1D (1H and 13C) and 2D (COSY, HMQC, HMBC) NMR spectra, and by high-resolution mass spectral measurements. Pancratistatin displayed potent and selective growth inhibitory effects against MDA-MB-231, HeLa, and HCT 116 cells with an IC50 value down to 0.058 µM, while it possessed lower selectivity towards the normal human dermal fibroblasts with IC50 of 6.6 µM.
RESUMEN
Ecological systems are known to exchange genetic material through animal species migration and seed dispersal for plants. Isolated plant populations have developed long distance dispersal as a means of propagation which rely on meteorological such as anemochory and hydrochory for coast, island and river bank dwelling species. Long distance dispersal by water, in particular, in the case of water current bound islands, calls for the analogy with computer networks, where each island and nearby mainland site plays the role of a network node, the water currents play the role of a transmission channel, and water borne seeds as data packets. In this paper we explore this analogy to model long distance dispersal of seeds among island and mainland populations, when traversed with water currents, in order to model and predict their future genetic diversity. The case of Pancratium maritimum L. populations in Tunisia is used as a proof of concept, where their genetic diversity is extrapolated.
Asunto(s)
Ecosistema , Islas , Redes Neurales de la Computación , Océanos y Mares , Plantas/genética , Dispersión de Semillas/genética , Migración Animal/fisiología , Animales , ComunicaciónRESUMEN
Hydrochory, the seed dispersal by water, is a strategy used by many aquatic and some terrestrial plants to move into areas appropriate for establishment. In this paper we model the hydrochory effects on the Tunisian island populations of Pancratium maritimum L. using colored Petri nets. Nineteen Tunisian coastal sites were considered including fourteen mainland and five island sites. The model was simulated for 400 thousand Atlantic Tunisian Current cycles (years). Snapshots of the island population's genetic makeup were taken for 50, 200 and 400 thousand years. The evolution of the obtained dendrograms showed a clear divide between the northern and southern island populations according to their estimated genetic make-up for the considered simulation durations. Hydrochory is not only with important ecological consequences, such as maintaining the populations of P. maritimum but also it may move species into areas appropriate for establishment. In this context, in situ and ex situ conservation measures of P. maritimum populations should be adopted very fast.