RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.
Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenómica , Adenocarcinoma/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudios de Cohortes , Células Endoteliales/metabolismo , Epigénesis Genética , Femenino , Dosificación de Gen , Genoma Humano , Glucólisis , Glicoproteínas/biosíntesis , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias Pancreáticas/diagnóstico , Fenotipo , Fosfoproteínas/metabolismo , Fosforilación , Pronóstico , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Especificidad por Sustrato , Transcriptoma/genéticaRESUMEN
Single-cell technologies have described heterogeneity across tissues, but the spatial distribution and forces that drive single-cell phenotypes have not been well defined. Combining single-cell RNA and protein analytics in studying the role of stromal cancer-associated fibroblasts (CAFs) in modulating heterogeneity in pancreatic cancer (pancreatic ductal adenocarcinoma [PDAC]) model systems, we have identified significant single-cell population shifts toward invasive epithelial-to-mesenchymal transition (EMT) and proliferative (PRO) phenotypes linked with mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling. Using high-content digital imaging of RNA in situ hybridization in 195 PDAC tumors, we quantified these EMT and PRO subpopulations in 319,626 individual cancer cells that can be classified within the context of distinct tumor gland "units." Tumor gland typing provided an additional layer of intratumoral heterogeneity that was associated with differences in stromal abundance and clinical outcomes. This demonstrates the impact of the stroma in shaping tumor architecture by altering inherent patterns of tumor glands in human PDAC.
Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Animales , Proliferación Celular , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Femenino , Células HEK293 , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Quinasas Activadas por Mitógenos/metabolismo , RNA-Seq , Factor de Transcripción STAT3/metabolismo , Células del Estroma/metabolismo , TransfecciónRESUMEN
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, owing in part to its propensity for metastasis. Here, we used an organoid culture system to investigate how transcription and the enhancer landscape become altered during discrete stages of disease progression in a PDA mouse model. This approach revealed that the metastatic transition is accompanied by massive and recurrent alterations in enhancer activity. We implicate the pioneer factor FOXA1 as a driver of enhancer activation in this system, a mechanism that renders PDA cells more invasive and less anchorage-dependent for growth in vitro, as well as more metastatic in vivo. In this context, FOXA1-dependent enhancer reprogramming activates a transcriptional program of embryonic foregut endoderm. Collectively, our study implicates enhancer reprogramming, FOXA1 upregulation, and a retrograde developmental transition in PDA metastasis.
Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Epigenómica , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Organoides/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologíaRESUMEN
Lysosomes are central to metabolic homeostasis. The microphthalmia bHLH-LZ transcription factors (MiT/TFEs) family members MITF, TFEB, and TFE3 promote the transcription of lysosomal and autophagic genes and are often deregulated in cancer. Here, we show that the GATOR2 complex, an activator of the metabolic regulator TORC1, maintains lysosomal function by protecting MiT/TFEs from proteasomal degradation independent of TORC1, GATOR1, and the RAG GTPase. We determine that in GATOR2 knockout HeLa cells, members of the MiT/TFEs family are ubiquitylated by a trio of E3 ligases and are degraded, resulting in lysosome dysfunction. Additionally, we demonstrate that GATOR2 protects MiT/TFE proteins in pancreatic ductal adenocarcinoma and Xp11 translocation renal cell carcinoma, two cancers that are driven by MiT/TFE hyperactivation. In summary, we find that the GATOR2 complex has independent roles in TORC1 regulation and MiT/TFE protein protection and thus is central to coordinating cellular metabolism with control of the lysosomal-autophagic system.
Asunto(s)
Neoplasias Renales , Factor de Transcripción Asociado a Microftalmía , Humanos , Células HeLa , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteolisis , Autofagia/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas/metabolismo , Neoplasias Renales/metabolismo , Lisosomas/genética , Lisosomas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismoRESUMEN
Oncogenic RAS signaling reprograms gene expression through both transcriptional and post-transcriptional mechanisms. While transcriptional regulation downstream of RAS is relatively well characterized, how RAS post-transcriptionally modulates gene expression to promote malignancy remains largely unclear. Using quantitative RNA interactome capture analysis, we here reveal that oncogenic RAS signaling reshapes the RNA-bound proteomic landscape of pancreatic cancer cells, with a network of nuclear proteins centered around nucleolin displaying enhanced RNA-binding activity. We show that nucleolin is phosphorylated downstream of RAS, which increases its binding to pre-ribosomal RNA (rRNA), boosts rRNA production, and promotes ribosome biogenesis. This nucleolin-dependent enhancement of ribosome biogenesis is crucial for RAS-induced pancreatic cancer cell proliferation and can be targeted therapeutically to inhibit tumor growth. Our results reveal that oncogenic RAS signaling drives ribosome biogenesis by regulating the RNA-binding activity of nucleolin and highlight a crucial role for this mechanism in RAS-mediated tumorigenesis.
Asunto(s)
Genes ras , Neoplasias Pancreáticas , Humanos , Sistema de Señalización de MAP Quinasas , Proteómica , Fosfoproteínas/metabolismo , ARN Ribosómico/metabolismo , ARN/metabolismo , Transformación Celular Neoplásica/genética , Ribosomas/genética , Ribosomas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , NucleolinaRESUMEN
Pancreatic adenocarcinoma (PDA) is an aggressive disease driven by oncogenic KRAS and characterized by late diagnosis and therapeutic resistance. Here we show that deletion of the ataxia-telangiectasia group D-complementing (Atdc) gene, whose human homolog is up-regulated in the majority of pancreatic adenocarcinoma, completely prevents PDA development in the context of oncogenic KRAS. ATDC is required for KRAS-driven acinar-ductal metaplasia (ADM) and its progression to pancreatic intraepithelial neoplasia (PanIN). As a result, mice lacking ATDC are protected from developing PDA. Mechanistically, we show ATDC promotes ADM progression to PanIN through activation of ß-catenin signaling and subsequent SOX9 up-regulation. These results provide new insight into PDA initiation and reveal ATDC as a potential target for preventing early tumor-initiating events.
Asunto(s)
Carcinogénesis , Carcinoma Ductal Pancreático/fisiopatología , Neoplasias Pancreáticas/fisiopatología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción/fisiología , Células Acinares/metabolismo , Células Acinares/patología , Animales , Carcinoma in Situ/patología , Carcinoma in Situ/fisiopatología , Carcinoma Ductal Pancreático/patología , Transdiferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Metaplasia , Ratones , Ratones Transgénicos , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta Catenina/metabolismoRESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains a serious threat to health, with limited effective therapeutic options, especially due to advanced stage at diagnosis and its inherent resistance to chemotherapy, making it one of the leading causes of cancer-related deaths worldwide. The lack of clear treatment directions underscores the urgent need for innovative approaches to address and manage this deadly condition. In this research, we repurpose drugs with potential anti-cancer activity using machine learning (ML). METHODS: We tackle the problem by using a neural network trained on drug-target interaction information enriched with drug-drug interaction information, which has not been used for anti-cancer drug repurposing before. We focus on eravacycline, an antibacterial drug, which was selected and evaluated to assess its anti-cancer effects. RESULTS: Eravacycline significantly inhibited the proliferation and migration of BxPC-3 cells and induced apoptosis. CONCLUSION: Our study highlights the potential of drug repurposing for cancer treatment using ML. Eravacycline showed promising results in inhibiting cancer cell proliferation, migration and inducing apoptosis in PDAC. These findings demonstrate that our developed ML drug repurposing models can be applied to a wide range of new oncology therapeutics, to identify potential anti-cancer agents. This highlights the potential and presents a promising approach for identifying new therapeutic options.
Asunto(s)
Antibacterianos , Apoptosis , Proliferación Celular , Aprendizaje Profundo , Reposicionamiento de Medicamentos , Neoplasias Pancreáticas , Tetraciclinas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Tetraciclinas/farmacología , Tetraciclinas/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis and rising global deaths. Late diagnosis, due to absent early symptoms and biomarkers, limits treatment mainly to chemotherapy, which soon encounters resistance. PDAC treatment innovation is hampered by its complex and heterogeneous resistant nature, including mutations in key genes and a stromal-rich, immunosuppressive tumour microenvironment. Recent studies on PDAC resistance stress the need for suitable in vitro and ex vivo models to replicate its complex molecular and microenvironmental landscape. This review summarises advances in these models, which can aid in combating chemoresistance and serve as platforms for discovering new therapeutics. Immortalised cell lines offer homogeneity, unlimited proliferation, and reproducibility, but while many gemcitabine-resistant PDAC cell lines exist, fewer models are available for resistance to other drugs. Organoids from PDAC patients show promise in mimicking tumour heterogeneity and chemosensitivity. Bioreactors, co-culture systems and organotypic slices, incorporating stromal and immune cells, are being developed to understand tumour-stroma interactions and the tumour microenvironment's role in drug resistance. Lastly, another innovative approach is three-dimensional bioprinting, which creates tissue-like structures resembling PDAC architecture, allowing for drug screening. These advanced models can guide researchers in selecting optimal in vitro tests, potentially improving therapeutic strategies and patient outcomes.
RESUMEN
Pancreatic ductal adenocarcinoma (PDAC), one of the most highly lethal tumors, is characterized by complex histology, with a massive fibrotic stroma in which both pseudo-glandular structures and compact nests of abnormally differentiated tumor cells are embedded, in different proportions and with different mutual relationships in space. This complexity and the heterogeneity of the tumor component have hindered the development of a broadly accepted, clinically actionable classification of PDACs, either on a morphological or a molecular basis. Here, we discuss evidence suggesting that such heterogeneity can to a large extent, albeit not exclusively, be traced back to two main classes of PDAC cells that commonly coexist in the same tumor: cells that maintained their ability to differentiate toward endodermal, mucin-producing epithelia and epithelial cells unable to form glandular structures and instead characterized by various levels of squamous differentiation and the expression of mesenchymal lineage genes. The underlying gene regulatory networks and how they are controlled by distinct transcription factors, as well as the practical implications of these two different populations of tumor cells, are discussed.
Asunto(s)
Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transcripción Genética/genética , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Diferenciación Celular/genética , Células Epiteliales/patología , Epitelio/patología , Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Factores de Transcripción/genéticaRESUMEN
Present in all eukaryotic cells, the integrated stress response (ISR) is a highly coordinated signaling network that controls cellular behavior, metabolism, and survival in response to diverse stresses. The ISR is initiated when any 1 of 4 stress-sensing kinases (protein kinase R-like endoplasmic reticulum kinase [PERK], general control non-derepressible 2 [GCN2], double-stranded RNA-dependent protein kinase [PKR], heme-regulated eukaryotic translation initiation factor 2α kinase [HRI]) becomes activated to phosphorylate the protein translation initiation factor eukaryotic translation initiation factor 2α (eIF2α), shifting gene expression toward a comprehensive rewiring of cellular machinery to promote adaptation. Although the ISR has been shown to play an important role in the homeostasis of multiple tissues, evidence suggests that it is particularly crucial for the development and ongoing health of the pancreas. Among the most synthetically dynamic tissues in the body, the exocrine and endocrine pancreas relies heavily on the ISR to rapidly adjust cell function to meet the metabolic demands of the organism. The hardwiring of the ISR into normal pancreatic functions and adaptation to stress may explain why it is a commonly used pro-oncogenic and therapy-resistance mechanism in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors. Here, we review what is known about the key roles that the ISR plays in the development, homeostasis, and neoplasia of the pancreas.
RESUMEN
BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies. Delayed manifestation of symptoms and lack of specific diagnostic markers lead patients being diagnosed with PDAC at advanced stages. This study aimed to develop a circular RNA (circRNA)-based biomarker panel to facilitate noninvasive and early detection of PDAC. METHODS: A systematic genome-wide discovery of circRNAs overexpressed in patients with PDAC was conducted. Subsequently, validation of the candidate markers in the primary tumors from patients with PDAC was performed, followed by their translation into a plasma-based liquid biopsy assay by analyzing 2 independent clinical cohorts of patients with PDAC and nondisease controls. The performance of the circRNA panel was assessed in conjunction with the plasma levels of cancer antigen 19-9 for the early detection of PDAC. RESULTS: Initially, a panel of 10 circRNA candidates was identified during the discovery phase. Subsequently, the panel was reduced to 5 circRNAs in the liquid biopsy-based assay, which robustly identified patients with PDAC and distinguished between early-stage (stage I/II) and late-stage (stage III/IV) disease. The areas under the curve of this diagnostic panel for the detection of early-stage PDAC were 0.83 and 0.81 in the training and validation cohorts, respectively. Moreover, when this panel was combined with cancer antigen 19-9 levels, the diagnostic performance for identifying patients with PDAC improved remarkably (area under the curve, 0.94) for patients in the validation cohort. Furthermore, the circRNA panel could also efficiently identify patients with PDAC (area under the curve, 0.85) who were otherwise deemed clinically cancer antigen 19-9-negative (<37 U/mL). CONCLUSIONS: A circRNA-based biomarker panel with a robust noninvasive diagnostic potential for identifying patients with early-stage PDAC was developed.
Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , ARN Circular/genética , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Estadificación de Neoplasias , Detección Precoz del Cáncer , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Antígeno CA-19-9 , Adenocarcinoma/patologíaRESUMEN
BACKGROUND & AIMS: The complex tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) has hindered the development of reliable predictive biomarkers for targeted therapy and immunomodulatory strategies. A comprehensive characterization of the TME is necessary to advance precision therapeutics in PDAC. METHODS: A transcriptomic profiling platform for TME classification based on functional gene signatures was applied to 14 publicly available PDAC datasets (n = 1657) and validated in a clinically annotated independent cohort of patients with PDAC (n = 79). Four distinct subtypes were identified using unsupervised clustering and assessed to evaluate predictive and prognostic utility. RESULTS: TME classification using transcriptomic profiling identified 4 biologically distinct subtypes based on their TME immune composition: immune enriched (IE); immune enriched, fibrotic (IE/F); fibrotic (F); and immune depleted (D). The IE and IE/F subtypes demonstrated a more favorable prognosis and potential for response to immunotherapy compared with the F and D subtypes. Most lung metastases and liver metastases were subtypes IE and D, respectively, indicating the role of clonal phenotype and immune milieu in developing personalized therapeutic strategies. In addition, distinct TMEs with potential therapeutic implications were identified in treatment-naive primary tumors compared with tumors that underwent neoadjuvant therapy. CONCLUSIONS: This novel approach defines a distinct subgroup of PADC patients that may benefit from immunotherapeutic strategies based on their TME subtype and provides a framework to select patients for prospective clinical trials investigating precision immunotherapy in PDAC. Further, the predictive utility and real-world clinical applicability espoused by this transcriptomic-based TME classification approach will accelerate the advancement of precision medicine in PDAC.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Perfilación de la Expresión Génica , Neoplasias Pancreáticas , Medicina de Precisión , Transcriptoma , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Biomarcadores de Tumor/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Regulación Neoplásica de la Expresión Génica , Inmunoterapia/métodos , Pronóstico , Terapia Neoadyuvante , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Valor Predictivo de las Pruebas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Bases de Datos GenéticasRESUMEN
BACKGROUND & AIMS: The pancreas is composed of endocrine and exocrine parts, and its interlacing structure indicates potential interaction between endocrine and exocrine cells. Although the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has been well characterized, the role of pancreatic endocrine cells during carcinogenesis is relatively understudied. METHODS: The changes of endocrine cells in PDAC by single-cell transcriptome sequencing, spatial transcriptome sequencing, and multiplex immunohistochemistry were depicted. After that, the interaction between pancreatic carcinogenesis and endocrine changes was explored in orthotopic transplantation mice, KrasLSL-G12DPdx1-Cre mice, and KrasLSL-G12Dp53LoxPPdx1-CreER mice. Finally, we proved the mechanism of the interaction between endocrine and exocrine parts of the pancreas through islet isolation, co-culture in vitro and co-injection in vivo. RESULTS: Pancreatic endocrine cells displayed significantly different transcriptomic characteristics and increased interaction with exocrine part in PDAC. Specifically, among all of the changes, pancreatic polypeptide-positive cells showed a sharp increment accompanied by the progression of the cancer lesion, which might be derived from the transdifferentiation of α and ß cells. Interestingly, it was proved that PDAC cells were able to induce the transdifferentiation of pancreatic α cells and ß cells into glucagon-pancreatic polypeptide and insulin-pancreatic polypeptide double-positive cells, which further promoted carcinogenesis and development of PDAC in a paracrine-dependent manner and formed a reciprocal interaction. CONCLUSIONS: This study systematically maps the alteration of pancreatic endocrine cells in PDAC and elucidates the potential endocrine-exocrine interaction mechanisms during PDAC carcinogenesis. In addition, cancer-associated endocrine cells are defined and characterized, thereby further broadening the composition of PDAC microenvironment.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ratones , Humanos , Técnicas de Cocultivo , Análisis de la Célula Individual , Transdiferenciación Celular , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/metabolismo , Transcriptoma , Línea Celular Tumoral , Células Secretoras de Glucagón/patología , Células Secretoras de Glucagón/metabolismo , Carcinogénesis/patología , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/genética , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad , Ratones TransgénicosRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory cancers with the worst prognosis. Although several molecules are known to be associated with the progression of PDAC, the molecular mechanisms underlying the progression of PDAC remain largely elusive. The Ror-family receptors, Ror1 and Ror2, which act as a receptor(s) for Wnt-family ligands, particularly Wnt5a, are involved in the progression of various types of cancers. Here, we show that higher expression of Ror1 and Wnt5b, but not Ror2, are associated with poorer prognosis of PDAC patients, and that Ror1 and Wnt5b are expressed highly in a type of PDAC cell lines, PANC-1 cells. Knockdown of either Ror1 or Wnt5b in PANC-1 cells inhibited their proliferation significantly in vitro, and knockout of Ror1 in PANC-1 cells resulted in a significant inhibition of tumor growth in vivo. Furthermore, we show that Wnt5b-Ror1 signaling in PANC-1 cells promotes their proliferation in a cell-autonomous manner by modulating our experimental setting in vitro. Collectively, these findings indicate that Wnt5b-Ror1 signaling might play an important role in the progression of some if not all of PDAC by promoting proliferation.
Asunto(s)
Carcinoma Ductal Pancreático , Proliferación Celular , Neoplasias Pancreáticas , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Proteína Wnt-5a , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Transducción de Señal , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genéticaRESUMEN
There is a significant difference in prognosis and response to chemotherapy between basal and classical subtypes of pancreatic ductal adenocarcinoma (PDAC). Further biomarkers are required to identify subtypes of PDAC. We selected candidate biomarkers via review articles. Correlations between these candidate markers and the PDAC molecular subtype gene sets were analyzed using bioinformatics, confirming the biomarkers for identifying classical and basal subtypes. Subsequently, 298 PDAC patients were included, and their tumor tissues were immunohistochemically stratified using these biomarkers. Survival data underwent analysis, including Cox proportional hazards modeling. Our results indicate that the pairwise and triple combinations of KRT5/KRT17/S100A2 exhibit a higher correlation coefficient with the basal-like subtype gene set, whereas the corresponding combinations of GATA6/HNF4A/TFF1 show a higher correlation with the classical subtype gene set. Whether analyzing unmatched or propensity-matched data, the overall survival time was significantly shorter for the basal subtype compared with the classical subtype (p < .001), with basal subtype patients also facing a higher risk of mortality (HR = 4.017, 95% CI 2.675-6.032, p < .001). In conclusion, the combined expression of KRT5, KRT17, and S100A2, in both pairwise and triple combinations, independently predicts shorter overall survival in PDAC patients and likely identifies the basal subtype. Similarly, the combined expression of GATA6, HNF4A, and TFF1, in the same manner, may indicate the classical subtype. In our study, the combined application of established biomarkers offers valuable insights for the prognostic evaluation of PDAC patients.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Queratina-17 , Queratina-5 , Neoplasias Pancreáticas , Proteínas S100 , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Masculino , Femenino , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Proteínas S100/genética , Proteínas S100/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Anciano , Queratina-17/genética , Queratina-17/metabolismo , Pronóstico , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Regulación Neoplásica de la Expresión Génica , Adulto , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Factores QuimiotácticosRESUMEN
Pancreatic stellate cells (PSCs) are stromal cells in the pancreas that play an important role in pancreatic pathology. In chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC), PSCs are known to get activated to form myofibroblasts or cancer-associated fibroblasts (CAFs) that promote stromal fibroinflammatory reactions. However, previous studies on PSCs were mainly based on the findings obtained using ex vivo expanded PSCs, with few studies that addressed the significance of in situ tissue-resident PSCs using animal models. Their contributions to fibrotic reactions in CP and PDAC are also lesser-known. These limitations in our understanding of PSC biology have been attributed to the lack of specific molecular markers of PSCs. Herein, we established Meflin (Islr), a glycosylphosphatidylinositol-anchored membrane protein, as a PSC-specific marker in both mouse and human by using human pancreatic tissue samples and Meflin reporter mice. Meflin-positive (Meflin+ ) cells contain lipid droplets and express the conventional PSC marker Desmin in normal mouse pancreas, with some cells also positive for Gli1, the marker of pancreatic tissue-resident fibroblasts. Three-dimensional analysis of the cleared pancreas of Meflin reporter mice showed that Meflin+ PSCs have long and thin cytoplasmic protrusions, and are localised on the abluminal side of vessels in the normal pancreas. Lineage tracing experiments revealed that Meflin+ PSCs constitute one of the origins of fibroblasts and CAFs in CP and PDAC, respectively. In these diseases, Meflin+ PSC-derived fibroblasts showed a distinctive morphology and distribution from Meflin+ PSCs in the normal pancreas. Furthermore, we showed that the genetic depletion of Meflin+ PSCs accelerated fibrosis and attenuated epithelial regeneration and stromal R-spondin 3 expression, thereby implying that Meflin+ PSCs and their lineage cells may support tissue recovery and Wnt/R-spondin signalling after pancreatic injury and PDAC development. Together, these data indicate that Meflin may be a marker specific to tissue-resident PSCs and useful for studying their biology in both health and disease. © 2023 The Pathological Society of Great Britain and Ireland.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis Crónica , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Fibrosis , Páncreas/patología , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/patología , Pancreatitis Crónica/genética , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología , RegeneraciónRESUMEN
The progression and malignancy of many tumors are associated with increased tissue stiffness. Conversely, the oncogenically transformed cells can be confined in soft stroma. Yet, the underlying mechanisms by which soft matrix confines tumorigenesis and metastasis remain elusive. Here, we show that pancreatic cancer cells are suppressed in the soft extracellular matrix, which is associated with YAP1 degradation through autophagic-lysosomal pathway rather than Hippo signal mediated proteasome pathway. In the soft stroma, PTEN is upregulated and activated, which consequently promotes lysosomal biogenesis, leading to the activation of cysteine-cathepsins for YAP1 degradation. In vitro, purified cathepsin L can directly digest YAP1 under acidic conditions. Lysosomal stress, either caused by chloroquine or overexpression of cystatin A/B, results in YAP1 accumulation and malignant transformation. Likewise, liver fibrosis induced stiffness can promote malignant potential in mice. Clinical data show that down-regulation of lysosomal biogenesis is associated with pancreatic fibrosis and stiffness, YAP1 accumulation, and poor prognosis in PDAC patients. Together, our findings suggest that soft stroma triggers lysosomal flux-mediated YAP1 degradation and induces cancer cell dormancy.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Lisosomas , Neoplasias Pancreáticas , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Lisosomas/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular Tumoral , Proteolisis , Ratones Desnudos , Matriz Extracelular/metabolismo , Proliferación Celular , Autofagia , Catepsina L/metabolismo , Catepsina L/genética , Células del Estroma/metabolismo , Células del Estroma/patología , Catepsinas/metabolismo , Transducción de SeñalRESUMEN
AIMS: Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS: Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS: Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION: FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Proliferación Celular , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos/genética , Gemcitabina , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteómica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/uso terapéuticoRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.
Asunto(s)
Carcinoma Ductal Pancreático , Recombinación Homóloga , Macrófagos , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Microambiente Tumoral/inmunologíaRESUMEN
AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is resistant to immune checkpoint blockade (ICB) therapies. Emerging evidence suggests that NDRG1 may be an important target for the development of new therapies for PDAC. Herein, we investigated the novel roles of NDRG1 and Combretastatin A-4 (CA-4) in the treatment of PDAC ICB resistance. METHODS: Enrichment of MHC class I was detected by RNA sequence and verified by RT-qPCR and immunoblotting in NDRG1-knockdown human pancreatic cancer cell lines. The protein degradation mode was found by stimulation with various inhibitors, and the autophagy degradation pathway was found by immunoprecipitation and immunolocalization. The roles of NDRG1 and MHC-I in immunotherapy were investigated by orthotopic solid tumors, histology, immunohistochemistry, multiplex immunofluorescence staining and flow cytometry. RESULTS: Here, we identified a previously undescribed role of NDRG1 in activating major histocompatibility complex class 1 (MHC-1) expression in pancreatic ductal adenocarcinoma (PDAC) cells through lysosomal-autophagy-dependent degradation. In mouse models of PDAC, either tumor cell overexpression or pharmacologic activation of NDRG1 leads to MHC-1 upregulation in tumor cells, which in turn promotes the infiltration and activity of CD8 + T cells, enhances anti-tumor immunity, and overcomes resistance to ICB therapy. Moreover, combination therapy of CA-4 and ICB overcomes the drug resistance of pancreatic cancer to ICB therapy. In PDAC patients, NDRG1 expression correlates with high MHC-1 expression and better survival. CONCLUSION: Our results reveal NDRG1 in PDAC cancer cells as a tumor suppressor and suggest that pharmaceutically targeting NDRG1 is a promising way to overcome pancreatic cancer resistance to immunotherapy and provides a potential therapeutic strategy for the treatment of pancreatic cancer patients.