Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.861
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Hum Mol Genet ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39198965

RESUMEN

Chronic pancreatitis (CP) is an etiologically and genetically heterogeneous inflammatory syndrome characterised by progressive damage to the exocrine and endocrine components of the pancreas [ 1]. The multigenic paradigm of CP has sparked research in recent years [ 2]. We aimed to expand the current knowledge of genetic susceptibility of pancreatitis in patients of Indian origin. By employing whole-exome sequencing in an Indian hospital cohort, we dissect the genetic landscape associated with CP or recurrent acute pancreatitis (RAP). Notably, all patients had at least one genetic variant identified in a pancreatitis-risk gene, and most had a co-occurrence of a second variant in an additional risk gene. Based on the presence of both acinar and ductal gene variants in individual patients, we propose a two-hit hypothesis where variants in proteins expressed in both acinar and ductal cells are critical for RAP/CP development.

2.
Am J Hum Genet ; 110(10): 1661-1672, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37741276

RESUMEN

In the effort to treat Mendelian disorders, correcting the underlying molecular imbalance may be more effective than symptomatic treatment. Identifying treatments that might accomplish this goal requires extensive and up-to-date knowledge of molecular pathways-including drug-gene and gene-gene relationships. To address this challenge, we present "parsing modifiers via article annotations" (PARMESAN), a computational tool that searches PubMed and PubMed Central for information to assemble these relationships into a central knowledge base. PARMESAN then predicts putatively novel drug-gene relationships, assigning an evidence-based score to each prediction. We compare PARMESAN's drug-gene predictions to all of the drug-gene relationships displayed by the Drug-Gene Interaction Database (DGIdb) and show that higher-scoring relationship predictions are more likely to match the directionality (up- versus down-regulation) indicated by this database. PARMESAN had more than 200,000 drug predictions scoring above 8 (as one example cutoff), for more than 3,700 genes. Among these predicted relationships, 210 were registered in DGIdb and 201 (96%) had matching directionality. This publicly available tool provides an automated way to prioritize drug screens to target the most-promising drugs to test, thereby saving time and resources in the development of therapeutics for genetic disorders.


Asunto(s)
PubMed , Humanos , Bases de Datos Factuales
3.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041916

RESUMEN

This manuscript describes the development of a resource module that is part of a learning platform named 'NIGMS Sandbox for Cloud-based Learning' (https://github.com/NIGMS/NIGMS-Sandbox). The module delivers learning materials on Cloud-based Consensus Pathway Analysis in an interactive format that uses appropriate cloud resources for data access and analyses. Pathway analysis is important because it allows us to gain insights into biological mechanisms underlying conditions. But the availability of many pathway analysis methods, the requirement of coding skills, and the focus of current tools on only a few species all make it very difficult for biomedical researchers to self-learn and perform pathway analysis efficiently. Furthermore, there is a lack of tools that allow researchers to compare analysis results obtained from different experiments and different analysis methods to find consensus results. To address these challenges, we have designed a cloud-based, self-learning module that provides consensus results among established, state-of-the-art pathway analysis techniques to provide students and researchers with necessary training and example materials. The training module consists of five Jupyter Notebooks that provide complete tutorials for the following tasks: (i) process expression data, (ii) perform differential analysis, visualize and compare the results obtained from four differential analysis methods (limma, t-test, edgeR, DESeq2), (iii) process three pathway databases (GO, KEGG and Reactome), (iv) perform pathway analysis using eight methods (ORA, CAMERA, KS test, Wilcoxon test, FGSEA, GSA, SAFE and PADOG) and (v) combine results of multiple analyses. We also provide examples, source code, explanations and instructional videos for trainees to complete each Jupyter Notebook. The module supports the analysis for many model (e.g. human, mouse, fruit fly, zebra fish) and non-model species. The module is publicly available at https://github.com/NIGMS/Consensus-Pathway-Analysis-in-the-Cloud. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Asunto(s)
Nube Computacional , Programas Informáticos , Humanos , Biología Computacional/métodos , Biología Computacional/educación , Animales , Ontología de Genes
4.
Brief Bioinform ; 25(6)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39376034

RESUMEN

Single-cell technologies enable researchers to investigate cell functions at an individual cell level and study cellular processes with higher resolution. Several multi-omics single-cell sequencing techniques have been developed to explore various aspects of cellular behavior. Using NEAT-seq as an example, this method simultaneously obtains three kinds of omics data for each cell: gene expression, chromatin accessibility, and protein expression of transcription factors (TFs). Consequently, NEAT-seq offers a more comprehensive understanding of cellular activities in multiple modalities. However, there is a lack of tools available for effectively integrating the three types of omics data. To address this gap, we propose a novel pipeline called MultiSC for the analysis of MULTIomic Single-Cell data. Our pipeline leverages a multimodal constraint autoencoder (single-cell hierarchical constraint autoencoder) to integrate the multi-omics data during the clustering process and a matrix factorization-based model (scMF) to predict target genes regulated by a TF. Moreover, we utilize multivariate linear regression models to predict gene regulatory networks from the multi-omics data. Additional functionalities, including differential expression, mediation analysis, and causal inference, are also incorporated into the MultiSC pipeline. Extensive experiments were conducted to evaluate the performance of MultiSC. The results demonstrate that our pipeline enables researchers to gain a comprehensive view of cell activities and gene regulatory networks by fully leveraging the potential of multiomics single-cell data. By employing MultiSC, researchers can effectively integrate and analyze diverse omics data types, enhancing their understanding of cellular processes.


Asunto(s)
Aprendizaje Profundo , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Redes Reguladoras de Genes , Biología Computacional/métodos , Multiómica
5.
Mol Cell Proteomics ; 23(7): 100780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703893

RESUMEN

New tools for cell signaling pathway inference from multi-omics data that are independent of previous knowledge are needed. Here, we propose a new de novo method, the de novo multi-omics pathway analysis (DMPA), to model and combine omics data into network modules and pathways. DMPA was validated with published omics data and was found accurate in discovering reported molecular associations in transcriptome, interactome, phosphoproteome, methylome, and metabolomics data, and signaling pathways in multi-omics data. DMPA was benchmarked against module discovery and multi-omics integration methods and outperformed previous methods in module and pathway discovery especially when applied to datasets of relatively low sample sizes. Transcription factor, kinase, subcellular location, and function prediction algorithms were devised for transcriptome, phosphoproteome, and interactome modules and pathways, respectively. To apply DMPA in a biologically relevant context, interactome, phosphoproteome, transcriptome, and proteome data were collected from analyses carried out using melanoma cells to address gamma-secretase cleavage-dependent signaling characteristics of the receptor tyrosine kinase TYRO3. The pathways modeled with DMPA reflected the predicted function and its direction in validation experiments.


Asunto(s)
Proteómica , Transducción de Señal , Humanos , Proteómica/métodos , Algoritmos , Transcriptoma , Metabolómica/métodos , Biología Computacional/métodos , Proteoma/metabolismo , Fosfoproteínas/metabolismo , Multiómica
6.
Am J Hum Genet ; 109(3): 393-404, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35108496

RESUMEN

Identifying gene sets that are associated to disease can provide valuable biological knowledge, but a fundamental challenge of gene set analyses of GWAS data is linking disease-associated SNPs to genes. Transcriptome-wide association studies (TWASs) detect associations between the genetically predicted expression of a gene and disease risk, thus implicating candidate disease genes. However, causal disease genes at TWAS-associated loci generally remain unknown due to gene co-regulation, which leads to correlations across genes in predicted expression. We developed a method, gene co-regulation score (GCSC) regression, to identify gene sets that are enriched for disease heritability explained by predicted expression. GCSC regresses TWAS chi-square statistics on gene co-regulation scores reflecting correlations in predicted gene expression; a gene set is enriched for heritability if genes with high co-regulation to the set have higher TWAS chi-square statistics than genes with low co-regulation to the set, beyond what is expected based on co-regulation to all genes. We verified via simulations that GCSC is well calibrated and well powered. We applied GCSC to gene expression data from GTEx (48 tissues) and GWAS summary statistics for 43 independent diseases and complex traits analyzing a broad set of biological pathways and specifically expressed gene sets. We identified many enriched sets, recapitulating known biology. For Alzheimer disease, we detected evidence of an immune basis, and specifically a role for antigen presentation, in analyses of both biological pathways and specifically expressed gene sets. Our results highlight the advantages of leveraging gene co-regulation within the TWAS framework to identify enriched gene sets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Predisposición Genética a la Enfermedad , Humanos , Herencia Multifactorial , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Transcriptoma
7.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37985452

RESUMEN

Charting microRNA (miRNA) regulation across pathways is key to characterizing their function. Yet, no method currently exists that can quantify how miRNAs regulate multiple interconnected pathways or prioritize them for their ability to regulate coordinate transcriptional programs. Existing methods primarily infer one-to-one relationships between miRNAs and pathways using differentially expressed genes. We introduce PanomiR, an in silico framework for studying the interplay of miRNAs and disease functions. PanomiR integrates gene expression, mRNA-miRNA interactions and known biological pathways to reveal coordinated multi-pathway targeting by miRNAs. PanomiR utilizes pathway-activity profiling approaches, a pathway co-expression network and network clustering algorithms to prioritize miRNAs that target broad-scale transcriptional disease phenotypes. It directly resolves differential regulation of pathways, irrespective of their differential gene expression, and captures co-activity to establish functional pathway groupings and the miRNAs that may regulate them. PanomiR uses a systems biology approach to provide broad but precise insights into miRNA-regulated functional programs. It is available at https://bioconductor.org/packages/PanomiR.


Asunto(s)
MicroARNs , MicroARNs/metabolismo , Biología de Sistemas , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Redes Reguladoras de Genes
8.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37995133

RESUMEN

Interpreting the function of genes and gene sets identified from omics experiments remains a challenge, as current pathway analysis tools often fail to consider the critical biological context, such as tissue or cell-type specificity. To address this limitation, we introduced CellGO. CellGO tackles this challenge by leveraging the visible neural network (VNN) and single-cell gene expressions to mimic cell-type-specific signaling propagation along the Gene Ontology tree within a cell. This design enables a novel scoring system to calculate the cell-type-specific gene-pathway paired active scores, based on which, CellGO is able to identify cell-type-specific active pathways associated with single genes. In addition, by aggregating the activities of single genes, CellGO extends its capability to identify cell-type-specific active pathways for a given gene set. To enhance biological interpretation, CellGO offers additional features, including the identification of significantly active cell types and driver genes and community analysis of pathways. To validate its performance, CellGO was assessed using a gene set comprising mixed cell-type markers, confirming its ability to discern active pathways across distinct cell types. Subsequent benchmarking analyses demonstrated CellGO's superiority in effectively identifying cell types and their corresponding cell-type-specific pathways affected by gene knockouts, using either single genes or sets of genes differentially expressed between knockout and control samples. Moreover, CellGO demonstrated its ability to infer cell-type-specific pathogenesis for disease risk genes. Accessible as a Python package, CellGO also provides a user-friendly web interface, making it a versatile and accessible tool for researchers in the field.


Asunto(s)
Aprendizaje Profundo , Programas Informáticos , Humanos , Susceptibilidad a Enfermedades
9.
Stat Appl Genet Mol Biol ; 23(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363177

RESUMEN

Developments in biotechnologies enable multi-platform data collection for functional genomic units apart from the gene. Profiling of non-coding microRNAs (miRNAs) is a valuable tool for understanding the molecular profile of the cell, both for canonical functions and malignant behavior due to complex diseases. We propose a graphical mixed-effects statistical model incorporating miRNA-gene target relationships. We implement an integrative pathway analysis that leverages measurements of miRNA activity for joint analysis with multimodal observations of gene activity including gene expression, methylation, and copy number variation. We apply our analysis to a breast cancer dataset, and consider differential activity in signaling pathways across breast tumor subtypes. We offer discussion of specific signaling pathways and the effect of miRNA integration, as well as publish an interactive data visualization to give public access to the results of our analysis.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/metabolismo , Variaciones en el Número de Copia de ADN , Perfilación de la Expresión Génica , Metilación de ADN/genética , Expresión Génica , Regulación Neoplásica de la Expresión Génica
10.
Mol Cell Proteomics ; 22(1): 100478, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470533

RESUMEN

To date, very few mass spectrometry (MS)-based proteomics studies are available on the anterior and posterior lobes of the pituitary. In the past, MS-based investigations have focused exclusively on the whole pituitary gland or anterior pituitary lobe. In this study, for the first time, we performed a deep MS-based analysis of five anterior and five posterior matched lobes to build the first lobe-specific pituitary proteome map, which documented 4090 proteins with isoforms, mostly mapped into chromosomes 1, 2, and 11. About 1446 differentially expressed significant proteins were identified, which were studied for lobe specificity, biological pathway enrichment, protein-protein interaction, regions specific to comparison of human brain and other neuroendocrine glands from Human Protein Atlas to identify pituitary-enriched proteins. Hormones specific to each lobe were also identified and validated with parallel reaction monitoring-based target verification. The study identified and validated hormones, growth hormone and thyroid-stimulating hormone subunit beta, exclusively to the anterior lobe whereas oxytocin-neurophysin 1 and arginine vasopressin to the posterior lobe. The study also identified proteins POU1F1 (pituitary-specific positive transcription factor 1), POMC (pro-opiomelanocortin), PCOLCE2 (procollagen C-endopeptidase enhancer 2), and NPTX2 (neuronal pentraxin-2) as pituitary-enriched proteins and was validated for their lobe specificity using parallel reaction monitoring. In addition, three uPE1 proteins, namely THEM6 (mesenchymal stem cell protein DSCD75), FSD1L (coiled-coil domain-containing protein 10), and METTL26 (methyltransferase-like 26), were identified using the NeXtProt database, and depicted tumor markers S100 proteins having high expression in the posterior lobe. In summary, the study documents the first matched anterior and posterior pituitary proteome map acting as a reference control for a better understanding of functional and nonfunctional pituitary adenomas and extrapolating the aim of the Human Proteome Project towards the investigation of the proteome of life.


Asunto(s)
Adenohipófisis , Neurohipófisis , Humanos , Proteoma/metabolismo , Adenohipófisis/metabolismo , Hipófisis/metabolismo , Neurohipófisis/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074870

RESUMEN

Myasthenia gravis is a chronic autoimmune disease characterized by autoantibody-mediated interference of signal transmission across the neuromuscular junction. We performed a genome-wide association study (GWAS) involving 1,873 patients diagnosed with acetylcholine receptor antibody-positive myasthenia gravis and 36,370 healthy individuals to identify disease-associated genetic risk loci. Replication of the discovered loci was attempted in an independent cohort from the UK Biobank. We also performed a transcriptome-wide association study (TWAS) using expression data from skeletal muscle, whole blood, and tibial nerve to test the effects of disease-associated polymorphisms on gene expression. We discovered two signals in the genes encoding acetylcholine receptor subunits that are the most common antigenic target of the autoantibodies: a GWAS signal within the cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) gene and a TWAS association with the cholinergic receptor nicotinic beta 1 subunit (CHRNB1) gene in normal skeletal muscle. Two other loci were discovered on 10p14 and 11q21, and the previous association signals at PTPN22, HLA-DQA1/HLA-B, and TNFRSF11A were confirmed. Subgroup analyses demonstrate that early- and late-onset cases have different genetic risk factors. Genetic correlation analysis confirmed a genetic link between myasthenia gravis and other autoimmune diseases, such as hypothyroidism, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes. Finally, we applied Priority Index analysis to identify potentially druggable genes/proteins and pathways. This study provides insight into the genetic architecture underlying myasthenia gravis and demonstrates that genetic factors within the loci encoding acetylcholine receptor subunits contribute to its pathogenesis.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Miastenia Gravis/genética , Polimorfismo Genético/genética , Transducción de Señal/genética , Adulto , Femenino , Expresión Génica/genética , Frecuencia de los Genes/genética , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Músculo Esquelético/patología , Receptores Colinérgicos/genética , Receptores Nicotínicos/genética
12.
BMC Bioinformatics ; 25(1): 23, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216898

RESUMEN

BACKGROUND: With the exponential growth of high-throughput technologies, multiple pathway analysis methods have been proposed to estimate pathway activities from gene expression profiles. These pathway activity inference methods can be divided into two main categories: non-Topology-Based (non-TB) and Pathway Topology-Based (PTB) methods. Although some review and survey articles discussed the topic from different aspects, there is a lack of systematic assessment and comparisons on the robustness of these approaches. RESULTS: Thus, this study presents comprehensive robustness evaluations of seven widely used pathway activity inference methods using six cancer datasets based on two assessments. The first assessment seeks to investigate the robustness of pathway activity in pathway activity inference methods, while the second assessment aims to assess the robustness of risk-active pathways and genes predicted by these methods. The mean reproducibility power and total number of identified informative pathways and genes were evaluated. Based on the first assessment, the mean reproducibility power of pathway activity inference methods generally decreased as the number of pathway selections increased. Entropy-based Directed Random Walk (e-DRW) distinctly outperformed other methods in exhibiting the greatest reproducibility power across all cancer datasets. On the other hand, the second assessment shows that no methods provide satisfactory results across datasets. CONCLUSION: However, PTB methods generally appear to perform better in producing greater reproducibility power and identifying potential cancer markers compared to non-TB methods.


Asunto(s)
Neoplasias , Humanos , Reproducibilidad de los Resultados , Neoplasias/genética , Entropía , Expresión Génica
13.
J Proteome Res ; 23(10): 4538-4552, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39265992

RESUMEN

Protein S deficiency (PSD) is an autosomal dominant disorder characterized by congenital thrombophilia. Studies on PSD are limited yet, resulting in a lack of clarity about molecular changes during abnormal coagulation. Proteomics and metabolomics analyses were conducted on the plasma of PSD patients based on liquid and gas chromatography-mass spectrometry (LC- and GC-MS). Differential proteins and metabolites of PSD were then filtered by univariate statistical analysis and subjected to network analysis using the ingenuity pathway analysis (IPA) platform. The proteome and metabolome of PSD were obviously disturbed, and the biological pathway of coagulation and complement cascades was the most affected. During PSD, overall levels of anticoagulant protein decreased and negative regulation of thrombin production was reduced, causing the formation of fibrin clots and platelet aggregation. Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1-69, CFHR5, CPN2, and CA1. The biological networks suggested that the pathways of acute phase response, FXR/RXR activation, serotonin receptor signaling, and p70S6K signaling were associated with PSD, indicating an interaction disorder of inflammatory immune and lipid metabolism. The findings may contribute to knowledge of available functional molecules and biological pathways of familial PSD and help with treatment improvement. Data are available via ProteomeXchange with identifier PXD055111 and MetaboLights with reference number MTBLS2653.


Asunto(s)
Metaboloma , Deficiencia de Proteína S , Proteoma , Humanos , Proteoma/metabolismo , Proteoma/análisis , Deficiencia de Proteína S/genética , Deficiencia de Proteína S/sangre , Femenino , Masculino , Adulto , Proteína S/metabolismo , Proteína S/genética , Proteómica/métodos , Coagulación Sanguínea , Cromatografía de Gases y Espectrometría de Masas , Metabolómica/métodos , Cromatografía Liquida
14.
Curr Issues Mol Biol ; 46(5): 4133-4146, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785522

RESUMEN

Today, colorectal cancer (CRC) diagnosis is performed using colonoscopy, which is the current, most effective screening method. However, colonoscopy poses risks of harm to the patient and is an invasive process. Recent research has proven metabolomics as a potential, non-invasive detection method, which can use identified biomarkers to detect potential cancer in a patient's body. The aim of this study is to develop a machine-learning (ML) model based on chemical descriptors that will recognize CRC-associated metabolites. We selected a set of metabolites found as the biomarkers of CRC, confirmed that they participate in cancer-related pathways, and used them for training a machine-learning model for the diagnostics of CRC. Using a set of selective metabolites and random compounds, we developed a range of ML models. The best performing ML model trained on Stage 0-2 CRC metabolite data predicted a metabolite class with 89.55% accuracy. The best performing ML model trained on Stage 3-4 CRC metabolite data predicted a metabolite class with 95.21% accuracy. Lastly, the best-performing ML model trained on Stage 0-4 CRC metabolite data predicted a metabolite class with 93.04% accuracy. These models were then tested on independent datasets, including random and unrelated-disease metabolites. In addition, six pathways related to these CRC metabolites were also distinguished: aminoacyl-tRNA biosynthesis; glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; arginine biosynthesis; and alanine, aspartate, and glutamate metabolism. Thus, in this research study, we created machine-learning models based on metabolite-related descriptors that may be helpful in developing a non-invasive diagnosis method for CRC.

15.
Curr Issues Mol Biol ; 46(4): 3328-3341, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38666938

RESUMEN

Kidney cancer has emerged as a major medical problem in recent times. Multiple compounds are used to treat kidney cancer by triggering cancer-causing gene targets. For instance, isoquercitrin (quercetin-3-O-ß-d-glucopyranoside) is frequently present in fruits, vegetables, medicinal herbs, and foods and drinks made from plants. Our previous study predicted using protein-protein interaction (PPI) and molecular docking analysis that the isoquercitrin compound can control kidney cancer and inflammation by triggering potential gene targets of IGF1R, PIK3CA, IL6, and PTGS2. So, the present study is about further in silico and in vitro validation. We performed molecular dynamic (MD) simulation, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, cytotoxicity assay, and RT-PCR and qRT-PCR validation. According to the MD simulation (250 ns), we found that IGF1R, PIK3CA, and PTGS2, except for IL6 gene targets, show stable binding energy with a stable complex with isoquercitrin. We also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the final targets to determine their regulatory functions and signaling pathways. Furthermore, we checked the cytotoxicity effect of isoquercitrin (IQ) and found that 5 µg/mL and 10 µg/mL doses showed higher cell viability in a normal kidney cell line (HEK 293) and also inversely showed an inhibition of cell growth at 35% and 45%, respectively, in the kidney cancer cell line (A498). Lastly, the RT-PCR and qRT-PCR findings showed a significant decrease in PTGS2, PIK3CA, and IGF1R gene expression, except for IL6 expression, following dose-dependent treatments with IQ. Thus, we can conclude that isoquercitrin inhibits the expression of PTGS2, PIK3CA, and IGF1R gene targets, which in turn controls kidney cancer and inflammation.

16.
Prostate ; 84(5): 441-459, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38168866

RESUMEN

BACKGROUND: The medical therapy of prostatic symptoms (MTOPS) trial randomized men with symptoms of benign prostatic hyperplasia (BPH) and followed response of treatment with a 5α-reductase inhibitor (5ARI), an alpha-adrenergic receptor antagonist (α-blocker), the combination of 5ARI and α-blocker or no medical therapy (none). Medical therapy reduced risk of clinical progression by 66% but the reasons for nonresponse or loss of therapeutic response in some patients remains unresolved. Our previous work showed that prostatic glucocorticoid levels are increased in 5ARI-treated patients and that glucocorticoids can increased branching of prostate epithelia in vitro. To understand the transcriptomic changes associated with 5ARI treatment, we performed bulk RNA sequencing of BPH and control samples from patients who received 5ARI versus those that did not. Deconvolution analysis was performed to estimate cellular composition. Bulk RNA sequencing was also performed on control versus glucocorticoid-treated prostate epithelia in 3D culture to determine underlying transcriptomic changes associated with branching morphogenesis. METHOD: Surgical BPH (S-BPH) tissue was defined as benign prostatic tissue collected from the transition zone (TZ) of patients who failed medical therapy while control tissue termed Incidental BPH (I-BPH) was obtained from the TZ of men undergoing radical prostatectomy for low-volume/grade prostatic adenocarcinoma confined to the peripheral zone. S-BPH patients were divided into four subgroups: men on no medical therapy (none: n = 7), α-blocker alone (n = 10), 5ARI alone (n = 6) or combination therapy (α-blocker and 5ARI: n = 7). Control I-BPH tissue was from men on no medical therapy (none: n = 8) or on α-blocker (n = 6). A human prostatic cell line in 3D culture that buds and branches was used to identify genes involved in early prostatic growth. Snap-frozen prostatic tissue taken at the time of surgery and 3D organoids were used for RNA-seq analysis. Bulk RNAseq data were deconvoluted using CIBERSORTx. Differentially expressed genes (DEG) that were statistically significant among S-BPH, I-BPH, and during budding and branching of organoids were used for pathway analysis. RESULTS: Transcriptomic analysis between S-BPH (n = 30) and I-BPH (n = 14) using a twofold cutoff (p < 0.05) identified 377 DEG (termed BPH377) and a cutoff < 0.05 identified 3377 DEG (termed BPH3377). Within the S-BPH, the subgroups none and α-blocker were compared to patients on 5ARI to reveal 361 DEG (termed 5ARI361) that were significantly changed. Deconvolution analysis of bulk RNA seq data with a human prostate single cell data set demonstrated increased levels of mast cells, NK cells, interstitial fibroblasts, and prostate luminal cells in S-BPH versus I-BPH. Glucocorticoid (GC)-induced budding and branching of benign prostatic cells in 3D culture was compared to control organoids to identify early events in prostatic morphogenesis. GC induced 369 DEG (termed GC359) in 3D culture. STRING analysis divided the large datasets into 20-80 genes centered around a hub. In general, biological processes induced in BPH supported growth and differentiation such as chromatin modification and DNA repair, transcription, cytoskeleton, mitochondrial electron transport, ubiquitination, protein folding, and cholesterol synthesis. Identified signaling pathways were pooled to create a list of DEG that fell into seven hubs/clusters. The hub gene centrality was used to name the network including AP-1, interleukin (IL)-6, NOTCH1 and NOTCH3, NEO1, IL-13, and HDAC/KDM. All hubs showed connections to inflammation, chromatin structure, and development. The same approach was applied to 5ARI361 giving multiple networks, but the EGF and sonic hedgehog (SHH) hub was of particular interest as a developmental pathway. The BPH3377, 5ARI363, and GC359 lists were compared and 67 significantly changed DEG were identified. Common genes to the 3D culture included an IL-6 hub that connected to genes identified in BPH hubs that defined AP1, IL-6, NOTCH, NEO1, IL-13, and HDAC/KDM. CONCLUSIONS: Reduction analysis of BPH and 3D organoid culture uncovered networks previously identified in prostatic development as being reinitiated in BPH. Identification of these pathways provides insight into the failure of medical therapy for BPH and new therapeutic targets for BPH/LUTS.


Asunto(s)
Inhibidores de 5-alfa-Reductasa , Hiperplasia Prostática , Masculino , Humanos , Inhibidores de 5-alfa-Reductasa/farmacología , Inhibidores de 5-alfa-Reductasa/uso terapéutico , Próstata/patología , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/genética , Hiperplasia Prostática/patología , Vías Clínicas , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Interleucina-13/uso terapéutico , Interleucina-6 , Proteínas Hedgehog , Antagonistas Adrenérgicos alfa/uso terapéutico , Perfilación de la Expresión Génica , Quimioterapia Combinada , Cromatina
17.
Cancer ; 130(16): 2834-2847, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38676932

RESUMEN

BACKGROUND: Cancer-related cognitive impairment (CRCI) and anxiety co-occur in patients with cancer. Little is known about mechanisms for the co-occurrence of these two symptoms. The purposes of this secondary analysis were to evaluate for perturbed pathways associated with the co-occurrence of self-reported CRCI and anxiety in patients with low versus high levels of these two symptoms and to identify potential mechanisms for the co-occurrence of CRCI and anxiety using biological processes common across any perturbed neurodegenerative disease pathways. METHODS: Patients completed the Attentional Function Index and the Spielberger State-Trait Anxiety Inventory six times over two cycles of chemotherapy. Based on findings from a previous latent profile analysis, patients were grouped into none versus both high levels of these symptoms. Gene expression was quantified, and pathway impact analyses were performed. Signaling pathways for evaluation were defined with the Kyoto Encyclopedia of Genes and Genomes database. RESULTS: A total of 451 patients had data available for analysis. Approximately 85.0% of patients were in the none class and 15.0% were in the both high class. Pathway impact analyses identified five perturbed pathways related to neurodegenerative diseases (i.e., amyotrophic lateral sclerosis, Huntington disease, Parkinson disease, prion disease, and pathways of neurodegeneration-multiple diseases). Apoptosis, mitochondrial dysfunction, oxidative stress, and endoplasmic reticulum stress were common biological processes across these pathways. CONCLUSIONS: This study is the first to describe perturbations in neurodegenerative disease pathways associated with CRCI and anxiety in patients receiving chemotherapy. These findings provide new insights into potential targets for the development of mechanistically based interventions.


Asunto(s)
Ansiedad , Neoplasias , Enfermedades Neurodegenerativas , Autoinforme , Humanos , Femenino , Masculino , Persona de Mediana Edad , Neoplasias/psicología , Neoplasias/complicaciones , Enfermedades Neurodegenerativas/psicología , Anciano , Transducción de Señal , Disfunción Cognitiva/etiología , Adulto
18.
Mol Genet Genomics ; 299(1): 76, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097557

RESUMEN

Lung Squamous Cell Carcinoma is characterised by significant alterations in RNA expression patterns, and a lack of early symptoms and diagnosis results in poor survival rates. Our study aimed to identify the hub genes involved in LUSC by differential expression analysis and their influence on overall survival rates in patients. Thus, identifying genes with the potential to serve as biomarkers and therapeutic targets. RNA sequence data for LUSC was obtained from TCGA and analysed using R Studio. Survival analysis was performed on DE genes. PPI network and hub gene analysis was performed on survival-relevant genes. Enrichment analysis was conducted on the PPI network to elucidate the functional roles of hub genes. Our analysis identified 2774 DEGs in LUSC patient datasets. Survival analysis revealed 511 genes with a significant impact on patient survival. Among these, 20 hub genes-FN1, ACTB, HGF, PDGFRB, PTEN, SNAI1, TGFBR1, ESR1, SERPINE1, THBS1, PDGFRA, VWF, BMP2, LEP, VTN, PXN, ABL1, ITGA3 and ANXA5-were found to have lower expression levels associated with better patient survival, whereas high expression of SOX2 correlated with longer survival. Enrichment analysis indicated that these hub genes are involved in critical cellular and cancer-related pathways. Our study has identified six key hub genes that are differentially expressed and exhibit significant influence over LUSC patient survival outcomes. Further, in vitro and in vivo studies must be conducted on the key genes for their utilisation as therapeutic targets and biomarkers in LUSC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Escamosas , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Mapas de Interacción de Proteínas/genética , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Análisis de Supervivencia , Pronóstico , Transcriptoma/genética , Bases de Datos Genéticas
19.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35598329

RESUMEN

Many statistical methods for pathway analysis have been used to identify pathways associated with the disease along with biological factors such as genes and proteins. However, most pathway analysis methods neglect the complex nonlinear relationship between biological factors and pathways. In this study, we propose a Deep-learning pathway analysis using Hierarchical structured CoMponent models (DeepHisCoM) that utilize deep learning to consider a nonlinear complex contribution of biological factors to pathways by constructing a multilayered model which accounts for hierarchical biological structure. Through simulation studies, DeepHisCoM was shown to have a higher power in the nonlinear pathway effect and comparable power for the linear pathway effect when compared to the conventional pathway methods. Application to hepatocellular carcinoma (HCC) omics datasets, including metabolomic, transcriptomic and metagenomic datasets, demonstrated that DeepHisCoM successfully identified three well-known pathways that are highly associated with HCC, such as lysine degradation, valine, leucine and isoleucine biosynthesis and phenylalanine, tyrosine and tryptophan. Application to the coronavirus disease-2019 (COVID-19) single-nucleotide polymorphism (SNP) dataset also showed that DeepHisCoM identified four pathways that are highly associated with the severity of COVID-19, such as mitogen-activated protein kinase (MAPK) signaling pathway, gonadotropin-releasing hormone (GnRH) signaling pathway, hypertrophic cardiomyopathy and dilated cardiomyopathy. Codes are available at https://github.com/chanwoo-park-official/DeepHisCoM.


Asunto(s)
COVID-19 , Carcinoma Hepatocelular , Aprendizaje Profundo , Neoplasias Hepáticas , Humanos , Factores Biológicos , Carcinoma Hepatocelular/genética , Hormona Liberadora de Gonadotropina , Isoleucina , Leucina , Lisina , Proteínas Quinasas Activadas por Mitógenos , Fenilalanina , Triptófano , Tirosina , Valina
20.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36063561

RESUMEN

The link between tumor genetic variations and immunotherapy benefits has been widely recognized. Recent studies suggested that the key biological pathways activated by accumulated genetic mutations may act as an effective biomarker for predicting the efficacy of immune checkpoint inhibitor (ICI) therapy. Here, we developed a novel individual Pathway Mutation Perturbation (iPMP) method that measures the pathway mutation perturbation level by combining evidence of the cumulative effect of mutated genes with the position of mutated genes in the pathways. In iPMP, somatic mutations on a single sample were first mapped to genes in a single pathway to infer the pathway mutation perturbation score (PMPscore), and then, an integrated PMPscore profile was produced, which can be used in place of the original mutation dataset to identify associations with clinical outcomes. To illustrate the effect of iPMP, we applied it to a melanoma cohort treated with ICIs and identified seven significant perturbation pathways, which jointly constructed a pathway-based signature. With the signature, patients were classified into two subgroups with significant distinctive overall survival and objective response rate to immunotherapy. Moreover, the pathway-based signature was consistently validated in two independent melanoma cohorts. We further applied iPMP to two non-small cell lung cancer cohorts and also obtained good performance. Altogether, the iPMP method could be used to identify the significant mutation perturbation pathways for constructing the pathway-based biomarker to predict the clinical outcomes of immunotherapy. The iPMP method has been implemented as a freely available R-based package (https://CRAN.R-project.org/package=PMAPscore).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Melanoma , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Melanoma/genética , Melanoma/terapia , Mutación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda