Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ecotoxicology ; 30(4): 525-536, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33725237

RESUMEN

Worldwide petroleum exploration and transportation continue to impact the health of the marine environment through both catastrophic and chronic spillage. Of the impacted fauna, marine reptiles are often overlooked. While marine reptiles are sensitive to xenobiotics, there is a paucity of petroleum toxicity data for these specialized fauna in peer reviewed literature. Here we review the known impacts of petroleum spillage to marine reptiles, specifically to marine turtles and iguanas with an emphasis on physiology and fitness related toxicological effects. Secondly, we recommend standardized toxicity testing on surrogate species to elucidate the mechanisms by which petroleum related mortalities occur in the field following catastrophic spillage and to better link physiological and fitness related endpoints. Finally, we propose that marine reptiles could serve as sentinel species for marine ecosystem monitoring in the case of petroleum spillage. Comprehensive petroleum toxicity data on marine reptiles is needed in order to serve as a foundation for future research with newer, unconventional crude oils of unknown toxicity such as diluted bitumen.


Asunto(s)
Contaminación por Petróleo , Petróleo , Animales , Ecosistema , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , Reptiles , Pruebas de Toxicidad
2.
Ecotoxicology ; 30(4): 537-551, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33761025

RESUMEN

Large volumes of conventional crude oil continue to be shipped by sea from production to consumption areas across the globe. In addition, unconventional petroleum products also transverse pelagic habitats; for example, diluted bitumen from Canada's oilsands which is shipped along the Pacific coast to the United States and Asia. Therefore, there is a continuing need to assess the toxicological consequences of chronic and catastrophic petroleum spillage on marine wildlife. Peer-reviewed literature on the toxicity of unconventional petroleum such as diluted bitumen exists for teleost fish, but not for fauna such as marine mammals. In order to inform research needs for unconventional petroleum toxicity we conducted a comprehensive literature review of conventional petroleum toxicity on marine mammals. The common endpoints observed in conventional crude oil exposures and oil spills include hematological injury, modulation of immune function and organ weight, genotoxicity, eye irritation, neurotoxicity, lung disease, adrenal dysfunction, metabolic and clinical abnormalities related to oiling of the pelage, behavioural impacts, decreased reproductive success, mortality, and population-level declines. Based on our findings and the body of literature we accessed, our recommendations for future research include: 1) improved baseline data on PAH and metals exposure in marine mammals, 2) improved pre- and post-spill data on marine mammal populations, 3) the use of surrogate mammalian models for petroleum toxicity testing, and 4) the need for empirical data on the toxicity of unconventional petroleum to marine mammals.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Hidrocarburos/toxicidad , Petróleo/análisis , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
J Environ Manage ; 174: 79-86, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27016896

RESUMEN

Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops.


Asunto(s)
Petróleo/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Suelo/química , Withania/efectos de los fármacos , Biodegradación Ambiental , Germinación/efectos de los fármacos , Petróleo/toxicidad , Pseudomonas/crecimiento & desarrollo , Rhizobium/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Contaminantes del Suelo/toxicidad , Withania/crecimiento & desarrollo
4.
3 Biotech ; 12(9): 179, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35865258

RESUMEN

The toxic effects of diesel fuel on whole plants have been reported before, but little is known about the toxic effect of diesel fuel on callus cultures. This knowledge is a pre-requisite for exploring the possibility of using a sub-lethal diesel concentration as an agent for in vitro cell line selection to obtain novel somaclonal variants resistant to diesel toxicity. These novel variants could be useful for the phytoremediation of diesel-contaminated soil. Here, a callus induction medium [Murashige and Skoog medium supplemented with 1.8 µM of naphthlene-1-acetic acid (NAA) and 6.6 µM of 6-benzyladenine (BA)] was found to induce 85% of Petunia grandiflora leaf explants to form light green calli. Since it was not possible to include diesel in aseptic culture, the P. grandiflora calli were exposed to diesel under non-aseptic conditions. It was found that the calli did not exhibit any sign of necrosis immediately after up to 9 min of diesel exposure. The diesel-treated calli were subsequently subcultured successfully on the callus induction medium using the proliferating, non-necrotic cells. Transverse sections of the control and diesel-treated calli after 2 weeks of culture revealed that the control calli exhibited more small meristematic cells while diesel-treated calli exhibited larger, empty-looking parenchyma cells. Moreover, it was possible to induce, though at a low frequency (< 15%), shoot formation in the control calli and those derived from the diesel treatment on the Murashige and Skoog medium supplemented with 1.1 µM of indole-3-acetic acid (IAA) and 13.3 µM of BA. Under glasshouse conditions, the shoots regenerated from the calli derived from the diesel treatment exhibited higher biomass than those from the control calli and P. grandiflora seedlings when grown in a potting mix spiked with 0%, 2% and 7% diesel. Taken together, these results suggest that up to 9 min of diesel exposure of P. grandiflora calli was sub-lethal.

5.
Environ Sci Pollut Res Int ; 28(39): 54238-54259, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34387817

RESUMEN

The marine environment is often affected by petroleum hydrocarbon pollution due to industrial activities and petroleum accidents. This pollution has recalcitrant and persistent compounds that pose a high risk to the ecological system and human health. For this reason, the world claims to seek to clean up these pollutants. Bioremediation is an attractive approach for removing petroleum pollution. It is considered a low-cost and highly effective approach with fewer side effects compared to chemical and physical techniques. This depends on the metabolic capability of microorganisms involved in the degradation of hydrocarbons through enzymatic reactions. Bioremediation activities mostly depend on environmental conditions such as temperature, pH, salinity, pressure, and nutrition availability. Understanding the effects of environmental conditions on microbial hydrocarbon degraders and microbial interactions with hydrocarbon compounds could be assessed for the successful degradation of petroleum pollution. The current review provides a critical view of petroleum pollution in seawater, the bioavailability of petroleum compounds, the contribution of microorganisms in petroleum degradation, and the mechanisms of degradation under aerobic and anaerobic conditions. We consider different biodegradation approaches such as biostimulation, bioaugmentation, and phytoremediation.


Asunto(s)
Biodegradación Ambiental , Contaminación por Petróleo , Contaminación del Agua , Agua de Mar
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda