Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Environ Sci Technol ; 58(31): 13726-13736, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39047191

RESUMEN

With the rapid depletion of phosphate rocks and increasing agricultural demand, establishing a phosphorus (P) flow "loop" rather than a one-way trajectory between cropland and urban areas was imperative. Recovering P from municipal wastewater stood as a viable strategy to mitigate reliance on traditional P-containing chemical fertilizer. This study analyzed the intricate relationships between the potentials of P recovery from municipal wastewater and the P demand of croplands in the populated Yangtze River Delta (YRD), China. An indicator of the P vehicle transport distance was constructed and calculated to estimate the potential to recover and reuse P in agriculture, applying the simulated annealing (SA) algorithm and road networks obtained from OpenStreetMap (OSM). The results indicated that, on a regional scale, recovered P from municipal wastewater could fulfill 14.0% of the cropland P demands in the YRD, with a median P vehicle transport distance of 3.1 km/Mg of P. Notably, the P vehicle transport distance varied largely depending upon the cropland distributions, road density, and P recovery potential from municipal wastewater. The novel methodology developed here determined the optimal transportation routes for P recovery from wastewater treatment plants (WWTPs) to cropland, which played a crucial role in refining the wastewater management strategies aligned with the United Nations Sustainable Development Goals.


Asunto(s)
Fósforo , Ríos , Aguas Residuales , Aguas Residuales/química , China , Ríos/química , Agricultura
2.
Environ Res ; 260: 119640, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029727

RESUMEN

Phosphorus in sewage is mostly enriched in activated sludge in wastewater treatment plants, making excess sludge an appropriate material for phosphorus recovery. The potential of vivianite (Fe3(PO4)2·8H2O) crystallization-based phosphorus recovery during the anaerobic digestion of thermally hydrolyzed sludge was discussed with influences of organic compounds on the formation of vivianite crystals being investigated in detail. Bovine serum albumin, humic acids and alginate, as model compounds of proteins, humic acids and polysaccharides, all inhibited vivianite crystallization, with the influence of humic acids being the most significant. A sludge retention time of >12 d for effective degradation of organic compounds and a certain degree of FeII excess are suggested to decrease the organics resulting inhibition. The results demonstrate the compatibility of vivianite-crystallization pathway of phosphorus recovery with anaerobic sludge digesters, and reveal the complexity of vivianite formation in the sludge with further research warranted to minimize the inhibitory influences.


Asunto(s)
Cristalización , Fósforo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Fósforo/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Calor , Hidrólisis , Sustancias Húmicas/análisis , Albúmina Sérica Bovina/química , Fosfatos/química
3.
Environ Res ; 246: 118098, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184062

RESUMEN

Hydrothermal carbonization (HTC) is a promising alternative to transform biomass waste into a solid carbonaceous material (hydrochar) and a process water with potential for material and energy recovery. In this study, two alternatives for process water treatment by conventional and acid-assisted HTC of swine manure are discussed. Process water from conventional HTC at 180 °C showed high biodegradability (55% COD removal) and methane production (∼290 mL STP CH4 g-1 CODadded) and the treatment in an upflow anaerobic sludge blanket reactor allowed obtaining a high methane production yield (1.3 L CH4 L-1 d-1) and COD removal (∼70%). The analysis of the microbiota showed a high concentration of Synergistota and Firmicutes phyla, with high degradation of organic nitrogen-containing organic compounds. Acid-assisted HTC proved to be a viable option for nutrient recovery (migration of 83% of the P to the process water), which allowed obtaining a solid salt by chemical precipitation with Mg(OH)2 (NPK of 4/4/0.4) and MgCl2 (NPK 8/17/0.5), with a negligible content of heavy metals. The characteristics of the precipitated solid complied with the requirements of European Regulation (2019)/1009 for fertilizers and amendments in agricultural soils, being a suitable alternative for the recycling of nutrients from wastes.


Asunto(s)
Carbono , Estiércol , Animales , Porcinos , Anaerobiosis , Carbono/metabolismo , Metano , Abastecimiento de Agua , Temperatura
4.
Environ Res ; 252(Pt 3): 118985, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663668

RESUMEN

The biofilm sequencing batch reactor (BSBR) technique has been deployed in the laboratory to enrich phosphorus from simulated wastewater, but it is still not clear what its performance will be when real world sewage is used. In this work, the effluent from the multi-stage anoxic-oxic (AO) activated sludge process at a sewage plant was used as the feed water for a BSBR pilot system, which had three reactors operating at different levels of dissolved oxygen (DO). The phosphorus adsorption and release, the biofilm growth, and the extracellular polymeric substances (EPS) components and contents were examined. The microbial communities and the signaling molecules N-acyl-l-homoserine lactones (AHLs) were also analyzed. Gratifyingly, the BSBR process successfully processed the treated sewage, and the biofilm developed phosphorus accumulation capability within 40 days. After entering stable operation, the system concentrated phosphate from 2.59 ± 0.77 mg/L in the influent to as much as 81.64 mg/L in the recovery liquid. Sludge discharge had profound impacts on all aspects of BSBR, and it was carried out successfully when the phosphorus absorption capacity of the biofilm alone was comparable to that of the reactor containing the activated sludge. Shortly after the sludge discharge, the phosphate concentration of the recovery liquid surged from 50 to 140 mg/L, the biofilm thickness grew from 20.56 to 67.32 µm, and the diversity of the microbial population plunged. Sludge discharge stimulated Candidatus competibacter to produce a large amount of AHLs, which was key in culturing the biofilm. Among the AHLs, both C10-HSL and 3OC12-HSL were significantly positively correlated with EPS and the abundance of Candidatus competibacter. The current results demonstrated BSBR as a viable option to enrich phosphorus from real world sewage with low phosphorus content and fluctuating chemistry. The mechanistic explorations also provided theoretical guidance for cultivating phosphorus-accumulating biofilms.


Asunto(s)
Biopelículas , Reactores Biológicos , Fosfatos , Aguas del Alcantarillado , Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Fosfatos/metabolismo , Fosfatos/análisis , Eliminación de Residuos Líquidos/métodos , Fósforo/análisis , Fósforo/metabolismo
5.
J Environ Manage ; 365: 121344, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909572

RESUMEN

Recovering phosphorus (P) and nitrogen (N) from wastewater not only contributes to environmental protection but also aligns with sustainable development goals. This study employed a magnesium-air fuel cell (Mg-O2-FC) to extract P and N from wastewater in the form of struvite (MgNH4·6H2O), based on the removal efficiency of ammonia and phosphate, electricity generation capacity and struvite purity to determine the optimal operation parameters. These parameters included hydraulic retention time (HRT), service life of magnesium sheet, and precipitation discharge frequency. The results showed that the removal efficiency of ammonia from 0 to 4h was 55.99%, and that from 4 to 12h was only 15.74%. The phosphate removal efficiency in the initial cycle was 97.68% but decreased to 63.25% after 24h. The phosphate removal rate in 2 min increased by 145% when the precipitation discharge frequency increased from 4 h/time to 24 h/time. Consequently, the HRT, service life of the magnesium sheet, and precipitation discharge frequency were selected as 4 h, 24 h, and 24 h/time. These optimized conditions provide valuable insights for the practical implementation of Mg-O2-FC in recovering N and P from wastewater.


Asunto(s)
Magnesio , Nitrógeno , Fósforo , Aguas Residuales , Fósforo/química , Fósforo/análisis , Aguas Residuales/química , Nitrógeno/análisis , Magnesio/química , Magnesio/análisis , Eliminación de Residuos Líquidos/métodos , Amoníaco/química , Fosfatos/química , Fosfatos/análisis
6.
J Environ Manage ; 362: 121339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824897

RESUMEN

To promote optimal phosphorus (P) recovery from municipal wastewater and sewage sludge with viable legal instruments, it is imperative to understand the regional and national consequences of different legal requirements for recycling. In this study we develop a scenario-based analysis to assess the environmental and economic impact of different national P recovery strategies in the context of a detailed representation of the existing Austrian wastewater infrastructure. This assessment combines material flow analysis, life cycle assessment and life cycle costing and includes the indicators P recycling rate, P utilization degree, heavy metal removal rate, share of heavy metals' content in wastewater redirected to agricultural soils, global warming potential, cumulated energy demand, terrestrial acidification potential, volume of freight transport and annual costs. The following main conclusions can be drawn. P recovery from ash shows the highest potential regarding the utilization of P from wastewater. A high P utilization from wastewater should rely on recovery technologies that decontaminate products, otherwise pollutant loads to agricultural soils might increase. P recovery to the extent of 60-85 % of P in WWTPs influent can be achieved by savings/costs of -0.8 to +4.7 EUR inhabitant-1 yr-1 in addition to current cost of the wastewater treatment/sludge disposal system. Key factors to be considered for costs are the choice of recovery process, revenues from products, and the use of existing incineration infrastructure. P recovery can lead to the reduction of greenhouse gas emissions in Austria if nitrous oxide emissions from sludge incineration are limited and efficient heat utilization strategies are implemented. There is a trade-off in terms of environmental and economic costs in choosing a more centralized or decentralized mono-incineration strategy.


Asunto(s)
Fósforo , Reciclaje , Aguas del Alcantarillado , Austria , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Metales Pesados
7.
J Environ Manage ; 357: 120606, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583387

RESUMEN

While phosphorus fertilizers contribute to food security, part of the introduced phosphorus dissipates into water bodies leading to eutrophication. At the same time, conventional mineral phosphorus sources are increasingly scarce. Therefore, closing phosphorus cycles reduces pollution while decreasing trade dependence and increasing food security. A major part of the phosphorus loss occurs during food processing. In this article, we combine a systematic literature review with investment and efficiency analysis to investigate the financial feasibility of recovering phosphorus from dairy processing wastewater. This wastewater is particularly rich in phosphorus, but while recovery technologies are readily available, they are rarely adopted. We calculate the Net Present Value (NPV) of investing in phosphorus recycling technology for a representative European dairy processing company producing 100,000 tonnes of milk per year. We develop sensitivity scenarios and adjust the parameters accordingly. Applying struvite precipitation, the NPV can be positive in two scenarios. First, if the phosphorus price is high (1.51 million EUR) or second if phosphorus recovery is a substitute for mandatory waste disposal (1.48 million EUR). However, for a variety of methodological specifications, the NPV is negative, mainly because of high input costs for chemicals and energy. These trade-offs between off-setting pollution and reducing energy consumption imply, that policy makers and investors should consider the energy source for phosphorus recovery carefully.


Asunto(s)
Fósforo , Aguas Residuales , Aguas Residuales/química , Industria Lechera , Eliminación de Residuos Líquidos/métodos , Fertilizantes , Reciclaje
8.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792046

RESUMEN

In response to the need for improvement in the utilization of ammonium-rich solutions after the electrochemical reduction of nitrate (NO3--RR), this study combined phosphorus-containing wastewater and adopted the electrochemical precipitation method for the preparation of struvite (MAP) to simultaneously recover nitrogen and phosphorus resources. At a current density of 5 mA·cm-2 and an initial solution pH of 7.0, the recovery efficiencies for nitrogen and phosphorus can reach 47.15% and 88.66%, respectively. Under various experimental conditions, the generated struvite (MgNH4PO4·6H2O) exhibits a typical long prismatic structure. In solutions containing nitrate and nitrite, the coexisting ions have no significant effect on the final product, struvite. Finally, the characterization of the precipitate product by X-ray diffraction (XRD) revealed that its main component is struvite, with a high purity reaching 93.24%. Overall, this system can effectively recover ammonium nitrogen from the NO3--RR solution system after nitrate reduction, with certain application prospects for the recovery of ammonium nitrogen and phosphate.

9.
Water Sci Technol ; 90(3): 1009-1022, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141048

RESUMEN

The manufacturing of fossil-based fertilizers by extraction of rock phosphate has contributed to carbon emissions and depleted the non-renewable phosphorus reserves. Sewage sludge, which is a waste product from Sewage Treatment Plants (STPs), is rich in phosphorus. The existing techniques for sludge management contribute to carbon emissions and ecological footprint. Struvite (raw fertilizer) and biochar recovery from sludge has emerged as viable methods to reduce carbon emission and ensure economic sustainability of STPs. In this work, the potential for phosphorus recovery and revenue generation is discussed for Rajasthan state in India. The fate of phosphorus and heavy metals in STPs is evaluated which indicates that about 70% of the phosphorus and trace amounts of metals end up in sewage sludge. Further, the power consumption is high in STPs due to industrial wastewater ingress. There is a need to bridge the gap between sewage treatment and generation in Rajasthan, improve STP performance before resource recovery inclusion at policy-level and scale-up. Mixing struvite with biochar can lead to safe application of struvite as raw fertilizer as heavy metals are sequestered by biochar. A business framework is developed to serve as a blueprint and potential model for linking technical and market viability.


Asunto(s)
Compuestos de Magnesio , Fosfatos , Fósforo , Aguas del Alcantarillado , Estruvita , Aguas del Alcantarillado/química , Estruvita/química , India , Fósforo/química , Fósforo/análisis , Fosfatos/química , Compuestos de Magnesio/química , Fertilizantes/análisis , Precipitación Química , Carbón Orgánico/química , Metales Pesados/análisis , Eliminación de Residuos Líquidos/métodos
10.
Water Sci Technol ; 90(1): 238-255, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007317

RESUMEN

Human urine, which is high in nutrients, acts as a resource as well as a contaminant. Indiscriminate urine discharge causes environmental pollution and wastes resources. To elucidate the research status and developmental trajectory of source-separated urine (SSU) treatment and recovery, this study was based on the Web of Science Core Collection (WOSCC) database and used the bibliometric software VOSviewer and CiteSpace to conduct a comprehensive and in-depth bibliometric analysis of the related literature in this field. The findings revealed a general upward trend in SSU treatment and recovery from 2000 to 2023. The compendium of 894 scholarly articles predominantly focused on the disciplines of Environmental Sciences, Environmental Engineering, and Water Resources. China and the USA emerged as the foremost contributors. Keyword co-occurrence mapping, clustering, and burst analysis have shown that the recovery of nitrogen and phosphorus from urine is currently the main focus, with future prospects leaning toward the retrieval of biochemicals and chemical energy. This study systematically categorizes and compares the developmental status, current advancements, and research progress in this field. The findings of this study provide a valuable reference for understanding developmental pathways in this field of research.


Asunto(s)
Bibliometría , Orina , Orina/química , Humanos , Eliminación de Residuos Líquidos/métodos
11.
Plant Biotechnol J ; 21(7): 1373-1382, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36920783

RESUMEN

As a finite and non-renewable resource, phosphorus (P) is essential to all life and crucial for crop growth and food production. The boosted agricultural use and associated loss of P to the aquatic environment are increasing environmental pollution, harming ecosystems, and threatening future global food security. Thus, recovering and reusing P from water bodies is urgently needed to close the P cycle. As a natural, eco-friendly, and sustainable reclamation strategy, microalgae-based biological P recovery is considered a promising solution. However, the low P-accumulation capacity and P-removal efficiency of algal bioreactors restrict its application. Herein, it is demonstrated that manipulating genes involved in cellular P accumulation and signalling could triple the Chlamydomonas P-storage capacity to ~7% of dry biomass, which is the highest P concentration in plants to date. Furthermore, the engineered algae could recover P from wastewater almost three times faster than the unengineered one, which could be directly used as a P fertilizer. Thus, engineering genes involved in cellular P accumulation and signalling in microalgae could be a promising strategy to enhance P uptake and accumulation, which have the potential to accelerate the application of algae for P recovery from the water body and closing the P cycle.


Asunto(s)
Microalgas , Fósforo , Ecosistema , Agua , Aguas Residuales
12.
Environ Sci Technol ; 57(27): 10107-10116, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37364242

RESUMEN

Phosphorus (P) recovery from biosolids can play an important role in a circular economy. Herein, an electrochemical phosphorus recovery cell (EPRC) was proposed and examined to recover P from municipal whole digestate via simultaneous leaching and precipitation. The anode of the EPRC released P as aqueous PO43--P through acidification, achieving the highest leaching efficiency of 93.3% under a current density of 30 A m-2. When the leached P solution was treated in the cathode, native metals including Ca and Fe facilitated electrochemically mediated PO43--P precipitation (EMP) and precipitated ∼99% of the leached P in the cathode chamber. Around 54.3-78.7% of total P existed in two harvestable forms: suspended solids in the cathode effluent and immobilized P in the cathode chamber. The solid products contained 28.42-33.51% of P2O5, comparable to the high-grade phosphate rock. Higher current densities reduced cathode scaling and resulted in a lower content of heavy metals in the solid products. An acidic solution was reused three times and effectively maintained cathode performance during a 42-cycle operation, achieving a consistent P recovery efficiency of nearly 80%. Those results have demonstrated the feasibility of the EPRC for recovering P from P-rich solid wastes.


Asunto(s)
Metales Pesados , Fósforo , Fósforo/química
13.
Environ Sci Technol ; 57(28): 10242-10251, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37405980

RESUMEN

Biomineralization inspired the development of simultaneous biological transformations and chemical precipitation for simultaneous nitrogen removal and phosphorus recovery from wastewater, which could compensate for the incapacity of phosphorus management in the new biological route of anaerobic ammonium oxidation (anammox). In this study, we strengthened anammox-mediated biomineralization by long-term feeding of concentrated N, P, and Ca substrates, and a self-assembled matrix of anammox bacteria and hydroxyapatite (HAP) was fabricated in a granular shape, defined as HAP-anammox granules. HAP was identified as the dominant mineral using elemental analysis, X-ray diffraction, and Raman spectroscopy. The intensive precipitation of HAP resulted in a higher inorganic fraction and substantially improved settleability of anammox biomass, which facilitated HAP precipitation by acting as nucleation and metabolically elevated pH. By using X-ray microcomputed tomography, we visually represented the hybrid texture of interwoven HAP pellets and biomass, the core-shell layered architecture of different-sized HAP-anammox granules, and their homogeneously regulated thickness of the outer biofilm (from 118 to 635 µm). This unique architecture endows HAP-anammox granules with outstanding settleability, active biofilm, and tightly bonded biofilm with the carrier, which may explain the excellent performance of these HAP-anammox granules under various challenging operational conditions in previous studies.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Oxidación Anaeróbica del Amoníaco , Durapatita , Microtomografía por Rayos X , Reactores Biológicos/microbiología , Fósforo , Nitrógeno , Biopelículas , Oxidación-Reducción , Desnitrificación
14.
Environ Sci Technol ; 57(5): 2105-2117, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36688915

RESUMEN

Vivianite (Fe3(PO4)2·8H2O) crystallization has attracted increasing attention as a promising approach for removing and recovering P from wastewaters. However, FeII is susceptible to oxygen with its oxidation inevitably influencing the crystallization of vivianite. In this study, the profile of vivianite crystallization in the presence of dissolved oxygen (DO) was investigated at pHs 5-7 in a continuous stirred-tank reactor. It is found that the influence of DO on vivianite crystallization was highly pH-related. At pH 5, the low rate of FeII oxidation at all of the investigated DO of 0-5 mg/L and the low degree of vivianite supersaturation resulted in slow crystallization with the product being highly crystalline vivianite, but the P removal efficiency was only 30-40%. The removal of P from the solution was substantially more effective (to >90%) in the DO-removed reactors at pH 6 and 7, whereas the efficiencies of P removal and especially recovery decreased by 10-20% when FeII oxidation became more severe at DO concentrations >2.5 mg/L (except at pH 6 with 2.5 mg/L DO). The elevated degree of vivianite supersaturation and enhanced rate and extent of FeII oxidation at the higher pHs led to decreases in the size and homogeneity of the products. At the same pH, amorphous ferric oxyhydroxide (AFO)─the product of FeII oxidation and FeIII hydrolysis─interferes with vivianite crystallization with the induction of aggregation of crystal fines by AFO, leading to increases in the size of the obtained solids.


Asunto(s)
Compuestos Férricos , Fósforo , Compuestos Férricos/química , Fósforo/química , Cristalización , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado , Fosfatos/química , Compuestos Ferrosos/química
15.
Environ Sci Technol ; 57(25): 9194-9203, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37256737

RESUMEN

Interconnected food, energy, water systems (FEWS) require systems level understanding to design efficient and effective management strategies and policies that address potentially competing challenges of production and environmental quality. Adoption of agricultural best management practices (BMPs) can reduce nonpoint source phosphorus (P) loads, but there are also opportunities to recover P from point sources, which could also reduce demand for mineral P fertilizer derived from declining geologic reserves. Here, we apply the Integrated Technology-Environment-Economics Model to investigate the consequences of watershed-scale portfolios of agricultural BMPs and environmental and biological technologies (EBTs) for co-benefits of FEWS in Corn Belt watersheds. Via a pilot study with a representative agro-industrial watershed with high P and nitrogen discharge, we show achieving the nutrient reduction goals in the watershed; BMP-only portfolios require extensive and costly land-use change (19% of agricultural land) to perennial energy grasses, while portfolios combining BMPs and EBTs can improve water quality while recovering P from corn biorefineries and wastewater streams with only 4% agricultural land-use change. The potential amount of P recovered from EBTs is estimated as 2 times as much as the agronomic P requirement in the watershed, showing the promise of the P circular economy. These findings inform solution development based on the combination of agricultural BMPs and EBTs for the cobenefits of FEWS in Corn Belt watersheds.


Asunto(s)
Monitoreo del Ambiente , Zea mays , Proyectos Piloto , Agricultura , Tecnología , Fósforo/análisis
16.
Environ Res ; 228: 115848, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024026

RESUMEN

With the shortage of phosphorus resources, the concept of phosphorus recovery from wastewater is generally proposed. Recently, phosphorus recovery from wastewater in the form of vivianite has been widely reported, which could be used as a slow-release fertilizer as well as the production of lithium iron phosphate for Li-ion batteries. In this study, chemical precipitation thermodynamic modeling was applied to evaluate the effect of solution factors on vivianite crystallization with actual phosphorus containing industrial wastewater. The modeling results showed that the solution pH influences the concentration of diverse ions, and the initial Fe2+ concentration affects the formation area of vivianite. The saturation index (SI) of vivianite increased with the initial Fe2+ concentration and Fe:P molar ratio. pH 7.0, initial Fe2+ concentration 500 mg/L and Fe:P molar ratio 1.50 were the optimal conditions for phosphorus recovery. Mineral Liberation Analyzer (MLA) accurately determined the purity of vivianite was 24.13%, indicating the feasibility of recovering vivianite from industrial wastewater. In addition, the cost analysis showed that the cost of recovering phosphorus by the vivianite process was 0.925 USD/kg P, which can produce high-value vivianite products and realize "turn waste into treasure".


Asunto(s)
Fósforo , Aguas Residuales , Fosfatos/química , Compuestos Ferrosos , Eliminación de Residuos Líquidos , Aguas del Alcantarillado
17.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569435

RESUMEN

Over the past two decades, there has been increasing interest in the use of low-cost and effective sorbents in water treatment. Hybrid chitosan sorbents are potential materials for the adsorptive removal of phosphorus, which occurs in natural waters mainly in the form of orthophosphate(V). Even though there are numerous publications on this topic, the use of such sorbents in industrial water treatment and purification is limited and controversial. However, due to the explosive human population growth, the ever-increasing global demand for food has contributed to the consumption of phosphorus compounds and other biogenic elements (such as nitrogen, potassium, or sodium) in plant cultivation and animal husbandry. Therefore, the recovery and reuse of phosphorus compounds is an important issue to investigate for the development and maintenance of a circular economy. This paper characterizes the problem of the presence of excess phosphorus in water reservoirs and presents methods for the adsorptive removal of phosphate(V) from water matrices using chitosan composites. Additionally, we compare the impact of modifications, structure, and form of chitosan composites on the efficiency of phosphate ion removal and adsorption capacity. The state of knowledge regarding the mechanism of adsorption is detailed, and the results of research on the desorption of phosphates are described.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Fosfatos , Quitosano/química , Aguas Residuales , Fósforo , Adsorción , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Cinética
18.
J Environ Manage ; 344: 118691, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37536239

RESUMEN

Incineration is a promising disposal method for sewage sludge (SS), enriching more than 90% of phosphorus (P) in the influent into the powdered product, sewage sludge ash (SSA), which is convenient for further P recovery. Due to insufficient bioavailable P and enriched heavy metals (HMs) in SSA, it is limited to be used directly as fertilizer. Hence, this paper provides an overview of P transformation in SS incineration, characterization of SSA components, and wet-chemical and thermochemical processes for P recovery with a comprehensive technical, economic, and environmental assessment. P extraction and purification is an important technical step to achieve P recovery from SSA, where the key to all technologies is how to achieve efficient separation of P and HMs at a low economic and environmental cost. It can be clear seen from the review that the economics of P recovery from SSA are often weak due to many factors. For example, the cost of wet-chemical methods is approximately 5∼6 €/kg P, while the cost of recovering P by thermochemical methods is about 2∼3 €/kg P, which is slightly higher than the current P fertilizer (1 €/kg P). So, for now, legislation is significant for promoting P recovery from SSA. In this regard, the relevant experience in Europe is worth learning from countries that have not yet carried out P recovery from SSA, and to develop appropriate policies and legislation according to their own national conditions.


Asunto(s)
Metales Pesados , Fósforo , Fósforo/análisis , Aguas del Alcantarillado/química , Fertilizantes , Incineración , Europa (Continente) , Metales Pesados/química
19.
J Environ Manage ; 348: 119223, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827085

RESUMEN

The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.


Asunto(s)
Fósforo , Cuarzo , Fermentación , Arena , Anaerobiosis , Cristalización , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Fosfatos/química , Compuestos Ferrosos/química
20.
J Environ Manage ; 325(Pt A): 116254, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265233

RESUMEN

Mechanical solid-liquid separation is an emerging closed-loop technology to recover and recycle carbon, nutrients and water from dilute livestock manure. This closed-loop concept is tested using a modular separation technology (Z-Filter) applied at full-scale for the first time to treat effluent from a pasture-based dairy. Effluent flow rates were 200-400 L min-1 at a total solids (TS) content of 0.52% (pH 7.2). Separation efficiency and composition of the separated solid fraction were determined, and chemically-assisted separation with cationic polymer flocculant with/without hydrated lime was also tested. Without flocculant and lime, 25.9% of TS and 33.4% of volatile solids (VS) ended up in the solid fraction, but total Kjeldahl nitrogen (TKN), phosphorus (P) and potassium recovery was not significant, likely being in poorly separable fine particle or soluble fractions. With a 5% flow-based dosage of flocculant, most of the TS (69%) and VS (85%), and notable amounts of TKN (52-56%) and P (40%) ended up in the solid fraction. Phosphorus recovery was further increased to 91% when both flocculant and hydrated lime was added up to pH 9.2. The solid fraction was stackable with 16-20% TS, making transport more economical to enable further processing and beneficial reuse of nutrients and organic matter. Removal of VS also reduces fugitive methane emissions from uncovered anaerobic effluent ponds. Overall, the results indicated that solid-liquid separation could provide improved environmental management options for dairy farmers with dilute manure effluent to beneficially utilise organic matter and nutrients.


Asunto(s)
Ganado , Estiércol , Animales , Conservación de los Recursos Naturales , Fósforo , Nitrógeno , Anaerobiosis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda