Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nano Lett ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606881

RESUMEN

Photocatalysis offers a direct, yet robust, approach to eradicate pathogenic bacteria. However, the practical implementation of photocatalytic disinfection faces a significant challenge due to low-efficiency photogenerated carrier separation and transfer. Here, we present an effective approach to improve photocatalytic disinfection performance by exploiting the pyro-phototronic effect through a synergistic combination of pyroelectric properties and photocatalytic processes. A set of comprehensive studies reveals that the temperature fluctuation-induced pyroelectric field promotes photoexcited carrier separation and transfer and thus facilitates the generation of reactive oxygen species and ultimately enhances photocatalytic disinfection performance. It is worth highlighting that the constructed film demonstrated an exceptional antibacterial efficiency exceeding 95% against pathogenic bacteria under temperature fluctuations and light irradiation. Moreover, the versatile modulation role of the pyro-phototronic effect in boosting photocatalytic disinfection was corroborated. This work paves the way for improving photocatalytic disinfection efficiency by harnessing the synergistic potential of various inherent material properties.

2.
Environ Res ; 212(Pt E): 113602, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660568

RESUMEN

The challenge from pathogenic infections still threatens the health and life of people in developing areas. An efficient, low-cost, and abundant-resource disinfection method is desired for supplying safe drinking water. This study aims to develop a novel Ti3+ doping TiO2 nanoparticle decorated ceramic disk filter (Ti3+/TiO2@CDF) for point-of-use (POU) disinfection of drinking water. The production of Ti3+/TiO2@CDF was optimized to maximize disinfection efficiency and flow rate. Under optimal conditions, the log reduction value (LRV) could reach up to 7.18 and the flaw rate was 108 mL/h. The influences of environmental factors were also investigated. Natural or slightly alkaline conditions, low turbidity, and low concentration of humic acid were favorable for the disinfection of Ti3+/TiO2@CDF, while co-existing HCO3- ions and diatomic cations (Ca2+ and Mg2+) exhibited the opposite effect. Furthermore, the practicability and stability of Ti3+/TiO2@CDF was demonstrated. Ti3+/TiO2@CDF showed high disinfection efficiency for E. coli and S. aureus under a range of concentrations. Long-term experiment indicated that Ti3+/TiO2@CDF was stable. The underlying disinfection mechanisms were investigated and concluded as the combination of retention, adsorption, and photocatalytic disinfection. The developed Ti3+/TiO2@CDF can provide an effective and reliable disinfection tool for POU water treatment in remote area.


Asunto(s)
Agua Potable , Nanopartículas , Purificación del Agua , Catálisis , Cerámica , Desinfección/métodos , Escherichia coli , Humanos , Staphylococcus aureus , Titanio , Purificación del Agua/métodos
3.
Nano Lett ; 21(16): 6998-7004, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34339204

RESUMEN

Solar-driven reactive oxygen species (ROS) generation is an attractive disinfection technique for cell death and water purification. However, most photocatalysts require high stability in the water environment and the production of ROS with a sufficient amount and diffusion length to damage pathogens. Here, a ROS generation system was developed consisting of tapered crystalline silicon microwires coated with anatase titanium dioxide for a conformal junction. The system effectively absorbed >95% of sunlight over 300-1100 nm, resulting in effective ROS generation. The system was designed to produce various ROS species, but a logistic regression analysis with cellular survival data revealed that the diffusion length of the ROS is ∼9 µm, implying that the most dominant species causing cell damage is H2O2. Surprisingly, a quantitative analysis showed that only 15 min of light irradiation on the system would catalyze a local bactericidal effect comparable to the conventional germicidal level of H2O2 (∼3 mM).


Asunto(s)
Peróxido de Hidrógeno , Luz Solar , Muerte Celular , Especies Reactivas de Oxígeno , Titanio
4.
Nano Lett ; 21(4): 1576-1583, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33275432

RESUMEN

Recently, bioaerosols, including the 2019 novel coronavirus, pose a serious threat to global public health. Herein, we introduce a visible-light-activated (VLA) antimicrobial air filter functionalized with titanium dioxide (TiO2)-crystal violet (CV) nanocomposites facilitating abandoned visible light from sunlight or indoor lights. The TiO2-CV based VLA antimicrobial air filters exhibit a potent inactivation rate of ∼99.98% and filtration efficiency of ∼99.9% against various bioaerosols. Under visible-light, the CV is involved in overall inactivation by inducing reactive oxygen species production both directly (CV itself) and indirectly (in combination with TiO2). Moreover, the susceptibility of the CV to humidity was significantly improved by forming a hydrophobic molecular layer on the TiO2 surface, highlighting its potential applicability in real environments such as exhaled or humid air. We believe this work can open a new avenue for designing and realizing practical antimicrobial technology using ubiquitous visible-light energy against the threat of infectious bioaerosols.


Asunto(s)
Microbiología del Aire , Antiinfecciosos Locales/química , Desinfección/métodos , Violeta de Genciana/química , Nanocompuestos/química , Titanio/química , Antiinfecciosos Locales/farmacología , Bacterias/efectos de los fármacos , Bacterias/efectos de la radiación , Infecciones Bacterianas/prevención & control , COVID-19/prevención & control , Desinfección/instrumentación , Filtración/instrumentación , Filtración/métodos , Violeta de Genciana/farmacología , Humanos , Luz , Nanocompuestos/ultraestructura , Titanio/farmacología , Agua/química
5.
J Environ Sci (China) ; 92: 28-37, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32430131

RESUMEN

Photocatalytic disinfection has long been used to combat pathogenic bacteria. However, the specific mechanism underlying photocatalytic disinfection and its corresponding targets remain unclear. In this study, an analysis of the potential mechanism underlying photocatalytic disinfection was performed based on integrated metabolic networks and transcriptional data. Two sets of RNA-seq data (wild type and a photocatalysis-resistant mutant mediated by titanium dioxide (TiO2)) were processed to constrain the genome scale metabolic models (GSMM) of E. coli. By analyzing the metabolic network, the differential metabolic flux of every reaction was computed in constrained GSMM, and several significantly differential metabolic fluxes in reactions were extracted and analyzed. Most of these reactions were involved in the transmembrane transport of substances and occurred on the inner membrane or were an important component of the cell membrane. These results, which are consistent with the reported information, validated our analysis process. In addition, our work also identified other new and valuable metabolic pathways, such as the reaction ALCD2x, which has a great effect on the energy production process under bacterial anaerobic conditions. The DHAK reaction is also related to the metabolic process of ATP. These reactions with large differential metabolic fluxes merit further research. Additionally, to provide a strategy to address photocatalysis-resistant mutant bacteria, a metabolic compensation analysis was also performed. The metabolic compensation analysis results provided suggestions for a combined method that can effectively combat resistant bacteria. This method could also be used to explore the mechanisms of drug resistance in other microorganisms.


Asunto(s)
Desinfección , Escherichia coli , Bacterias , Catálisis , Redes y Vías Metabólicas , Fosfotransferasas (Aceptor de Grupo Alcohol) , Titanio
6.
Ecotoxicol Environ Saf ; 136: 40-45, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27810579

RESUMEN

Interest has grown in developing safe and high-performance photocatalysts based on metal-free materials for disinfection of bacterial pathogens under visible light irradiation. In this paper, the C60/C3N4 and C70/C3N4 hybrids were synthesized by a hydrothermal method, and characterized by X-ray diffraction (XRD), UV-vis diffuse reflection spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high revolution transmission electron microscope (HRTEM). The performance of photocatalytic disinfection was investigated by the inactivation of Escherichia coli O157:H7. Both C60/C3N4 and C70/C3N4 hybrids showed similar crystalline structure and morphology with C3N4; however, the two composites exhibited stronger bacterial inactivation than C3N4. In particular, C70/C3N4 showed the highest bactericidal efficiency and was detrimental to all E. coli O157:H7 in 4h irradiation. Compared to C3N4, the enhancement of photocatalytic activity of composites could be attributed to the effective transfer of the photoinduced electrons under visible light irradiation. Owing to the excellent performance of fullerenes (C60, C70)/C3N4 composites, a visible light response and environmental friendly photocatalysts for disinfection were achieved.


Asunto(s)
Desinfección/métodos , Escherichia coli O157/efectos de los fármacos , Fulerenos/farmacología , Metales/metabolismo , Catálisis , Luz , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Titanio/química , Difracción de Rayos X
7.
Sci Total Environ ; 926: 172109, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38556021

RESUMEN

In situ photocatalytic synthesis of H2O2 for disinfection has attracted widespread attention because it is a clean and environmentally friendly sterilization method. Graphitic carbon nitride has been used as a very selective photocatalyst for H2O2 generation but has some limitations (e.g., insufficient light absorption, rapid electron-hole recombination, and slow direct two-electron reduction processes) that prevent efficient H2O2 production. In this study, potassium-doped graphite carbon nitride with nitrogen vacancies (NDKCN) was prepared using a simple method involving a thermal fusion salt and N2 calcination, which possessed an ultrathin nanosheet structure (1.265 nm) providing abundant active sites. Synergistic effects caused by nitrogen vacancies and K+ and I- doping in the NDKCN photocatalyst gave the NDKCN a good ability to absorb light, undergo fast charge transfer, and give a high photoelectric current response. The optimized photocatalytic H2O2 yield of the NDKCN was 780.1 µM·g-1·min-1, which was 10 times the yield of the pristine g-C3N4. Tests involving quenching reactive species, electron spin resonance, and rotating disk electrodes indicated that one-step two-electron direct reduction on the NDKCN caused excellent H2O2 generation performance. The ability to efficiently generate H2O2 in situ gave NDKCN an excellent bactericidal performance, and 7.3 log10 (colony-forming units·mL-1) of Escherichia coli were completely eliminated within 80 min. Scanning electron microscopy images before and after sterilization indicated the changes in bacteria caused by the catalytic activity. The new g-C3N4-based photocatalyst and similar rationally designed photocatalysts with doping and defects offer efficient and simple in situ H2O2 sterilization.

8.
J Colloid Interface Sci ; 678(Pt B): 1135-1147, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278039

RESUMEN

The serious combination of abundant electrons/holes in bulk primarily hinders the efficiency in the photocatalytic reaction. It is crucial to control the spatial charge dynamics through delicately designing the crystal configuration of photocatalyst. In this work, a modified tungsten trioxide nanosheet colloid (M-WO3) was synthesized by an ion exchange method. Compared to pristine WO3 (P-WO3), the crystal lattice vibration frequency of M-WO3 increases from 2.8 meV to 4.3 meV, which effectively prohibits electron-phonon coupling and powerfully accelerates the separation and transfer of photoinduced charge carriers. Irradiated by visible-light, M-WO3 shows much higher photocatalytic bacterial inactivation performance than P-WO3. In addition, this regulation method increases the surface charges of the WO3 colloid to improve its stability, which endows this colloid photocatalyst with broad prospects in practical photocatalytic antibacterial applications. This work offers guidance to construct efficiently separated photoinduced electron/hole pairs of the colloid photocatalyst by designing its crystal structure.

9.
Environ Sci Pollut Res Int ; 31(20): 30212-30227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602633

RESUMEN

Photocatalytic disinfection is a promising technology with low cost and high efficiency. However, most of the current studies on photocatalytic disinfection ignore the widespread presence of natural organic matter (NOM) in water bodies, so the incomplete conclusions obtained may not be applicable. Herein, this paper systematically studied the influence of humic acid (HA), one of the most important components of NOM, on the photocatalytic inactivation of bacteriophage f2 with electrospinning Cu-TiO2 nanofibers. We found that with the addition of HA, the light transmittance of the solution at 550 nm decreased from 94 to 60%, and the band gap of the photocatalyst was increased from 2.96 to 3.05 eV. Compared with reacting without HA, the degradation amount of RNA of f2 decreased by 88.7% after HA was added, and the RNA concentration increased from 1.95 to 4.38 ng·µL-1 after the reaction. Hence, we propose mechanisms of the effect of HA on photocatalytic disinfection: photo-shielding, passivation of photocatalysts, quenching of free radicals, and virus protection. Photo-shielding and photocatalyst passivation lead to the decrease of photocatalyst activity, and the reactive oxygen species (ROSs) (·OH, ·O2-, 1O2, H2O2) are further trapped by HA. The HA in water also can protect the shape of phage f2 and reduce the leakage of protein and the destruction of ribonucleic acid (RNA). This work provides an insight into the mechanisms for the influence of HA in photocatalytic disinfection process and a theoretical basis for its practical application.


Asunto(s)
Bacteriófagos , Cobre , Desinfección , Sustancias Húmicas , Nanofibras , Titanio , Titanio/química , Titanio/farmacología , Desinfección/métodos , Cobre/química , Cobre/farmacología , Nanofibras/química , Catálisis , Luz
10.
ACS Appl Mater Interfaces ; 16(5): 6367-6381, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270091

RESUMEN

Herein, we present a distinct methodology for the in situ electrostatic assembly method for synthesizing a conjugated (IDT-COOH)/oxygen-doped g-C3N4 (O-CN) S-scheme heterojunction. The electron delocalization effect due to π-π interactions between O-CN and self-assembled IDT-COOH favors interfacial charge separation. The self-assembled IDT-COOH/O-CN exhibits a broadened visible absorption to generate more charge carriers. The internal electric field between the IDT-COOH and the O-CN interface provides a directional charge-transfer channel to increase the utilization of photoinduced charge carriers. Moreover, the active species (•O2-, h+, and 1O2) produced by IDT-COOH/O-CN under visible light play important roles in photocatalytic disinfection. The optimum 40% IDT-COOH/O-CN can kill 7-log of methicillin-resistant Staphylococcus aureus (MRSA) cells in 2 h and remove 88% tetracycline (TC) in 5 h, while O-CN only inactivates 1-log of MRSA cells and degrades 40% TC. This work contributes to a promising method to fabricate all-organic g-C3N4-based S-scheme heterojunction photocatalysts with a wide range of optical responses and enhanced exciton dissociation.

11.
ACS Appl Mater Interfaces ; 15(43): 50155-50165, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852272

RESUMEN

In a novel approach that capitalized on the differential solubility product (Ksp) of ZnSe and Ag2Se, a unique ZnSe/Ag2Se binary heterostructure was efficiently synthesized in situ. ZnSe/Ag2Se exhibited excellent antimicrobial efficiency under visible light. Incorporating Ag2Se into ZnSe significantly enhanced the photoelectric performance of the catalyst, greatly accelerating the separation of the photogenerated electrons in the system. Active species removal experiments determined that ·O2- and H2O2 played crucial roles in photocatalytic antibacterial efficiency. Further investigation into the levels of cellular membrane peroxidation, bacterial morphology, and intracellular contents concentration revealed that during the photocatalytic antimicrobial process, reactive oxygen species initially oxidize phospholipids in the cell membrane, leading to damage to the external structure of the cell and leakage of the intracellular contents, ultimately resulting in bacteria inactivation. The photocatalytic antimicrobial process of ZnSe/Ag2Se fundamentally deviates from conventional methods, offering new insights into efficient disinfection and photocatalytic antimicrobial mechanisms.


Asunto(s)
Escherichia coli , Peróxido de Hidrógeno , Antibacterianos/farmacología , Antibacterianos/química , Luz , Desinfección/métodos , Catálisis
12.
J Colloid Interface Sci ; 633: 60-71, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36434936

RESUMEN

In recent years, the threat to human health from bacteria in wastewater has attracted attention, and photocatalytic technology has emerged as a promising strategy for inactivating bacteria in water. Therefore, it is of great research value to develop a novel high-efficiency photocatalytic system with the visible light response. We successfully designed a double S-scheme heterojunction composite WO3/g-C3N4/BiOI (WCB) in this paper. The preparation of WCB composites was demonstrated by a series of characterizations, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The antibacterial effects of photocatalysts against representative Gram-negative strain Escherichia coli (E. coli) and Gram-positive strain Staphylococcus aureus (S. aureus) were tested under LED light irradiation. The novel photocatalyst presented excellent antibacterial properties, inactivating E. coli in 12 min and S. aureus in 20 min. The bacterial cell inactivation process was studied by scanning electron microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Active species capture experiments show that the active species present in the WCB composites in the process of inactivating bacteria are h+, e-, OH and O2-. In conclusion, the synthesized double S-scheme WCB photocatalyst exhibits remarkable photocatalytic antibacterial activity under LED light and has broad prospects for practical application in water antibacterial treatment.


Asunto(s)
Escherichia coli , Staphylococcus aureus , Humanos , Escherichia coli/efectos de la radiación , Espectroscopía Infrarroja por Transformada de Fourier , Catálisis , Luz , Antibacterianos/farmacología , Antibacterianos/química , Agua
13.
J Hazard Mater ; 445: 130481, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36493653

RESUMEN

Highly efficient charge transfer is a critical factor to modulate the photocatalytic activity. However, the conscious modulation of charge transfer efficiency is still a great challenge. Herein, a novel interfacial Mo-N bond and appropriate oxygen vacancies (OVs) modulated S-scheme MoO3-x/S-CN heterojunction was rationally fabricated for efficient photocatalytic disinfection. The results of characterizations and density functional theory (DFT) calculations suggested that the enhanced charge transfer dynamics is ascribed to the optimizing oxygen vacancies density and forming interfacial Mo-N bond. It can improve charge transfer efficiency from 36.4% (MoO3-x) to 52.5% (MoO3-x/S-CN) and produce more reactive oxygen species (ROS), achieving entirely inactivate of 7.60-log E. coli and S. aureus within 50 min and 75 min. Besides, MoO3-x/S-CN can well resist the disturbance from the coexisting substances, and can be applied in a wide pH range, and even authentic water bodies. Monitoring of bacterial antioxidant systems and membrane integrity revealed that bacterial inactivation begins with the oxidation of cell membrane and dies from leakage of intracellular substances and destruction of cell structure. This work provides an inspiration on consciously modulating S-scheme charge transfer efficiency by optimizing oxygen vacancies density and atomic-level interface control for promoting the photocatalytic antibacterial activity.


Asunto(s)
Desinfección , Oxígeno , Escherichia coli , Staphylococcus aureus , Especies Reactivas de Oxígeno
14.
Environ Pollut ; 298: 118836, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35032599

RESUMEN

Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.


Asunto(s)
Grafito , Nanopartículas del Metal , Nanocompuestos , Antibacterianos/farmacología , Desinfección , Agua
15.
J Environ Chem Eng ; 10(3): 107527, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35280853

RESUMEN

Coronavirus disease-2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been one of the most challenging worldwide epidemics of recent times. Semiconducting materials (photocatalysts) could prove effectual solar-light-driven technology on account of variant reactive oxidative species (ROS), including superoxide (•O2 - ) and hydroxyl (•OH) radicals either by degradation of proteins, DNA, RNA, or preventing cell development by terminating cellular membrane. Graphene-based materials have been exquisitely explored for antiviral applications due to their extraordinary physicochemical features including large specific surface area, robust mechanical strength, tunable structural features, and high electrical conductivity. Considering that, the present study highlights a perspective on the potentials of graphene based materials for photocatalytic antiviral activity. The interaction of virus with the surface of graphene based nanomaterials and the consequent physical, as well as ROS induced inactivation process, has been highlighted and discussed. It is highly anticipated that the present review article emphasizing mechanistic antiviral insights could accelerate further research in this field.

16.
J Colloid Interface Sci ; 606(Pt 2): 1284-1298, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492466

RESUMEN

2D/2D heterojunction photocatalysts with excellent photocatalytic activity highlight considerable potential in water disinfection. Here, an oxidized Sb/g-C3N4 2D/2D nanosheets heterojunction (Sb-SbOx/CNS) was constructed based on a facile one-step liquid-phase exfoliation method using concentrated sulfuric acid. By doing so, bulk Sb and g-C3N4 were exfoliated simultaneously and then, intercalated each other. Compared with CNS and Sb-SbOx, the obtained Sb-SbOx/CNS demonstrated better photocatalytic disinfection activity towards Escherichia coli K-12 (E. coli K-12) under visible light irradiation. The 5% oxidized Sb/g-C3N4 2D/2D nanosheets heterojunction (5.0% Sb-SbOx/CNS) exhibited the best photocatalytic performance and admirable cycling stability, which was ascribed to the unique structure where the interfacial charge separation was strengthened by the strong coupling effect between Sb-SbOx and CNS. Meanwhile, the fundamental mechanism of photocatalytic disinfection was also proposed. The photogenerated ROS (reactive oxygen species) violently attacked the E. coli K-12 membrane, creating massive and irreparable holes on the cell membrane. The leakage of cations (K+, Na+, Ca2+ and Mg2+), adenosine triphosphate, total soluble sugar and protein accelerated the destruction of E. coli K-12. Trapping experiments suggested that the photocatalytic disinfection process against E. coli K-12 was dominated by h+ generated on 5.0% Sb-SbOx/CNS. This work offers a new promising way to modify the 2D/2D heterojunction featuring efficient photocatalytic disinfection performance.


Asunto(s)
Desinfección , Escherichia coli K12 , Catálisis , Escherichia coli , Luz
17.
J Colloid Interface Sci ; 623: 500-512, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35597019

RESUMEN

In this paper, a novel Step-scheme MoS2/Bi4O5Br2 heterojunction was fabricated through the in-situ mechanical agitation method and the photocatalytic activity of that was examined by the photocatalytic degradation Rhodamine B (RhB) and inactivation of E.coli under visible light irradiation (λ > 420 nm). The Step-scheme MoS2/Bi4O5Br2 heterojunctions displayed the enhanced photocatalytic ability compared to pure Bi4O5Br2 and MoS2 and the MoS2/Bi4O5Br2-3% (MS/BOB-3) heterojunction exhibited the strongest photocatalytic activity which can completely inactivate the 1 × 107 cfu/mL with 180 min and degrade RhB (10 mg/L) with 24 min visible light irradiation, respectively. The photocatalytic mechanism of the MoS2/Bi4O5Br2 heterojunction is was attributed to the generated active species (h+, ·O2- and ·OH) which can effectively destroy RhB molecular and cell-membrane of bacterial as demonstrated by multiple techniques such as LC-MS and fluorescence stain. Additionally, characterization results disclosed that the transfer pathway of charge carriers of constructed MoS2/Bi4O5Br2 heterojunction followed the Step-scheme channel, which not only facilitated the separation and migration of the photo-generated charge carriers, but also improved the light absorption ability of the samples and resulting in the promoted photocatalytic performance of MoS2/Bi4O5Br2 heterojunction. This work paves a new idea to develop novel bismuth oxyhalide-based photocatalytic system for wastewater purification.


Asunto(s)
Desinfección , Molibdeno , Bismuto , Catálisis , Escherichia coli , Rodaminas
18.
J Colloid Interface Sci ; 617: 326-340, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35279568

RESUMEN

This study provided insight on the design of co-doped graphitic carbon nitride (g-C3N4) structures by using potassium dihydrogen phosphate (KH2PO4) as a promising material for the supply of potassium (K) and phosphorus (P) elements. The addition of KH2PO4 to the cyanuric acid-melamine complex (CM) solution stabilized its structure by coordinating potassium ions (K+) in the hexagonal pores and dihydrogen phosphate ions (H2PO4-) in dangling bonds on the edge sites. The resultant supramolecular structure (KP-CM) with a unique skeleton governed the polycondensation process, resulting in K and P co-doped g-C3N4 structures with a distinct coral-like morphology (KP-CN). Employing the KP-CM complex as a precursor could modify the optoelectronic behaviour of the photocatalysts via the synergistic effect of the co-doping process. It could also be beneficial in terms of economic considerations by increasing the catalyst synthesis yield. The resulting g-C3N4 showed a remarkable hydrogen peroxide (H2O2) production rate of 216 µmol L-1h-1 compared to the rate of the pristine sample of 137 µmol L-1h-1. It also exhibited significant photocatalytic antibacterial activity in Escherichia coli (E. coli) disinfection.


Asunto(s)
Antozoos , Desinfección , Animales , Desinfección/métodos , Escherichia coli , Grafito , Peróxido de Hidrógeno/farmacología , Compuestos de Nitrógeno , Peróxidos , Fósforo/farmacología , Potasio
19.
Chem Asian J ; 17(11): e202200095, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35355439

RESUMEN

Infectious diseases caused by bacteria intimidate the health of human beings all over the world. Although many avenues have been tried, various operating conditions limit their actual applications. Photocatalytic nanomaterials are becoming candidates to be competent for water purification. Here, a novel and more efficient S-scheme has been engineered between two dimensional (2D) layered phosphorus-doped graphitic carbon nitride (P-g-C3 N4 ) and BiOBr via hydrothermal polymerization to inhibit the recombination of charge and broaden light absorption. The as-prepared P-g-C3 N4 /BiOBr hybrids exhibits significantly improved photocatalytic disinfection contrast to g-C3 N4 /BiOBr in visible wavelengths, suggesting phosphorus doping which adjusts the band structure plays a significant role in the S-scheme system. And the sterilization rate of multidrug-resistant Acinetobacter baumannii 28 (AB 28) was 99.9999% within 80 min and Staphylococcus aureus (S. aureus) was 99.9%.


Asunto(s)
Desinfección , Staphylococcus aureus , Bismuto , Catálisis , Grafito , Humanos , Luz , Compuestos de Nitrógeno , Fósforo
20.
J Hazard Mater ; 436: 129123, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35596988

RESUMEN

The efficient deployment of visible and near-infrared (NIR) light for photocatalytic disinfection is of great concern a matter. Herein, we report a specific bifunctional 2D/2D g-C3N4/BiO2-x nanosheets heterojunction, prepared through a self-assembly approach. Delightfully, the obtained 2D/2D heterojunctions exhibited satisfactory photocatalytic disinfection performance towards Escherichia coli K-12 (E. coli K-12) under visible light irradiation, which was credited to the Z-scheme interfacial heterojunction facilitating the migration of photogenerated carries. The photoactivity enhancement driven by NIR light illumination was ascribed to the cooperative synergy effect of photothermal effect and "hot electrons", engineering efficient charge transfer. Intriguingly, the carboxyl groups emerged on g-C3N4 nanosheets contributed a vital role in establishing the enhanced photocatalytic reaction. Moreover, the disinfection mechanism was systematically described. The cell membrane was destroyed, evidenced by the generation of lipid peroxidation reaction and loss of energy metabolism. Subsequently, the damage of defense enzymes and release of intracellular constituents announced the irreversible death of E. coli K-12. Interestingly enough, considerable microbial community shifts of surface water were observed after visible and NIR light exposure, highlighting the critical feature of disinfection process in shaping microbial communities. The authors believe that this work gives a fresh light on the feasibility of heterostructures-enabled disinfection processes.


Asunto(s)
Desinfección , Escherichia coli K12 , Bacterias , Catálisis , Escherichia coli , Luz
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda