Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 82(8): 1451-1466, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35452614

RESUMEN

Ribosome-associated quality-control (RQC) surveys incomplete nascent polypeptides produced by interrupted translation. Central players in RQC are the human ribosome- and tRNA-binding protein, NEMF, and its orthologs, yeast Rqc2 and bacterial RqcH, which sense large ribosomal subunits obstructed with nascent chains and then promote nascent-chain proteolysis. In canonical eukaryotic RQC, NEMF stabilizes the LTN1/Listerin E3 ligase binding to obstructed ribosomal subunits for nascent-chain ubiquitylation. Furthermore, NEMF orthologs across evolution modify nascent chains by mediating C-terminal, untemplated polypeptide elongation. In eukaryotes, this process exposes ribosome-buried nascent-chain lysines, the ubiquitin acceptor sites, to LTN1. Remarkably, in both bacteria and eukaryotes, C-terminal tails also have an extra-ribosomal function as degrons. Here, we discuss recent findings on RQC mechanisms and briefly review how ribosomal stalling is sensed upstream of RQC, including via ribosome collisions, from an evolutionary perspective. Because RQC defects impair cellular fitness and cause neurodegeneration, this knowledge provides a framework for pathway-related biology and disease studies.


Asunto(s)
Ribosomas , Proteínas de Saccharomyces cerevisiae , Bacterias/genética , Bacterias/metabolismo , Humanos , Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
2.
Mol Cell ; 81(10): 2112-2122.e7, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33909987

RESUMEN

Incompletely synthesized nascent chains obstructing large ribosomal subunits are targeted for degradation by ribosome-associated quality control (RQC). In bacterial RQC, RqcH marks the nascent chains with C-terminal alanine (Ala) tails that are directly recognized by proteasome-like proteases, whereas in eukaryotes, RqcH orthologs (Rqc2/NEMF [nuclear export mediator factor]) assist the Ltn1/Listerin E3 ligase in nascent chain ubiquitylation. Here, we study RQC-mediated proteolytic targeting of ribosome stalling products in mammalian cells. We show that mammalian NEMF has an additional, Listerin-independent proteolytic role, which, as in bacteria, is mediated by tRNA-Ala binding and Ala tailing. However, in mammalian cells Ala tails signal proteolysis indirectly, through a pathway that recognizes C-terminal degrons; we identify the CRL2KLHDC10 E3 ligase complex and the novel C-end rule E3, Pirh2/Rchy1, as bona fide RQC pathway components that directly bind to Ala-tailed ribosome stalling products and target them for degradation. As Listerin mutation causes neurodegeneration in mice, functionally redundant E3s may likewise be implicated in molecular mechanisms of neurodegeneration.


Asunto(s)
Alanina/metabolismo , Mamíferos/metabolismo , Proteolisis , Ribosomas/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Citocinas/metabolismo , Proteínas Salivales Ricas en Prolina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Proc Natl Acad Sci U S A ; 120(29): e2304870120, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37410814

RESUMEN

Lipid droplets are organelles conserved across eukaryotes that store and release neutral lipids to regulate energy homeostasis. In oilseed plants, fats stored in seed lipid droplets provide fixed carbon for seedling growth before photosynthesis begins. As fatty acids released from lipid droplet triacylglycerol are catabolized in peroxisomes, lipid droplet coat proteins are ubiquitinated, extracted, and degraded. In Arabidopsis seeds, the predominant lipid droplet coat protein is OLEOSIN1 (OLE1). To identify genes modulating lipid droplet dynamics, we mutagenized a line expressing mNeonGreen-tagged OLE1 expressed from the OLE1 promoter and isolated mutants with delayed oleosin degradation. From this screen, we identified four miel1 mutant alleles. MIEL1 (MYB30-interacting E3 ligase 1) targets specific MYB transcription factors for degradation during hormone and pathogen responses [D. Marino et al., Nat. Commun. 4, 1476 (2013); H. G. Lee and P. J. Seo, Nat. Commun. 7, 12525 (2016)] but had not been implicated in lipid droplet dynamics. OLE1 transcript levels were unchanged in miel1 mutants, indicating that MIEL1 modulates oleosin levels posttranscriptionally. When overexpressed, fluorescently tagged MIEL1 reduced oleosin levels, causing very large lipid droplets. Unexpectedly, fluorescently tagged MIEL1 localized to peroxisomes. Our data suggest that MIEL1 ubiquitinates peroxisome-proximal seed oleosins, targeting them for degradation during seedling lipid mobilization. The human MIEL1 homolog (PIRH2; p53-induced protein with a RING-H2 domain) targets p53 and other proteins for degradation and promotes tumorigenesis [A. Daks et al., Cells 11, 1515 (2022)]. When expressed in Arabidopsis, human PIRH2 also localized to peroxisomes, hinting at a previously unexplored role for PIRH2 in lipid catabolism and peroxisome biology in mammals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Gotas Lipídicas/metabolismo , Movilización Lipídica , Peroxisomas/metabolismo , Plantones/genética , Plantones/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Biol Chem ; 299(10): 105157, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579947

RESUMEN

Noncanonical base pairing between four guanines (G) within single-stranded G-rich sequences leads to formation of а G-quartet. Self-stacking of G-quartets results in a columnar four-stranded DNA structure known as the G-quadruplex (G4 or G4-DNA). In cancer cells, G4-DNA regulates multiple DNA-dependent processes, including transcription, replication, and telomere function. How G4s function in neurons is poorly understood. Here, we performed a genome-wide gene expression analysis (RNA-Seq) to identify genes modulated by a G4-DNA ligand, pyridostatin (PDS), in primary cultured neurons. PDS promotes stabilization of G4 structures, thus allowing us to define genes directly or indirectly responsive to G4 regulation. We found that 901 genes were differentially expressed in neurons treated with PDS out of a total of 18,745 genes with measured expression. Of these, 505 genes were downregulated and 396 genes were upregulated and included gene networks regulating p53 signaling, the immune response, learning and memory, and cellular senescence. Within the p53 network, the E3 ubiquitin ligase Pirh2 (Rchy1), a modulator of DNA damage responses, was upregulated by PDS. Ectopically overexpressing Pirh2 promoted the formation of DNA double-strand breaks, suggesting a new DNA damage mechanism in neurons that is regulated by G4 stabilization. Pirh2 downregulated DDX21, an RNA helicase that unfolds G4-RNA and R-loops. Finally, we demonstrated that Pirh2 increased G4-DNA levels in the neuronal nucleolus. Our data reveal the genes that are responsive to PDS treatment and suggest similar transcriptional regulation by endogenous G4-DNA ligands. They also connect G4-dependent regulation of transcription and DNA damage mechanisms in neuronal cells.

5.
J Cell Physiol ; 238(12): 2841-2854, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37882235

RESUMEN

Amyloid-ß (Aß) protein aggregation in the brain is a pathological hallmark of Alzheimer's disease (AD) however, the underlying molecular mechanisms regulating amyloid aggregation are not well understood. Here, we studied the propitious role of E3 ubiquitin ligase Pirh2 in Aß protein aggregation in view of its regulatory ligase activity in the ubiquitin-proteasome system employing both cellular and sporadic rodent models of AD. Pirh2 protein abundance was significantly increased during Streptozotocin (STZ) induced AD conditions, and transient silencing of Pirh2 significantly inhibited the Aß aggregation and modified the dendrite morphology along with the substantial decrease in choline level in the differentiated neurons. MALDI-TOF/TOF, coimmunoprecipitation, and UbcH7-linked in vitro ubiquitylation analysis confirmed the high interaction of Pirh2 with chaperone GRP78. Furthermore, Pirh2 silencing inhibits the STZ induced altered level of endoplasmic reticulum stress and intracellular Ca2+ levels in neuronal N2a cells. Pirh2 silencing also inhibited the AD conditions related to the altered protein abundance of HSP90 and its co-chaperones which may collectively involve in the reduced burden of amyloid aggregates in neuronal cells. Pirh2 silencing further stabilized the nuclear translocation of phospho-Nrf2 and inhibited the altered level of autophagy factors. Taken together, our data indicated that Pirh2 is critically involved in STZ induced AD pathogenesis through its interaction with ER-chaperone GRP78, improves the neuronal connectivity, affects the altered level of chaperones, co-chaperones, & autophagic markers, and collectively inhibits the Aß aggregation.


Asunto(s)
Enfermedad de Alzheimer , Chaperón BiP del Retículo Endoplásmico , Transducción de Señal , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides/metabolismo , Glucosa/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Agregado de Proteínas , Masculino , Animales , Ratones , Ratas , Línea Celular Tumoral , Ratas Sprague-Dawley , Estrés del Retículo Endoplásmico
6.
FASEB J ; 36(10): e22537, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36070077

RESUMEN

Influenza A viruses (IAVs) rely on viral ribonucleoprotein (vRNP) complexes to control transcription and replication. Each vRNP consists of one viral genomic RNA segment associated with multiple nucleoproteins (NP) and a trimeric IAV RNA polymerase complex. Previous studies showed that post-translational modifications of vRNP components, such as NP, by host factors would in turn affect the IAV life cycle or modulate host anti-viral response. In this study, we found host E3 ubiquitin ligase Pirh2 interacted with NP and mediated short-chain ubiquitination of NP at lysine 351, which suppressed NP-PB2 interaction and vRNP formation. In addition, we showed that knockdown of Pirh2 promoted IAV replication, whereas overexpression of Pirh2 inhibited IAV replication. However, Pirh2-ΔRING lacking E3 ligase activity failed to inhibit IAV infection. Moreover, we showed that Pirh2 had no effect on the replication of a rescued virus, WSN-K351R, carrying lysine-to-arginine substitution at residue 351. Interestingly, by analyzing human and avian IAVs from 2011 to 2020 in influenza research databases, we found that 99.18% of 26 977 human IAVs encode lysine, but 95.3% of 9956 avian IAVs encode arginine at residue 351 of NP protein. Consistently, knockdown of Pirh2 failed to promote propagation of two avian-like influenza viruses, H9N2-W1 and H9N2-C1, which naturally encode arginine at residue 351 of NP. Taken together, we demonstrated that Pirh2 is a host factor restricting IAV infection by modulating short-chain ubiquitination of NP. Meanwhile, it is noteworthy that residue 351 of NP targeted by Pirh2 may associate with the evasion of human anti-viral response against avian-like influenza viruses.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Ribonucleoproteínas , Ubiquitina-Proteína Ligasas , Replicación Viral , Arginina/metabolismo , Interacciones Microbiota-Huesped , Humanos , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Lisina/metabolismo , ARN Viral/metabolismo , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
J Cell Mol Med ; 26(10): 2921-2934, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35366056

RESUMEN

N-α-Acetyltransferase 10 (NAA10) was reported to be involved in tumour invasion and metastasis in several of tumours. However, the role and mechanism of NAA10-mediated invasion and metastasis in oral squamous cell carcinoma (OSCC) remains undetermined. Herein, our study showed that NAA10 inhibits cell migration and invasion in vitro and attenuates the xenograft tumorigenesis in nude mice. Mechanistically, we demonstrated that there is a physical interaction between NAA10 and RelA/p65 in OSCC cells, thereby preventing RelA/p65-mediated transcriptional activation of Pirh2. Consequently, inhibition of Pirh2 increased p53 level and suppressed the expression of p53 downstream targets, matrix metalloprotein-2 (MMP-2) and MMP-9. Therefore, NAA10 may function as a tumour metastasis suppressor in the progression of OSCC by targeting Pirh2-p53 axis and might be a prognostic marker as well as a therapeutic target for OSCC.


Asunto(s)
Neoplasias de la Boca , Acetiltransferasa A N-Terminal , Acetiltransferasa E N-Terminal , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Neoplasias de la Boca/patología , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas
8.
Biochem Biophys Res Commun ; 563: 119-125, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34090148

RESUMEN

Autophagy is a special catabolic cellular program that is induced in response to deprivation of nutrients and energy starvation. During the execution of this program, cellular components, including aggregates, as well as damaged organelles and some proteins are encapsulated in special vesicles known as autophagosomes and subsequently are degraded after fusion of autophagosomes with lysosomes. Importantly, at late stages of tumorigenesis cancer cells employ autophagy to sustain proliferation in unfavorable conditions, including anti-cancer drug therapy. E3 ubiquitin ligases play an important role in controlling autophagy. Here we demonstrate that the E3 ligase, a p53-induced RING-H2 protein (Pirh2), is involved in the regulation of autophagy in non-small cell lung cancer cells. Knockdown of Pirh2 decreased the expression of genes involved in all steps of autophagy. Concomitantly, Pirh2 knockdown cell lines exhibited much less of the processed form of LC3 compared to the respective cell lines with normal levels of Pirh2. These results were confirmed by the immune fluorescence microscopy using LC3 antibody and the LysoTracker dye. In agreement with the protective role of autophagy, cells with attenuated expression of Pirh2 were more sensitive to the treatment with doxorubicin. Collectively, we have uncovered a novel function of Pirh2 in the regulation of autophagy in lung cancer cells.


Asunto(s)
Autofagia , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Resistencia a Antineoplásicos , Humanos , Neoplasias Pulmonares/patología , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética
9.
Cell Mol Neurobiol ; 37(8): 1501-1509, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28258514

RESUMEN

p53-induced protein with a RING-H2 domain (Pirh2), also known as Rchy1, is an ubiquitin E3 ligase that regulates the turnover and functionality of several proteins involved in cell proliferation and differentiation, cell cycle checkpoints, and cell death. However, it remains unclear whether aberrant expression of Pirh2 is involved in the development of glioma, a major type of primary brain tumor in adults. Western blot and immunohistochemical analyses showed that Pirh2 was highly expressed in glioma specimens, compared with normal brain tissues. High Pirh2 expression was positively correlated with higher tumor grade, as well as Ki-67 expression. Kaplan-Meier analysis revealed that patients with high Pirh2 expression had worsened prognosis, compared with those with low Pirh2 expression. Moreover, to determine whether Pirh2 could regulate malignant behavior of glioma cells, we transfected glioma cells with interfering RNA targeting Pirh2 to specifically silence Pirh2 expression. Mechanistically, our results indicated that knockdown of Pirh2 induced the apoptosis of glioma cells. In addition, depletion of Pirh2 diminished the expression of PCNA and cyclin D1 and led to cell cycle arrest at G1 phase. Taken together, these findings for the first time suggest that Pirh2 might play an important role in the regulation of glioma proliferation and apoptosis and thus serve as a promising therapeutic target in the treatment of glioma.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Ubiquitina-Proteína Ligasas/biosíntesis , Adulto , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Femenino , Glioma/genética , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia/tendencias , Ubiquitina-Proteína Ligasas/genética
10.
Cell Rep ; 43(3): 113860, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412092

RESUMEN

The ribosome-associated protein quality control (RQC) pathway acts as a translational surveillance mechanism to maintain proteostasis. In mammalian cells, the cytoplasmic RQC pathway involves nuclear export mediator factor (NEMF)-dependent recruitment of the E3 ligase Listerin to ubiquitinate ribosome-stalled nascent polypeptides on the lysine residue for degradation. However, the quality control of ribosome-stalled nuclear-encoded mitochondrial nascent polypeptides remains elusive, as these peptides can be partially imported into mitochondria through translocons, restricting accessibility to the lysine by Listerin. Here, we identify a Listerin-independent organelle-specific mitochondrial RQC pathway that acts on NEMF-mediated carboxy-terminal poly-alanine modification. In the pathway, mitochondrial proteins carrying C-end poly-Ala tails are recognized by the cytosolic E3 ligase Pirh2 and the ClpXP protease in the mitochondria, which coordinately clear ribosome-stalled mitochondrial nascent polypeptides. Defects in this elimination pathway result in NEMF-mediated aggregates and mitochondrial integrity failure, thus providing a potential molecular mechanism of the RQC pathway in mitochondrial-associated human diseases.


Asunto(s)
Péptido Hidrolasas , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Péptido Hidrolasas/metabolismo , Biosíntesis de Proteínas , Lisina/metabolismo , Péptidos/metabolismo , Endopeptidasas/metabolismo , Mitocondrias/metabolismo , Ubiquitinación , Mamíferos/metabolismo
11.
Cell Rep ; 42(9): 113100, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676773

RESUMEN

In ribosome-associated quality control (RQC), nascent polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ("Ala-tails") that function outside ribosomes to induce ubiquitylation by E3 ligases Pirh2 (p53-induced RING-H2 domain-containing) or CRL2 (Cullin-2 RING ligase2)-KLHDC10. Here, we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails and that structural predictions identify candidate Ala-tail-binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail-binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron-recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.


Asunto(s)
Proteínas Portadoras , Ubiquitina-Proteína Ligasas , Humanos , Alanina/metabolismo , Sitios de Unión , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Portadoras/metabolismo
12.
Cells ; 11(9)2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563824

RESUMEN

The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.


Asunto(s)
Proteína p53 Supresora de Tumor , Ubiquitina-Proteína Ligasas , Puntos de Control del Ciclo Celular , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
13.
J Agric Food Chem ; 67(17): 4808-4816, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30888162

RESUMEN

Cellular senescence is the state of irreversible cell cycle arrest that provides a blockade during oncogenic transformation and tumor development. Avenanthramide A (AVN A) is an active ingredient exclusively extracted from oats, which possesses antioxidant, anti-inflammatory, and anticancer activities. However, the underlying mechanism(s) of AVN A in the prevention of cancer progression remains unclear. In the current study, we revealed that AVN A notably attenuated tumor formation in an azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model. AVN A treatment triggered cellular senescence in human colon cancer cells, evidenced by enlarging cellular size, upregulating ß-galactosidase activity, γ-H2AX positive staining, and G1 phase arrest. Moreover, AVN A treatment significantly increased the expression of miR-129-3p, which markedly repressed the E3 ubiquitin ligase Pirh2 and two other targets, IGF2BP3 and CDK6. The Pirh2 silencing by miR-129-3p led to a significant increase in protein levels of p53 and its downstream target p21, which subsequently induced cell senescence. Taken together, our data indicate that miR-129-3p/Pirh2/p53 is a critical signaling pathway in AVN A induced cellular senescence and AVN A could be a potential chemopreventive strategy for cancer treatment.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , ortoaminobenzoatos/administración & dosificación , Animales , Ciclo Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/fisiopatología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
14.
Protein Cell ; 9(9): 770-784, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29441489

RESUMEN

Clinical success of the proteasome inhibitor established bortezomib as one of the most effective drugs in treatment of multiple myeloma (MM). While survival benefit of bortezomib generated new treatment strategies, the primary and secondary resistance of MM cells to bortezomib remains a clinical concern. This study aimed to highlight the role of p53-induced RING-H2 (Pirh2) in the acquisition of bortezomib resistance in MM and to clarify the function and mechanism of action of Pirh2 in MM cell growth and resistance, thereby providing the basis for new therapeutic targets for MM. The proteasome inhibitor bortezomib has been established as one of the most effective drugs for treating MM. We demonstrated that bortezomib resistance in MM cells resulted from a reduction in Pirh2 protein levels. Pirh2 overexpression overcame bortezomib resistance and restored the sensitivity of myeloma cells to bortezomib, while a reduction in Pirh2 levels was correlated with bortezomib resistance. The levels of nuclear factor-kappaB (NF-κB) p65, pp65, pIKBa, and IKKa were higher in bortezomib-resistant cells than those in parental cells. Pirh2 overexpression reduced the levels of pIKBa and IKKa, while the knockdown of Pirh2 via short hairpin RNAs increased the expression of NF-κB p65, pIKBa, and IKKa. Therefore, Pirh2 suppressed the canonical NF-κB signaling pathway by inhibiting the phosphorylation and subsequent degradation of IKBa to overcome acquired bortezomib resistance in MM cells.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bortezomib/farmacología , Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/genética
15.
Eur J Med Chem ; 158: 7-24, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30199707

RESUMEN

Maintenance of genome integrity under the stressed condition is paramount for normal functioning of cells in the multicellular organisms. Cells are programmed to protect their genome through specialized adaptive mechanisms which will help decide their fate under stressed conditions. These mechanisms are the outcome of activation of the intricate circuitries that are regulated by the p53 master protein. In this paper, we provided a comprehensive review on p53, p53 homologues and their isoforms, including a description about the ubiquitin-proteasome system emphasizing its role in p53 regulation. p53 induced E3(Ub)-ligases are an integral part of the ubiquitin-proteasome system. This review outlines the roles of important E3(Ub)-ligases and their splice variants in maintaining cellular p53 protein homeostasis. It also covers up-to-date and relevant information on small molecule Mdm2 inhibitors originated from different organizations. The review ends with a discussion on future prospects and investigation directives for the development of next-generation modulators as p53 therapeutics.


Asunto(s)
Carcinogénesis/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
16.
Hum Pathol ; 66: 67-78, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28601655

RESUMEN

Down-regulation of cyclin-dependent kinase inhibitor protein p27, due to enhanced degradation, is frequently observed in various cancers. The ubiquitin ligases that mediate this degradation have been identified as S-phase kinase-associated protein-2 (Skp2), Kip1 ubiquitylation-promoting complex (KPC), and p53-inducible protein with RING-H2 domain (Pirh2) as well. We investigated the correlation among expression of these 3 ligases and p27 status in surgical specimens of human lung carcinomas by immunohistochemical analysis. Among 93 cases, expressions of p27, Skp2, KPC, and Pirh2 were found in 89.2%, 59.1%, 59.1%, and 67.7%, respectively. Down-regulation of p27 in cancer cells was frequently observed in adenocarcinoma (AC) and squamous cell carcinoma (SCC), but not in small cell carcinoma (SmCC). Overexpression of ubiquitin ligases was variously observed among histological types: Skp2 was more frequently observed in SCC and SmCC, KPC in SCC and Pirh2 in AC, followed by SCC. Several novel findings were obtained: (i) cytoplasmic p27 was observed in 8.6%, most frequently in SCC (13.3%), and correlated with nodal metastasis (P=.0044), (ii) significant inverse correlation between nuclear p27 and Pirh2 expression was observed by statistical analysis and at the cellular level, and (iii) cytoplasmic Pirh2 and total (cytoplasmic and/or nuclear) Pirh2 were significantly correlated with the nodal status (P=.0225, 0.0314), the pathological stage (P=.0213, 0.0475) and recurrence-free survival (P=.0194, 0.0482, respectively) in AC. Altogether, our data suggests that p27 and its cognate ubiquitin ligases are specifically involved in the clinical profiles, and thus, molecular targeting of these ubiquitin ligases, in particular, Pirh2, may have therapeutic value for human lung carcinomas.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma/enzimología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/análisis , Neoplasias Pulmonares/enzimología , Proteínas Quinasas Asociadas a Fase-S/análisis , Ubiquitina-Proteína Ligasas/análisis , Carcinoma/mortalidad , Carcinoma/secundario , Carcinoma/cirugía , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Metástasis Linfática , Masculino , Estadificación de Neoplasias , Modelos de Riesgos Proporcionales , Factores de Riesgo , Fumar/efectos adversos , Factores de Tiempo , Resultado del Tratamiento
18.
Plant Signal Behav ; 11(8): e1204508, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27359166

RESUMEN

BRUTUS (BTS) is a hemerythrin (HHE) domain containing E3 ligase that facilitates the degradation of POPEYE-like (PYEL) proteins in a proteasomal-dependent manner. Deletion of BTS HHE domains enhances BTS stability in the presence of iron and also complements loss of BTS function, suggesting that the HHE domains are critical for protein stability but not for enzymatic function. The RING E3 domain plays an essential role in BTS' capacity to both interact with PYEL proteins and to act as an E3 ligase. Here we show that removal of the RING domain does not complement loss of BTS function. We conclude that enzymatic activity of BTS via the RING domain is essential for response to iron deficiency in plants. Further, we analyze possible BTS domain structure evolution and predict that the combination of domains found in BTS is specific to photosynthetic organisms, potentially indicative of a role for BTS and its orthologs in mitigating the iron-related challenges presented by photosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Hemeritrina/genética , Hemeritrina/metabolismo , Hierro/metabolismo , Deficiencias de Hierro , Ubiquitina-Proteína Ligasas/genética
19.
Genes Cancer ; 7(11-12): 383-393, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28191284

RESUMEN

The product of RCHY1 human gene, Pirh2, is a RING-finger containing E3 ligase that modifies p53 with ubiquitin residues resulting in its subsequent degradation in proteasomes. Transcription of RCHY1 is regulated by p53 itself thus forming a negative regulatory feedback loop. Functionally, by eliminating p53, Pirh2 facilitates tumorigenesis. However, the role of Pirh2 in cancer cells lacking p53 is yet not well understood. Therefore, we decided to elucidate the role of Pirh2 in p53-negative human non-small cell lung carcinoma cells, H1299. We found that ectopic expression of Pirh2 enhanced cell proliferation, resistance to doxorubicin, and increased migration potential. Ablation of Pirh2 by specific shRNA reversed these phenotypes. Mechanistically, Pirh2 increased mRNA and protein levels of the c-Myc oncogene. The bioinformatics data indicate that co-expression of both c-Myc and Pirh2 strongly correlated with poor survival of lung cancer patients. Collectively, our results suggest that Pirh2 can be considered as a potential pharmacological target for developing anticancer therapies to treat p53-negative cancers.

20.
Arch Med Res ; 47(3): 186-95, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27393961

RESUMEN

BACKGROUND AND AIMS: We undertook this study to investigate the influence of PIRH2 (p53-induced RING-H2) protein on the proliferation and cell cycle of breast cancer cell lines. METHODS: PIRH2 expression was detected by Western blot analysis, immunohistochemistry (IHC) and Kaplan-Meier curve analysis. Cell proliferation was assessed by cell counting kit-8 (CCK-8). Cell cycle control was analyzed by flow cytometry. RESULTS: PIRH2 was up-regulated in breast cancer tissues and cell lines and up-regulated PIRH2 was highly associated with tumor size, grade, ER, and Ki-67. Moreover, Kaplan-Meier curve showed that up-regulated PIRH2 was related to the poor overall survival of patients with breast carcinoma. When the expression of PIRH2 was inhibited by siRNA transfection, cell proliferation was reduced. In addition, the number of G0/G1 phase cells was increased, but G2/M cells were not affected significantly. CONCLUSION: Decrease of PIRH2 expression in the breast cancer cell line MDA-MB-231 resulted in reduced tumor cell growth via the inhibition of cell proliferation and the interruption of cell cycle transition.


Asunto(s)
Neoplasias de la Mama/patología , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Inmunohistoquímica , Persona de Mediana Edad , ARN Interferente Pequeño/genética , Transfección , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda