Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
BMC Genomics ; 25(1): 539, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822248

RESUMEN

Squamous promoter binding protein-like (SPL) genes encode plant-specific transcription factors (TFs) that play essential roles in modulating plant growth, development, and stress response. Pea (Pisum sativum L.) is a coarse grain crop of great importance in food production, biodiversity conservation and molecular genetic research, providing genetic information and nutritional resources for improving agricultural production and promoting human health. However, only limited researches on the structure and functions of SPL genes exist in pea (PsSPLs). In this study, we identified 22 PsSPLs and conducted a genome-wide analysis of their physical characteristics, chromosome distribution, gene structure, phylogenetic evolution and gene expression patterns. As a result, the PsSPLs were unevenly distributed on the seven chromosomes of pea and harbored the SBP domain, which is composed of approximately 76 amino acid residues. The phylogenetic analysis revealed that the PsSPLs clustered into eight subfamilies and showed high homology with SPL genes in soybean. Further analysis showed the presence of segmental duplications in the PsSPLs. The expression patterns of 22 PsSPLs at different tissues, developmental stages and under various stimulus conditions were evaluated by qRT-PCR method. It was found that the expression patterns of PsSPLs from the same subfamily were similar in different tissues, the transcripts of most PsSPLs reached the maximum peak value at 14 days after anthesis in the pod. Abiotic stresses can cause significantly up-regulated PsSPL19 expression with spatiotemporal specificity, in addition, four plant hormones can cause the up-regulated expression of most PsSPLs including PsSPL19 in a time-dependent manner. Therefore, PsSPL19 could be a key candidate gene for signal transduction during pea growth and development, pod formation, abiotic stress and plant hormone response. Our findings should provide insights for the elucidating of development regulation mechanism and breeding for resistance to abiotic stress pea.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Pisum sativum , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Pisum sativum/genética , Pisum sativum/crecimiento & desarrollo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Familia de Multigenes , Perfilación de la Expresión Génica , Cromosomas de las Plantas/genética
2.
BMC Plant Biol ; 24(1): 113, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365619

RESUMEN

BACKGROUND: The WRKY gene family is one of the largest families of transcription factors in higher plants, and WRKY transcription factors play important roles in plant growth and development as well as in response to abiotic stresses; however, the WRKY gene family in pea has not been systematically reported. RESULTS: In this study, 89 pea WRKY genes were identified and named according to the random distribution of PsWRKY genes on seven chromosomes. The gene family was found to have nine pairs of tandem duplicates and 19 pairs of segment duplicates. Phylogenetic analyses of the PsWRKY and 60 Arabidopsis WRKY proteins were performed to determine their homology, and the PsWRKYs were classified into seven subfamilies. Analysis of the physicochemical properties, motif composition, and gene structure of pea WRKYs revealed significant differences in the physicochemical properties within the PsWRKY family; however, their gene structure and protein-conserved motifs were highly conserved among the subfamilies. To further investigate the evolutionary relationships of the PsWRKY family, we constructed comparative syntenic maps of pea with representative monocotyledonous and dicotyledonous plants and found that it was most recently homologous to the dicotyledonous WRKY gene families. Cis-acting element analysis of PsWRKY genes revealed that this gene family can respond to hormones, such as abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), methyl jasmonate (MeJA), and salicylic acid (SA). Further analysis of the expression of 14 PsWRKY genes from different subfamilies in different tissues and fruit developmental stages, as well as under five different hormone treatments, revealed differences in their expression patterns in the different tissues and fruit developmental stages, as well as under hormone treatments, suggesting that PsWRKY genes may have different physiological functions and respond to hormones. CONCLUSIONS: In this study, we systematically identified WRKY genes in pea for the first time and further investigated their physicochemical properties, evolution, and expression patterns, providing a theoretical basis for future studies on the functional characterization of pea WRKY genes during plant growth and development.


Asunto(s)
Genes de Plantas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pisum sativum/genética , Filogenia , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Hormonas , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
3.
New Phytol ; 243(3): 1247-1261, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837425

RESUMEN

The afila (af) mutation causes the replacement of leaflets by a branched mass of tendrils in the compound leaves of pea - Pisum sativum L. This mutation was first described in 1953, and several reports of spontaneous af mutations and induced mutants with a similar phenotype exist. Despite widespread introgression into breeding material, the nature of af and the origin of the alleles used remain unknown. Here, we combine comparative genomics with reverse genetic approaches to elucidate the genetic determinants of af. We also investigate haplotype diversity using a set of AfAf and afaf cultivars and breeding lines and molecular markers linked to seven consecutive genes. Our results show that deletion of two tandemly arranged genes encoding Q-type Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b, is responsible for the af phenotype in pea. Eight haplotypes were identified in the af-harbouring genomic region on chromosome 2. These haplotypes differ in the size of the deletion, covering more or less genes. Diversity at the af locus is valuable for crop improvement and sheds light on the history of pea breeding for improved standing ability. The results will be used to understand the function of PsPALM1a/b and to transfer the knowledge for innovation in related crops.


Asunto(s)
Haplotipos , Fenotipo , Pisum sativum , Fitomejoramiento , Pisum sativum/genética , Haplotipos/genética , Genes de Plantas , Proteínas de Plantas/genética , Mutación/genética , Hojas de la Planta/genética , Cruzamiento , Factores de Transcripción/genética , Variación Genética
4.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000596

RESUMEN

The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants' adaptation to salinity. However, to our knowledge, the transport of JAs from roots to shoots has not been studied in relation to the responses of shoots to root salt treatment. We detected a salt-induced increase in the content of JAs in the roots, xylem sap, and leaves of pea plants related to changes in transpiration. Similarities between the localization of JA and lipid transfer proteins (LTPs) around vascular tissues were detected with immunohistochemistry, while immunoblotting revealed the presence of LTPs in the xylem sap of pea plants and its increase with salinity. Furthermore, we compared the effects of exogenous MeJA and salt treatment on the accumulation of JAs in leaves and their impact on transpiration. Our results indicate that salt-induced changes in JA concentrations in roots and xylem sap are the source of accumulation of these hormones in leaves leading to associated changes in transpiration. Furthermore, they suggest the possible involvement of LTPs in the loading/unloading of JAs into/from the xylem and its xylem transport.


Asunto(s)
Proteínas Portadoras , Ciclopentanos , Oxilipinas , Pisum sativum , Hojas de la Planta , Proteínas de Plantas , Raíces de Plantas , Xilema , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Pisum sativum/metabolismo , Pisum sativum/efectos de los fármacos , Proteínas de Plantas/metabolismo , Xilema/metabolismo , Raíces de Plantas/metabolismo , Proteínas Portadoras/metabolismo , Hojas de la Planta/metabolismo , Transporte Biológico , Reguladores del Crecimiento de las Plantas/metabolismo
5.
J Sci Food Agric ; 104(6): 3685-3696, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38158792

RESUMEN

BACKGROUND: Cooking time and cooking evenness are two critical quantities when determining the cooking quality (termed cookability) of pulses. Deciphering which factors contribute to pulse cookability is important for breeding new cultivars, and the identification of potential cookability predictors can facilitate breeding efforts. Seeds from 24 morphologically diverse pea accessions were tested to identify contributing factors and potential predictors of the observed cookability using a Mattson cooker. Size- and weight-based measures were recorded, and seed-coat hardness was obtained with a penetrometer. Content of protein, starch (amylose and amylopectin), and phytate was also determined. RESULTS: Distinct differences were found between wrinkled and non-wrinkled seeds in terms of water-absorption capacity, seed-coat hardness, and plunger-perforation speed. Potential predictive indicators of cooking time and cooking evenness were seed-coat hardness (r = 0.49 and r = 0.38), relative area gained (r = -0.59 and r = -0.8), and percentage of swelled seeds after soaking (r = -0.49 and r = -0.58), but only for non-wrinkled seeds. Surprisingly, the coefficients of variation for the profile area of both dry and swelled seeds appeared to be potential cookability predictors of all pea types (correlation coefficients around r = 0.5 and supported by principal component analysis). However, no strong correlation was observed between cookability and protein, starch, or phytate levels. CONCLUSION: Using three types of instruments together with chemical components enabled the identification of novel cookability predictors for both cooking time and cooking evenness in pea. This study unveils the diverse quantitative aspects influencing cookability in pea. Considering both cooking time and cooking evenness, as well as seed-coat hardness, underscores the multifaceted nature of pulse cookability and offers important insights for future breeding strategies to enhance pea cultivars. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Ácido Fítico , Pisum sativum , Fitomejoramiento , Almidón/química , Culinaria , Semillas
6.
J Plant Res ; 136(6): 931-945, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37676608

RESUMEN

In the presented study, the effects of cadmium (Cd) stress and silicon (Si) supplementation on the pea plant (Pisum sativum L.) were investigated. The tendency to accumulate cadmium in the relevant morphological parts of the plant (roots and shoots respectively)-bioaccumulation, the transfer of this element in the plant (translocation) and the physiological parameters of the plant through indicators of oxidative stress were determined. Model studies were carried out at pH values 6.0 and 5.0 plant growth conditions in the hydroponic cultivation. It was shown that Cd accumulates mostly in plant roots at both pH levels. However, the Cd content is higher in the plants grown at lower pH. The Cd translocation factor was below 1.0, which indicates that the pea is an excluder plant. The contamination of the plant growth environment with Cd causes the increased antioxidant stress by the growing parameters of the total phenolic content (TPC), polyphenol oxidase activity (PPO), the malondialdehyde (MDA) and lipid peroxidation (LP). The results obtained showed that the supplementation with Si reduces these parameters, thus lowering the oxidative stress of the plant. Moreover, supplementation with Si leads to a lower content of Cd in the roots and reduces bioaccumulation of Cd in shoots and roots of pea plants.


Asunto(s)
Cadmio , Contaminantes del Suelo , Pisum sativum , Antioxidantes/metabolismo , Estrés Oxidativo , Silicio , Nutrientes , Raíces de Plantas/metabolismo
7.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240010

RESUMEN

Triazole fungicides are widely used in agricultural production for plant protection, including pea (Pisum sativum L.). The use of fungicides can negatively affect the legume-Rhizobium symbiosis. In this study, the effects of triazole fungicides Vintage and Titul Duo on nodule formation and, in particular, on nodule morphology, were studied. Both fungicides at the highest concentration decreased the nodule number and dry weight of the roots 20 days after inoculation. Transmission electron microscopy revealed the following ultrastructural changes in nodules: modifications in the cell walls (their clearing and thinning), thickening of the infection thread walls with the formation of outgrowths, accumulation of poly-ß-hydroxybutyrates in bacteroids, expansion of the peribacteroid space, and fusion of symbiosomes. Fungicides Vintage and Titul Duo negatively affect the composition of cell walls, leading to a decrease in the activity of synthesis of cellulose microfibrils and an increase in the number of matrix polysaccharides of cell walls. The results obtained coincide well with the data of transcriptomic analysis, which revealed an increase in the expression levels of genes that control cell wall modification and defense reactions. The data obtained indicate the need for further research on the effects of pesticides on the legume-Rhizobium symbiosis in order to optimize their use.


Asunto(s)
Fabaceae , Fungicidas Industriales , Rhizobium , Pisum sativum/química , Fungicidas Industriales/farmacología , Simbiosis/genética , Rhizobium/genética
8.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894828

RESUMEN

Inhibition of root elongation is an important growth response to salinity, which is thought to be regulated by the accumulation of jasmonates and auxins in roots. Nevertheless, the mechanisms of the interaction of these hormones in the regulation of the growth response to salinity are still not clear enough. Their better understanding depends on the study of the distribution of jasmonates and auxins between root cells. This was achieved with the help of immunolocalization of auxin (indoleacetic acid) and jasmonates on the root sections of pea plants. Salinity inhibited root elongation and decreased the size of the meristem zone and the length of cells in the elongation zone. Immunofluorescence based on the use of appropriate, specific antibodies that recognize auxins and jasmonates revealed an increased abundance of both hormones in the meristem zone. The obtained data suggests the participation of either auxins or jasmonates in the inhibition of cell division, which leads to a decrease in the size of the meristem zone. The level of only auxin and not jasmonate increased in the elongation zone. However, since some literature evidence argues against inhibition of root cell division by auxins, while jasmonates have been shown to inhibit this process, we came to the conclusion that elevated jasmonate is a more likely candidate for inhibiting root meristem activity under salinity conditions. Data suggests that auxins, not jasmonates, reduce cell size in the elongation zone of salt-stressed plants, a suggestion supported by the known ability of auxins to inhibit root cell elongation.


Asunto(s)
Arabidopsis , Pisum sativum , Raíces de Plantas , Salinidad , Ácidos Indolacéticos/farmacología , Meristema , Hormonas , Regulación de la Expresión Génica de las Plantas
9.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629113

RESUMEN

Although incurable pathologies associated with the formation of highly ordered fibrillar protein aggregates called amyloids have been known for about two centuries, functional roles of amyloids have been studied for only two decades. Recently, we identified functional amyloids in plants. These amyloids formed using garden pea Pisum sativum L. storage globulin and vicilin, accumulated during the seed maturation and resisted treatment with gastric enzymes and canning. Thus, vicilin amyloids ingested with food could interact with mammalian proteins. In this work, we analyzed the effects of vicilin amyloids on the fibril formation of proteins that form pathological amyloids. We found that vicilin amyloids inhibit the fibrillogenesis of these proteins. In particular, vicilin amyloids decrease the number and length of lysozyme amyloid fibrils; the length and width of ß-2-microglobulin fibrils; the number, length and the degree of clustering of ß-amyloid fibrils; and, finally, they change the structure and decrease the length of insulin fibrils. Such drastic influences of vicilin amyloids on the pathological amyloids' formation cause the alteration of their toxicity for mammalian cells, which decreases for all tested amyloids with the exception of insulin. Taken together, our study, for the first time, demonstrates the anti-amyloid effect of vicilin fibrils and suggests the mechanisms underlying this phenomenon.


Asunto(s)
Amiloide , Pisum sativum , Animales , Proteínas de Almacenamiento de Semillas , Insulina , Insulina Regular Humana , Mamíferos
10.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674632

RESUMEN

This study of a legume's rhizosphere in tripartite symbiosis focused on the relationships between the symbionts and less on the overall rhizosphere microbiome. We used an experimental model with different garden pea genotypes inoculated with AM fungi (Rhizophagus irregularis and with a mix of AM species) to study their influence on the population levels of main trophic groups of soil microorganisms as well as their structure and functional relationships in the rhizosphere microbial community. The experiments were carried out at two phenological cycles of the plants. Analyzes were performed according to classical methods: microbial population density defined as CUF/g a.d.s. and root colonization rate with AMF (%). We found a proven dominant effect of AMF on the densities of micromycetes and actinomycetes in the direction of reduction, suggesting antagonism, and on ammonifying, phosphate-solubilizing and free-living diazotrophic Azotobacter bacteria in the direction of stimulation, an indicator of mutualistic relationships. We determined that the genotype was decisive for the formation of populations of bacteria immobilizing mineral NH4+-N and bacteria Rhizobium. We reported significant two-way relationships between trophic groups related associated with soil nitrogen and phosphorus ions availability. The preserved proportions between trophic groups in the microbial communities were indicative of structural and functional stability.


Asunto(s)
Microbiota , Micorrizas , Micorrizas/genética , Pisum sativum , Rizosfera , Raíces de Plantas/microbiología , Hongos , Simbiosis/genética , Microbiota/genética , Bacterias/genética , Suelo/química , Genotipo , Microbiología del Suelo
11.
Plant Dis ; 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471462

RESUMEN

Pea (Pisum sativum L.) is one of the most important cool season legumes consumed as vegetable in the world. In March 2022, a severe stem rot was observed on pea cultivars in vegetative stage in Wuhan, Hubei Province, China (30°39' N, 114°66' E). The infection started on the lower stems, and the lesions were water soaked, then girdled the stem, resulting in wilting of the leaves. Eventually, the entire plant died, and some necrotic stems were covered with gray conidia. To investigate the causal agent, small pieces cut from diseased stems were surface sterilized with 2% NaOCl for 1 min, then incubated on potato dextrose agar (PDA) at 25°C for 3 days. Pure cultures were obtained by hyphal tip transfer and five isolates were studied further. Colonies initially appeared white, turned gray from the center, then became taupe with cottony aerial mycelia, and finally black hard, round or irregular sclerotia (0.92 to 5.34 × 0.86 to 4.42 mm, n = 20) developed. The sealing film of several plates were removed after 5 days, and abundant conidia were produced 3 days later. The conidia are terminally arranged at the end of long, grayish branched conidiophores, conidia are unicellular, hyaline and round or elliptical, (9.2 to 11.4 × 6.7 to 9.2 µm, n = 50), and the conidiophores are (10.7 to 13.0 µm × 760 to 1080 µm, n=20) in size. The morphological characteristics were consistent with descriptions of Botrytis cinerea (Li et al., 2016). Genomic DNA of the five isolates was extracted, and the internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate dehydrogenase (G3PDH) gene, heat-shock protein 60 (HSP60) gene, and DNA-dependent RNA polymerase subunit II (RPB2) gene were amplified using the primers described by Aktaruzzaman et al. (2018). The sequences were deposited in GenBank (accession nos. ON533694 and ON566787-ON566790 for ITS; ON600613 to ON600617 for HSP60; ON600608 to ON600612 for G3PDH; ON600603 to ON600607 for RPB2). The BLASTn analysis of these sequences showed that the isolates had high similarity (99 to 100%) with other B. cinerea isolates. A phylogenetic tree was constructed by MEGA11, and our isolates clustered in the B. cinerea clade. In pathogenicity test, 2-week-old seedlings of pea cultivar 'Zhongqin1' were inoculated. Mycelial plugs (5 mm diameter) taken from a 3-day-old colony of each isolate were placed on the axil of a stipule at the 4th node of potted pea plants (n=5 per isolate), and PDA plugs were placed on the same location of control (n=3). Inoculated and control plants were kept in a humid plastic box at 23°C for 2 days, and then placed in a glasshouse. Symptoms with water-soaked lesions were observed on the inoculated plants after 2 days, stems showed soft rot and broke off after 3 to 5 days, disease symptoms similar to those in the field, while the controls remained healthy. The pathogen was re-isolated from the affected stems, fulfilling Koch's postulates. B. cinerea had been reported to cause foliar, pod, seed and stem rot of pea after flowering in many pea production regions in the world (Kraft and Pfleger, 2001). Pea was recorded as a host of B. cinerea in Zhejiang, Sichuan and Yunnan Provinces (Tai, F. L. 1979; Zhuang, W.-Y. 2005; Zhang, Z. 2006.), but there has been no detailed disease description and identification of pathogen. To our knowledge, this is the first report of B. cinerea causing stem rot on pea in vegetative stage in China. Since B. cinerea can infect pea at any developmental stage, it could have a high economic impact as green pea production increases in China.

12.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269869

RESUMEN

Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants' response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models.


Asunto(s)
Fabaceae , Rhizobium , Fabaceae/metabolismo , Gliceraldehído , Fijación del Nitrógeno , Presión Osmótica , Pisum sativum/metabolismo , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología , Rhizobium/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
13.
Plant J ; 101(1): 217-236, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31520495

RESUMEN

Seed development largely depends on the long-distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source-to-sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this 'Push-and-Pull' approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source-to-sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1-overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild-type plants. Together, the results demonstrate that the SUT1-overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Push-and-Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.


Asunto(s)
Floema/metabolismo , Semillas/metabolismo , Sacarosa/metabolismo , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
14.
Pestic Biochem Physiol ; 178: 104939, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34446206

RESUMEN

Fusarium root rot caused by Fusarium oxysporum is an aggressive disease-causing damping-off, root rot, and vascular wilt in all peas growing fields. The disease can cause 100% yield losses under favorable conditions. The present study aims to control Fusarium root rot using Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhizal fungi, singly or in combinations. The results showed that all treatments significantly enhanced not only the plant growth, total phenol, activities of antioxidant enzymes, but also, the yield and seed quality. Several changes in the anatomical, physiological, and characteristics of the treated plants were also recorded. Compared to the untreated control treatment, under greenhouse conditions, the maximum reduction of the disease severity (80%) was achieved by the synergistic triple treatment consists of arbuscular mycorrhizal fungi, Trichoderma harzianum, and Pseudomonas fluorescens, as they gave the best growth and yield parameters. The same combination showed the highest activity of the antioxidant enzyme peroxidase (57.1%), as well as the highest total phenol content (117.7%), over the control. The synergistic triple increased the contents of protein (64.6%), total soluble sugars (48.5%), and total carbohydrate (24.8%) in seeds of pea compared with the control. The synergistic triple treatment led to an increase in the thickness of the root section (25%), the thickness of the cortex (24.8%), the thickness of the vascular cylinder (31.5%), and the diameter of the xylem vessels (81.5%) of the root. Based on their efficiency and eco-safety, this synergistic triple might be very effective for controlling root rot disease of pea caused by F. oxysporum, as well as improve the growth, yield, and seed quality.


Asunto(s)
Fusarium , Trichoderma , Hypocreales , Pisum sativum , Enfermedades de las Plantas/prevención & control
15.
Int J Phytoremediation ; 23(8): 837-845, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33372547

RESUMEN

Plant-microbe interaction is a significant tool to tackle heavy metals problem in the soil. A pot trial was conducted to evaluate the efficiency of lead tolerant rhizobacteria in improving pea growth under Pb stress. Lead sulfate (PbSO4) was used for spiking (250, 500, and 750 mg kg-1). Results indicated that inoculation with Pb-tolerant PGPR strain not only alleviated the harmful impacts of Pb on plant growth but also immobilized it in the soil. PGPR in the presence of Pb at concentrations of 0, 250, 500 and 750 mg kg-1, increased shoot and root lengths by 21, 15, 18% and 72, 80, 84%, respectively, than uninoculated control. Moreover, fresh biomass of shoots and roots were also increased by 51, 45, 35% and 57, 101, 139% respectively, at Pb concentrations of 250, 500 and 750 mg kg-1. In addition, PGPR inoculation also reduced Pb concentration in the roots and shoots by 57, 55, 49% and 70, 56 and 58% respectively, than uninoculated control. So, PGPR proved to be an efficient option for reducing Pb mobility and can be effectively used for its phytostabilization. Novelty statementLead (Pb) is highly noxious and second most toxic element in the nature having high persistence. It ranks 1st in the priority list of hazardous substances and causes adverse effects after its entry into the living system. So, its remediation is inevitable. Plant growth promoting rhizobacteria (PGPR) possess the potential to not only survive under stressed environments, but also promote plant growth on account of their different plant growth promoting mechanisms.Most researchers have worked on its bioaccumulation in plant body. This study however, used pea as a test crop and caused Pb phytostabilization and thereby, suppressed its entry in the above-ground plant parts.


Asunto(s)
Plomo , Contaminantes del Suelo , Biodegradación Ambiental , Plomo/análisis , Pisum sativum , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis
16.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445676

RESUMEN

Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review outlines the understanding of starch metabolism with a particular focus on peas and highlights the knowledge of pea starch granule structure and its relationship with functional properties, and industrial applications. Using the currently available pea genetics and genomics knowledge and breakthroughs in omics technologies, we discuss the perspectives and possible avenues to advance our understanding of starch metabolism in peas at an unprecedented level, to ultimately enable the molecular design of multi-functional native pea starch and to create value-added utilization.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Pisum sativum/metabolismo , Almidón/metabolismo , Pisum sativum/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Almidón/aislamiento & purificación
17.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445801

RESUMEN

This study focused on the interactions of pea (Pisum sativum L.) plants with phytopathogenic and beneficial fungi. Here, we examined whether the lysin-motif (LysM) receptor-like kinase PsLYK9 is directly involved in the perception of long- and short-chain chitooligosaccharides (COs) released after hydrolysis of the cell walls of phytopathogenic fungi and identified in arbuscular mycorrhizal (AM) fungal exudates. The identification and analysis of pea mutants impaired in the lyk9 gene confirmed the involvement of PsLYK9 in symbiosis development with AM fungi. Additionally, PsLYK9 regulated the immune response and resistance to phytopathogenic fungi, suggesting its bifunctional role. The existence of co-receptors may provide explanations for the potential dual role of PsLYK9 in the regulation of interactions with pathogenic and AM fungi. Co-immunoprecipitation assay revealed that PsLYK9 and two proposed co-receptors, PsLYR4 and PsLYR3, can form complexes. Analysis of binding capacity showed that PsLYK9 and PsLYR4, synthesized as extracellular domains in insect cells, were able to bind the deacetylated (DA) oligomers CO5-DA-CO8-DA. Our results suggest that the receptor complex consisting of PsLYK9 and PsLYR4 can trigger a signal pathway that stimulates the immune response in peas. However, PsLYR3 seems not to be involved in the perception of CO4-5, as a possible co-receptor of PsLYK9.


Asunto(s)
Quitina/análogos & derivados , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Animales , Línea Celular , Pared Celular/metabolismo , Pared Celular/microbiología , Quitina/metabolismo , Quitosano , Hidrólisis , Insectos/metabolismo , Micorrizas/metabolismo , Oligosacáridos , Pisum sativum/microbiología , Inmunidad de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Células Sf9 , Transducción de Señal/fisiología , Simbiosis/fisiología
18.
BMC Genomics ; 21(1): 536, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753054

RESUMEN

BACKGROUND: Frost is a limiting abiotic stress for the winter pea crop (Pisum sativum L.) and identifying the genetic determinants of frost tolerance is a major issue to breed varieties for cold northern areas. Quantitative trait loci (QTLs) have previously been detected from bi-parental mapping populations, giving an overview of the genome regions governing this trait. The recent development of high-throughput genotyping tools for pea brings the opportunity to undertake genetic association studies in order to capture a higher allelic diversity within large collections of genetic resources as well as to refine the localization of the causal polymorphisms thanks to the high marker density. In this study, a genome-wide association study (GWAS) was performed using a set of 365 pea accessions. Phenotyping was carried out by scoring frost damages in the field and in controlled conditions. The association mapping collection was also genotyped using an Illumina Infinium® BeadChip, which allowed to collect data for 11,366 single nucleotide polymorphism (SNP) markers. RESULTS: GWAS identified 62 SNPs significantly associated with frost tolerance and distributed over six of the seven pea linkage groups (LGs). These results confirmed 3 QTLs that were already mapped in multiple environments on LG III, V and VI with bi-parental populations. They also allowed to identify one locus, on LG II, which has not been detected yet and two loci, on LGs I and VII, which have formerly been detected in only one environment. Fifty candidate genes corresponding to annotated significant SNPs, or SNPs in strong linkage disequilibrium with the formers, were found to underlie the frost damage (FD)-related loci detected by GWAS. Additionally, the analyses allowed to define favorable haplotypes of markers for the FD-related loci and their corresponding accessions within the association mapping collection. CONCLUSIONS: This study led to identify FD-related loci as well as corresponding favorable haplotypes of markers and representative pea accessions that might to be used in winter pea breeding programs. Among the candidate genes highlighted at the identified FD-related loci, the results also encourage further attention to the presence of C-repeat Binding Factors (CBF) as potential genetic determinants of the frost tolerance locus on LG VI.


Asunto(s)
Estudio de Asociación del Genoma Completo , Pisum sativum , Alelos , Mapeo Cromosómico , Desequilibrio de Ligamiento , Pisum sativum/genética , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple
19.
Ecotoxicol Environ Saf ; 201: 110778, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32480161

RESUMEN

Field peas (Pisum sativum L.) are widely cultivated throughout the world as a cool season grain and forage crop. Boron (B) toxicity is caused by high B concentration in the soil or irrigation water, and is particularly problematic in medium or heavier textured soil types with moderate alkalinity and low annual rainfall. Previous studies have indicated that B-toxicity increases oxidative stress in plants, and B-tolerance has been considered an important target in field pea plant breeding programmes. Inducers of tolerance may be a promising alternative for plant breeding. Little research has been conducted on the combined use of silicon (Si) and salicylic acid (SA) to remediate B-toxicity in field peas. The present study revealed the physiological and biochemical plant responses of applying Si + SA under B-toxicity (15 mg B L-1) on two Brazilian field pea cultivars (Iapar 83 and BRS Forrageira). A semi-hydroponic experiment was conducted using a completely randomized factorial design (2 × 5): with two field pea cultivars and five treatments which were formed by individual and combined applications of Si and SA under B-toxicity plus a control (control, B, B + Si, B + SA, and B + Si + SA). Si (2 mmol L-1) was applied to plants in two forms (root and leaf), while for SA (36 µmol L-1) only foliar applications were applied. Our results demonstrated that the combined use of exogenous Si + SA in field peas increased tolerance to B-toxicity through an intensified antioxidant plant defence system, resulting in a better regulation of reactive oxygen species (ROS) production and degradation. It significantly increased total chlorophyll and carotenoids contents, the activities of major antioxidant enzymes, and reduced MDA and H2O2 contents, resulting in increased fresh shoot and total plant dry biomass. The application of Si + SA alleviated the inhibitory effects of boron toxicity in field peas, resulting in greater plant growth by preventing oxidative membrane damage through an increased tolerance to B-excess within the plant tissue. Therefore, the use of Si + SA is an important and sustainable strategy to alleviate B-toxicity in field pea cultivation.


Asunto(s)
Antioxidantes/metabolismo , Boro/toxicidad , Pisum sativum/fisiología , Ácido Salicílico/metabolismo , Silicio/metabolismo , Contaminantes del Suelo/toxicidad , Brasil , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pisum sativum/efectos de los fármacos , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187383

RESUMEN

Cerium dioxide nanoparticles are pollutants of emerging concern. They are rarely immobilized in the environment. This study extends our work on Pisum sativum L. as a model plant, cultivated worldwide, and is well suited for investigating additive interactions induced by nanoceria. Hydroponic cultivation, which prompts accurate plant growth control and three levels of CeO2 supplementation, were applied, namely, 100, 200, and 500 mg (Ce)/L. Phytotoxicity was estimated by fresh weights and photosynthesis parameters. Additionally, Ce, Cu, Zn, Mn, Fe, Ca, and Mg contents were analyzed by high-resolution continuum source atomic absorption and inductively coupled plasma optical emission techniques. Analysis of variance has proved that CeO2 nanoparticles affected metals uptake. In the roots, it decreased for Cu, Zn, Mn, Fe, and Mg, while a reversed process was observed for Ca. The latter is absorbed more intensively, but translocation to above-ground parts is hampered. At the same time, nanoparticulate CeO2 reduced Cu, Zn, Mn, Fe, and Ca accumulation in pea shoots. The lowest Ce concentration boosted the photosynthesis rate, while the remaining treatments did not induce significant changes. Plant growth stimulation was observed only for the 100 mg/L. To our knowledge, this is the first study that demonstrates the effect of nanoceria on photosynthesis-related parameters in peas.


Asunto(s)
Cerio/efectos adversos , Gases/metabolismo , Homeostasis/fisiología , Nanopartículas del Metal/efectos adversos , Metales/metabolismo , Pisum sativum/efectos de los fármacos , Pisum sativum/metabolismo , Hidroponía/métodos , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Contaminantes del Suelo/efectos adversos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda