Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Small ; : e2311181, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361209

RESUMEN

Efficient capture and storage of radioactive I2 is a prerequisite for developing nuclear power but remains a challenge. Here, two flexible Ag-MOFs (FJI-H39 and 40) with similar active sites but different pore sizes and flexibility are prepared; both of them can capture I2 with excellent removal efficiencies and high adsorption capacities. Due to the more flexible pores, FJI-H39 not only possesses the record-high I2 storage density among all the reported MOFs but also displays a very fast adsorption kinetic (124 times faster than FJI-H40), while their desorption kinetics are comparable. Mechanistic studies show that FJI-H39 can undergo induced-fit transformations continuously (first contraction then expansion), making the adsorbed iodine species enrich near the Ag(I) nodes quickly and orderly, from discrete I- anion to the dense packing of various iodine species, achieving the very fast adsorption kinetic and the record-high storage density simultaneously. However, no significant structural transformations caused by the adsorbed iodine are observed in FJI-H40. In addition, FJI-H39 has excellent stability/recyclability/obtainability, making it a practical adsorbent for radioactive I2 . This work provides a useful method for synthesizing practical radioactive I2 adsorbents.

2.
Small ; : e2403331, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898749

RESUMEN

Precise self-assembly of colloidal particles is crucial for understanding their aggregation properties and preparing macroscopic functional devices. It is currently very challenging to synthesize and self-assemble super-uniform covalent organic framework (COF) colloidal particles into well-organized multidimensional superstructures. Here, simple and versatile strategies are proposed for synthesis of super-uniform COF colloidal particles and self-assembly of them into 1D supraparticles, 2D ordered mono/multilayers, and 3D COF films. For this purpose, several self-assembly techniques are developed, including emulsion solvent evaporation, air-liquid interfacial self-assembly, and drop-casting. These strategies enable the superstructural self-assembly of particles of varying sizes and species without any additional surfactants or chemical modifications. The assembled superstructures maintain the porosity and high specific surface area of their building blocks. The feasibility of the strategies is examined with different types of COFs. This research provides a new approach for the controllable synthesis of super-uniform COF colloidal particles capable of self-assembling into multidimensional superstructures with long-range order. These discoveries hold great promise for the design of emerging multifunctional COF superstructures.

3.
Chemphyschem ; 25(6): e202300793, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38259120

RESUMEN

In this paper, we report a new generation of polymeric networks as potential functional material based on changes in molecular dynamics in the solid state. The material is obtained by free radical polymerization of a diacrylate derivative bearing a steroid (stator) and a 1,4-diethynyl-phenylene-d4 fragment (rotator). Polymer research using the PALS technique complements the knowledge about nanostructural changes occurring in the system in the temperature range -115 °C - +190 °C. It indicates the presence of two types of free nanovolumes in the system and the occurrence of phase transitions. The polymer is characterized using 1 H NMR, 2 H Solid Echo NMR, ATR-FTIR and Raman spectroscopies, thermal analysis, and porosimetry. It is proved that the applied procedure leads to the formation of a novel porous organic material containing multiple molecular rotors.

4.
Macromol Rapid Commun ; : e2400108, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639216

RESUMEN

Various acoustic materials are developed to resolve noise pollution problem in many industries. Especially, materials with porous structure are broadly used to absorb sound energy in civil construction and transportation area. Polyurethane (PU) porous materials possess excellent damping properties, good toughness, and well-developed pore structures, which have a broad application prospect in sound absorption field. This work aims to summarize the recent progress of fabrication and structure for PU porous materials in sound absorption application. The sound absorption mechanisms of porous materials are introduced. Different kinds of structure for typical PU porous materials in sound absorption application are covered and highlighted, which include PU foam, modified PU porous materials, aerogel, templated PU, and special PU porous materials. Finally, the development direction and existing problems of PU material in sound absorption application are briefly prospected. It can be expected that porous PU with high sound absorption coefficient can be obtained by using some facile methods. The design and accurate regulation of porous structures or construction of multilayer sound absorption structure is favorably recommended to fulfill the high demand of industrial and commercial applications in the future work.

5.
Microsc Microanal ; 30(1): 41-48, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321710

RESUMEN

A novel method for the preparation of lamellas made from porous and brittle compressed green powder using a focused ion beam (FIB) is described. One of the main purposes for the development of this methodology is to use this type of samples in micro-electromechanical systems (MEMS) chips for in situ transmission electron microscopy heating/biasing experiments, concomitant with maintaining the mechanical integrity and the absence of contamination of samples. This is accomplished through a modification of the standard FIB procedure for the preparation of lamellas, the adaptation of conventional chips, as well as the specific transfer of the lamella onto the chips. This method is versatile enough to be implemented in most commercially available FIB systems and MEMS chips.

6.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931596

RESUMEN

Porous materials possess advantages such as rich pore structures, a large surface area, low relative density, high specific strength, and good breathability. They have broad prospects in the development of a high-performance Triboelectric Nanogenerator (TENG) and self-powered sensing fields. This paper elaborates on the structural forms and construction methods of porous materials in existing TENG, including aerogels, foam sponges, electrospinning, 3D printing, and fabric structures. The research progress of porous materials in improving TENG performance is systematically summarized, with a focus on discussing design strategies of porous structures to enhance the TENG mechanical performance, frictional electrical performance, and environmental tolerance. The current applications of porous-material-based TENG in self-powered sensing such as pressure sensing, health monitoring, and human-machine interactions are introduced, and future development directions and challenges are discussed.

7.
Chemistry ; 29(71): e202302734, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37926848

RESUMEN

The development of high-efficient and large-scale non-precious electrocatalysts to improve sluggish reaction kinetics plays a key role in enhancing electrocatalytic nitrogen reduction reaction (NRR) for ammonia production under mild condition. Herein, Fe3 O4 and Fe supported by porous carbon (denoted as Fe/Fe3 O4 /PC-800) composite with a high specific surface area of 1004.1 m2 g-1 was prepared via a simple template method. On one hand, the high surface area of Fe/Fe3 O4 /PC-800 provides a large area to enhance N2 adsorption and promote more protons and electrons to accelerate the reaction, thereby greatly improving the dynamics. On the other hand, mesoporous Fe/Fe3 O4 /PC-800 provides high electrochemically active surface area for promoting the occurrence of catalytic kinetics. As a result, Fe/Fe3 O4 /PC-800 exhibited significantly enhanced NRR performance with an ammonia yield of 31.15 µg h-1 mg-1 cat. and faraday efficiency of 22.26 % at -0.1 V vs. reversible hydrogen electrode (RHE). This study is expected to provide a new strategy for the synthesis of catalysts with large specific area and pave the way for the foundational research in NRR.

8.
Environ Res ; 238(Pt 2): 117186, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37741569

RESUMEN

Currently, the storage of coal gasification slag (CGS) is continuously increasing, as the coal gasification technology develops, posing significant environmental hazards. Due to its volcanic ash characteristics and rich residual carbon, CGS has great potential for resource utilization, which has attracted the attentions of many scholars. This paper firstly introduces the compositions and properties of CGS. Then, it reviews the existing utilization methods of CGS, including Preparation of building materials, carbon-ash separation technology, ecological restoration, and cyclic blending. The advantages and disadvantages of various methods are compared. Subsequently, some high-value utilization methods of coal gasification slag are introduced, such as the preparation of high-performance activated carbon and zeolite, of which the feasibility and advantages are evaluated. Finally, some suggestions are put forward for future developing technologies. This paper aims to provide some references and inspiration for the utilization and environmental protection of CGS.


Asunto(s)
Carbón Mineral , Conservación de los Recursos Naturales , Carbón Orgánico , Ceniza del Carbón
9.
Environ Res ; 237(Pt 1): 116957, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37634694

RESUMEN

This study investigates the use of a hexagonal-porous aluminosilicate (HAS) adsorbent derived from bagasse bottom ash (BBA), an agricultural solid waste, for the adsorption of ammonia nitrogen (NH3-N)-a key water pollutant from agricultural and farming activities. Sodium silicate derived from BBA via the alkaline fusion method was employed, resulting in energy savings due to a synthesis temperature 1.53 times lower than that of commercial sodium silicate synthesis. The sol-gel method was utilized to successfully synthesize HAS featuring a high surface area and porosity using the sodium silicate prepared from BBA. However, an increase in aluminum content resulted in a decrease in surface area and hexagonal porosity. In performance tests, the HAS(5) adsorbent exhibited the most efficient NH3-N removal, outperforming other adsorbents by 4.54-25.19 times across all initial concentrations. This enhanced efficiency can be attributed to its numerous acidic surface sites, enabling the bonding of NH3-N molecules through monolayer adsorption on the HAS surface.

10.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569760

RESUMEN

Here, we report a new version of the extended Rate Constants Distribution (RCD) model for metal ion sorption, which includes complex-formation equilibria. With the RCD-complex model, one can predict sorbent performance in the presence of complexing agents using data on metal ion sorption from ligand-free solutions and a set of coefficients for sorption rate constants of different ionic species. The RCD-complex model was applied to breakthrough curves of Cu(II) sorption from acetate and tartrate solutions on polyethyleneimine (PEI) monolith cryogel at different flow rates and ionic speciation. We have shown that, despite the lower stability of Cu(II)-acetate complex, at high flow rates, acetate has a more pronounced negative effect on sorption kinetics than tartrate. The RCD model was successfully used to predict the shape of the breakthrough curves at an arbitrary acetate concentration but failed to predict Cu(II) sorption from tartrate solutions in a broad range of ligand concentrations. Since a twofold increase in sorption capacity was observed at low tartrate concentrations, the latter fact was related to an alteration in the sorption mechanism of Cu(II)-ions, which depended on Cu(II) ionic speciation. The obtained results emphasize the importance of information about sorption kinetics of different ionic forms for the optimization of sorption filter performance in the presence of complexing agents.


Asunto(s)
Criogeles , Polietileneimina , Cinética , Tartratos , Concentración de Iones de Hidrógeno , Metales , Iones , Acetatos , Adsorción , Cobre , Soluciones
11.
Molecules ; 28(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903564

RESUMEN

Porous Au nanocrystals (Au NCs) have been widely used in catalysis, sensing, and biomedicine due to their excellent localized surface plasma resonance effect and a large number of active sites exposed by three-dimensional internal channels. Here, we developed a ligand-induced one-step method for the controllable preparation of mesoporous, microporous, and hierarchical porous Au NCs with internal 3D connecting channels. At 25 °C, using glutathione (GTH) as both a ligand and reducing agent combined with the Au precursor to form GTH-Au(I), and under the action of the reducing agent ascorbic acid, the Au precursor is reduced in situ to form a dandelion-like microporous structure assembled by Au rods. When cetyltrimethylammonium bromide (C16TAB) and GTH are used as ligands, mesoporous Au NCs formed. When increasing the reaction temperature to 80 °C, hierarchical porous Au NCs with both microporous and mesoporous structures will be synthesized. We systematically explored the effect of reaction parameters on porous Au NCs and proposed possible reaction mechanisms. Furthermore, we compared the SERS-enhancing effect of Au NCs with three different pore structures. With hierarchical porous Au NCs as the SERS base, the detection limit for rhodamine 6G (R6G) reached 10-10 M.

12.
J Environ Sci (China) ; 127: 855-865, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522113

RESUMEN

The water-based foam stabilized by the natural surfactant applied in the fabrication of porous materials has attracted extensive attention, as the advantages of cleanness, convenience and low cost. Particularly, the development of a green preparation method has became the main research focus and frontier. In this work, a green liquid foam with high stability was prepared by synergistic stabilization of natural plant astragalus membranaceus (AMS) and attapulgite (APT), and then a novel porous material with sufficient hierarchical pore structure was templated from the foam via a simple free radical polymerization of acrylamide (AM). The characterization results revealed that the amphiphilic molecules from AMS adsorbed onto the water-air interface and formed a protective shell to prevent the bubble breakup, and APT gathered in the plateau border and formed a three-dimensional network structure, which greatly slowed down the drainage rate. The porous material polyacrylamide/astragalus membranaceus/attapulgite (PAM/AMS/APT) showed the excellent adsorption performance for cationic dyes of Methyl Violet (MV) and Methylene Blue (MB) in water, and the maximum adsorption capacity could reach to 709.13 and 703.30 mg/g, respectively. Furthermore, the polymer material enabled to regenerate and cycle via a convenient calcination process, and the adsorption capacity was still higher than 200 mg/g after five cycles. In short, this research provided a new idea for the green preparation of porous materials and the treatment of water pollution.


Asunto(s)
Astragalus propinquus , Colorantes , Colorantes/química , Porosidad , Adsorción , Cationes , Agua
13.
Molecules ; 27(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35458784

RESUMEN

Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with polygonal porosity and highly ordered structures. The most prominent feature of the COFs is their excellent crystallinity and highly ordered modifiable one-dimensional pores. Since the first report of them in 2005, COFs with various structures were successfully synthesized and their applications in a wide range of fields including gas storage, pollution removal, catalysis, and optoelectronics explored. In the meantime, COFs also exhibited good performance in chemical and biological sensing, because their highly ordered modifiable pores allowed the selective adsorption of the analytes, and the interaction between the analytes and the COFs' skeletons may lead to a detectable change in the optical or electrical properties of the COFs. In this review, we firstly demonstrate the basic principles of COFs-based chemical and biological sensing, then briefly summarize the applications of COFs in sensing some substances of practical value, including some gases, ions, organic compounds, and biomolecules. Finally, we discuss the trends and the challenges of COFs-based chemical and biological sensing.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Catálisis , Gases , Estructuras Metalorgánicas/química , Polímeros/química , Porosidad
14.
Molecules ; 27(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35056771

RESUMEN

In this work, Norway spruce bark was used as a precursor to prepare activated biochars (BCs) via chemical activation with potassium hydroxide (KOH) as a chemical activator. A Box-Behnken design (BBD) was conducted to evaluate and identify the optimal conditions to reach high specific surface area and high mass yield of BC samples. The studied BC preparation parameters and their levels were as follows: pyrolysis temperature (700, 800, and 900 °C), holding time (1, 2, and 3 h), and ratio of the biomass: chemical activator of 1: 1, 1.5, and 2. The planned BBD yielded BC with extremely high SSA values, up to 2209 m2·g-1. In addition, the BCs were physiochemically characterized, and the results indicated that the BCs exhibited disordered carbon structures and presented a high quantity of O-bearing functional groups on their surfaces, which might improve their adsorption performance towards organic pollutant removal. The BC with the highest SSA value was then employed as an adsorbent to remove Evans blue dye (EB) and colorful effluents. The kinetic study followed a general-order (GO) model, as the most suitable model to describe the experimental data, while the Redlich-Peterson model fitted the equilibrium data better. The EB adsorption capacity was 396.1 mg·g-1. The employment of the BC in the treatment of synthetic effluents, with several dyes and other organic and inorganic compounds, returned a high percentage of removal degree up to 87.7%. Desorption and cyclability tests showed that the biochar can be efficiently regenerated, maintaining an adsorption capacity of 75% after 4 adsorption-desorption cycles. The results of this work pointed out that Norway spruce bark indeed is a promising precursor for producing biochars with very promising properties.


Asunto(s)
Compuestos Azo/química , Carbón Orgánico/química , Grafito/química , Hidróxidos/química , Corteza de la Planta/química , Compuestos de Potasio/química , Adsorción , Biomasa , Cinética , Porosidad , Análisis Espectral , Temperatura , Contaminantes Químicos del Agua
15.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296465

RESUMEN

A new metal-organic framework (MOF), [Co2(L)2(azpy)]n (compound 1, H2L = 5-(pyridin-4-ylmethoxy)-isophthalic acid, azpy = 4,4'-azopyridine), was synthesized by a solvothermal method and further characterized by elemental analysis, IR spectra, thermogravimetric analysis, single-crystal and powder X-ray diffraction. The X-ray single-crystal diffraction analysis for compound 1 indicated that two cis L22- ligands connected to two cobalt atoms resulted in a macrocycle structure. Through a series of adsorption tests, we found that compound 1 exhibited a high capacity of CO2, and the adsorption capacity could reach 30.04 cm3/g. More interestingly, under 273 K conditions, the adsorption of CO2 was 41.33 cm3/g. In addition, when the Co-MOF was irradiated by a 730 nm laser, rapid temperature increases for compound 1 were observed (temperature variation in 169 s: 26.6 °C), showing an obvious photothermal conversion performance. The photothermal conversion efficiency reached 20.3%, which might be due to the fact that the parallel arrangement of azo units inhibited non-radiative transition and promoted photothermal conversion. The study provides an efficient strategy for designing MOFs for the adsorption of CO2 and with good photothermal conversion performance.

16.
Molecules ; 27(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296717

RESUMEN

Cyanide gas is highly toxic and volatile and is among the most typical toxic and harmful pollutants to human health and the environment found in industrial waste gas. In the military context, cyanide gas has been used as a systemic toxic agent. In this paper, we review cyanide gas elimination methods, focusing on adsorption and catalysis approaches. The research progress on materials capable of affecting cyanide gas adsorption and catalytic degradation is discussed in depth, and the advantages and disadvantages of various materials are summarized. Finally, suggestions are provided for future research directions with respect to cyanide gas elimination materials.


Asunto(s)
Cianuros , Contaminantes Ambientales , Humanos , Residuos Industriales , Adsorción , Catálisis
17.
Angew Chem Int Ed Engl ; 61(49): e202214039, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198650

RESUMEN

Recently, porous organic crystals (POC) based on macrocycles have shown exceptional sorption and separation properties. Yet, the impact of guest presence inside a macrocycle prior to adsorption has not been studied. Here we show that the inclusion of trimethoxybenzyl-azaphosphatrane in the macrocycle cucurbit[8]uril (CB[8]) affords molecular porous host⋅guest crystals (PHGC-1) with radically new properties. Unactivated hydrated PHGC-1 adsorbed iodine spontaneously and selectively at room temperature and atmospheric pressure. The absence of (i) heat for material synthesis, (ii) moisture sensitivity, and (iii) energy-intensive steps for pore activation are attractive attributes for decreasing the energy costs. 1 H NMR and DOSY were instrumental for monitoring the H2 O/I2 exchange. PHGC-1 crystals are non-centrosymmetric and I2 -doped crystals showed markedly different second harmonic generation (SHG), which suggests that iodine doping could be used to modulate the non-linear optical properties of porous organic crystals.

18.
Angew Chem Int Ed Engl ; 61(3): e202112507, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34800076

RESUMEN

The use of simple building blocks to produce hierarchical and porous structured materials is highly desired. Rings are simple colloidal particles but unique for their internal cavities. Here we report the self-assembly (SA) of colloidal rings with tunable asymmetry mediated by a depletion force and demonstrate that a variety of porous colloidal superstructures from microtubes, flexible chains, (plastic) crystals to highly open liquid crystals (LCs) can be formed along the predesigned SA paths. In particular, the SA is staged in binary or ternary systems. Large rings first form complex ring-in-ring and ring-in-ring-in-ring assemblies by capturing smaller rings, which, as new building blocks, can further form multi-walled microtubes and open columnar LCs. Moreover, a plastic columnar LC with alternating intracolumnar stacking is found from asymmetrical rings. The SA with colloidal rings opens a new avenue to construct hierarchical and porous ordered metamaterials.

19.
J Sep Sci ; 44(6): 1140-1147, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32725854

RESUMEN

In this work, graphene oxide-hybridized high internal emulsion polymers with crosslinking and open-cell structure was prepared and applied for separation and enrichment of estrogens. The prepared graphene oxide-hybridized high internal emulsion polymer monoliths had hydrophobicity, porosity and stability, which were just obtained by one step in-situ emulsion polymerization of 2-ethylhexyl acrylate, glycidyl methacrylate, and divinylbenzene after doping with graphene oxide. Benefit from the advantages of its unique character, the graphene oxide-hybridized high internal emulsion polymers monolith with low background pressure (85 kPa) and high mechanical strength could be applied for efficient separation for trace estrogens in urine. Under the optimized condition, trace estrogens, including estrone, estradiol, and diethylstilbestrol in urine, were detected by high-performance liquid chromatography, all the sample preparation process were carried out in 15 min, the recovery rate was ranged from 85.0 to 106.0% and the relative standard deviation was less than 4.


Asunto(s)
Estrógenos/orina , Polímeros/síntesis química , Adsorción , Emulsiones/síntesis química , Emulsiones/química , Femenino , Grafito/química , Voluntarios Sanos , Humanos , Estructura Molecular , Tamaño de la Partícula , Polímeros/química , Porosidad , Propiedades de Superficie
20.
Artículo en Inglés | MEDLINE | ID: mdl-33414569

RESUMEN

We employ physics-informed neural networks (PINNs) to infer properties of biological materials using synthetic data. In particular, we successfully apply PINNs on inferring permeability and viscoelastic modulus from thrombus deformation data, which can be described by the fourth-order Cahn-Hilliard and Navier-Stokes Equations. In PINNs, the partial differential equations are encoded into a loss function, where partial derivatives can be obtained through automatic differentiation (AD). In addition to tackling the challenge of calculating the fourth-order derivative in the Cahn-Hilliard equation with AD, we introduce an auxiliary network along with the main neural network to approximate the second-derivative of the energy potential term. Our model can simultaneously predict unknown material parameters and velocity, pressure, and deformation gradient fields by merely training with partial information among all data, i.e., phase field and pressure measurements, while remaining highly flexible in sampling within the spatio-temporal domain for data acquisition. We validate our model by numerical solutions from the spectral/hp element method (SEM) and demonstrate its robustness by training it with noisy measurements. Our results show that PINNs can infer the material properties from noisy synthetic data, and thus they have great potential for inferring these properties from experimental multi-modality and multi-fidelity data.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda