Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.514
Filtrar
Más filtros

Publication year range
1.
J Neurosci ; 43(16): 2934-2949, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36927572

RESUMEN

This study examined the effect of danger on consolidation of neutral information in two regions of the rat (male and female) medial temporal lobe: the perirhinal cortex (PRh) and basolateral amygdala complex (BLA). The neutral information was the association that forms between an auditory stimulus and a visual stimulus (labeled S2 and S1) across their pairings in sensory preconditioning. We show that, when the sensory preconditioning session is followed by a shocked context exposure, the danger shifts consolidation of the S2-S1 association from the PRh to the BLA; and does so by interacting with processes involved in encoding of the S2-S1 pairings. Specifically, we show that the initial S2-S1 pairing in sensory preconditioning is encoded in the BLA and not the PRh; whereas the later S2-S1 pairings are encoded in the PRh and not the BLA. When the sensory preconditioning session is followed by a context alone exposure, the BLA-dependent trace of the early S2-S1 pairings decays and the PRh-dependent trace of the later S2-S1 pairings is consolidated in memory. However, when the sensory preconditioning session is followed by a shocked context exposure, the PRh-dependent trace of the later S2-S1 pairings is suppressed and the BLA-dependent trace of the initial S2-S1 pairing is consolidated in memory. These findings are discussed with respect to mutually inhibitory interactions between the PRh and BLA, and the way that these regions support memory in other protocols, including recognition memory in people.SIGNIFICANCE STATEMENT The perirhinal cortex (PRh) and basolateral amygdala complex (BLA) process the pairings of neutral auditory and visual stimuli in sensory preconditioning. The involvement of each region in this processing is determined by the novelty/familiarity of the stimuli as well as events that occur immediately after the preconditioning session. Novel stimuli are represented in the BLA; however, as these stimuli are repeatedly presented without consequence, they come to be represented in the PRh. Whether the BLA- or PRh-dependent representation is consolidated in memory depends on what happens next. When nothing of significance occurs, the PRh-dependent representation is consolidated and the BLA-dependent representation decays; but when danger is encountered, the PRh-dependent representation is inhibited and the BLA-dependent representation is selected for consolidation.


Asunto(s)
Complejo Nuclear Basolateral , Miedo , Femenino , Ratas , Masculino , Animales , Condicionamiento Psicológico , Lóbulo Temporal , Reconocimiento en Psicología
2.
J Cell Mol Med ; 28(15): e18554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39103747

RESUMEN

Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aß) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Microglía/metabolismo , Microglía/patología , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Humanos , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedades Neuroinflamatorias/metabolismo
3.
Stroke ; 55(5): 1370-1380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572656

RESUMEN

BACKGROUND: Mild chemical inhibition of mitochondrial respiration can confer resilience against a subsequent stroke or myocardial infarction, also known as preconditioning. However, the lack of chemicals that can safely inhibit mitochondrial respiration has impeded the clinical translation of the preconditioning concept. We previously showed that meclizine, an over-the-counter antivertigo drug, can toggle metabolism from mitochondrial respiration toward glycolysis and protect against ischemia-reperfusion injury in the brain, heart, and kidney. Here, we examine the mechanism of action of meclizine and report the efficacy and improved safety of the (S) enantiomer. METHODS: We determined the anoxic depolarization latency, tissue and neurological outcomes, and glucose uptake using micro-positron emission tomography after transient middle cerebral artery occlusion in mice pretreated (-17 and -3 hours) with either vehicle or meclizine. To exclude a direct effect on tissue excitability, we also examined spreading depression susceptibility. Furthermore, we accomplished the chiral synthesis of (R)- and (S)-meclizine and compared their effects on oxygen consumption and histamine H1 receptor binding along with their brain concentrations. RESULTS: Micro-positron emission tomography showed meclizine increases glucose uptake in the ischemic penumbra, providing the first in vivo evidence that the neuroprotective effect of meclizine indeed stems from its ability to toggle metabolism toward glycolysis. Consistent with reduced reliance on oxidative phosphorylation to sustain the metabolism, meclizine delayed anoxic depolarization onset after middle cerebral artery occlusion. Moreover, the (S) enantiomer showed reduced H1 receptor binding, a dose-limiting side effect for the racemate, but retained its effect on mitochondrial respiration. (S)-meclizine was at least as efficacious as the racemate in delaying anoxic depolarization onset and decreasing infarct volumes after middle cerebral artery occlusion. CONCLUSIONS: Our data identify (S)-meclizine as a promising new drug candidate with high translational potential as a chemical preconditioning agent for preemptive prophylaxis in patients with high imminent stroke or myocardial infarction risk.

4.
J Neurophysiol ; 132(2): 527-530, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985940

RESUMEN

Ischemic preconditioning (IPC) can enhance maximal strength likely due to neural priming. Cruz et al. (Cruz R, Tramontin AF, Oliveira AS, Caputo F, Denadai BS, Greco CC. Scand J Med Sci Sports 34: e14591, 2024) examined the neurophysiological mechanisms responsible for the ergogenic effect. Although key neurophysiological measures remained largely unchanged, voluntary activation and maximal strength were greater following IPC than sham-IPC. Although the mechanistic evidence remains inconclusive, the greater maximal strength provides further evidence of the ergogenic benefit of IPC. Researchers should continue examining the broader functional implications of IPC.


Asunto(s)
Precondicionamiento Isquémico , Precondicionamiento Isquémico/métodos , Humanos , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología
5.
BMC Med ; 22(1): 4, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166913

RESUMEN

BACKGROUND: We aimed to determine whether and how the combination of acetazolamide and remote ischemic preconditioning (RIPC) reduced the incidence and severity of acute mountain sickness (AMS). METHODS: This is a prospective, randomized, open-label, blinded endpoint (PROBE) study involving 250 healthy volunteers. Participants were randomized (1:1:1:1:1) to following five groups: Ripc (RIPC twice daily, 6 days), Rapid-Ripc (RIPC four times daily, 3 days), Acetazolamide (twice daily, 2 days), Combined (Acetazolamide plus Rapid-Ripc), and Control group. After interventions, participants entered a normobaric hypoxic chamber (equivalent to 4000 m) and stayed for 6 h. The primary outcomes included the incidence and severity of AMS, and SpO2 after hypoxic exposure. Secondary outcomes included systolic and diastolic blood pressure, and heart rate after hypoxic exposure. The mechanisms of the combined regime were investigated through exploratory outcomes, including analysis of venous blood gas, complete blood count, human cytokine antibody array, ELISA validation for PDGF-AB, and detection of PDGF gene polymorphisms. RESULTS: The combination of acetazolamide and RIPC exhibited powerful efficacy in preventing AMS, reducing the incidence of AMS from 26.0 to 6.0% (Combined vs Control: RR 0.23, 95% CI 0.07-0.70, P = 0.006), without significantly increasing the incidence of adverse reactions. Combined group also showed the lowest AMS score (0.92 ± 1.10). Mechanistically, acetazolamide induced a mild metabolic acidosis (pH 7.30 ~ 7.31; HCO3- 18.1 ~ 20.8 mmol/L) and improved SpO2 (89 ~ 91%) following hypoxic exposure. Additionally, thirty differentially expressed proteins (DEPs) related to immune-inflammatory process were identified after hypoxia, among which PDGF-AB was involved. Further validation of PDGF-AB in all individuals showed that both acetazolamide and RIPC downregulated PDGF-AB before hypoxic exposure, suggesting a possible protective mechanism. Furthermore, genetic analyses demonstrated that individuals carrying the PDGFA rs2070958 C allele, rs9690350 G allele, or rs1800814 G allele did not display a decrease in PDGF-AB levels after interventions, and were associated with a higher risk of AMS. CONCLUSIONS: The combination of acetazolamide and RIPC exerts a powerful anti-hypoxic effect and represents an innovative and promising strategy for rapid ascent to high altitudes. Acetazolamide improves oxygen saturation. RIPC further aids acetazolamide, which synergistically regulates PDGF-AB, potentially involved in the pathogenesis of AMS. TRIAL REGISTRATION: ClinicalTrials.gov NCT05023941.


Asunto(s)
Mal de Altura , Precondicionamiento Isquémico , Humanos , Mal de Altura/prevención & control , Mal de Altura/diagnóstico , Acetazolamida , Estudios Prospectivos , Enfermedad Aguda , Hipoxia/prevención & control
6.
Basic Res Cardiol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134663

RESUMEN

ß3-Adrenergic receptor (ß3AR) agonists have been shown to protect against ischemia-reperfusion injury (IRI). Since ß3ARs are present both in cardiomyocytes and in endothelial cells, the cellular compartment responsible for this protection has remained unknown. Using transgenic mice constitutively expressing the human ß3AR (hß3AR) in cardiomyocytes or in the endothelium on a genetic background of null endogenous ß3AR expression, we show that only cardiomyocyte expression protects against IRI (45 min ischemia followed by reperfusion over 24 h). Infarct size was also limited after ischemia-reperfusion in mice with cardiomyocyte hß3AR overexpression on top of endogenous ß3AR expression. hß3AR overexpression in these mice reduced IRI-induced cardiac fibrosis and improved long-term left ventricular systolic function. Cardiomyocyte-specific ß3AR overexpression resulted in a baseline remodeling of the mitochondrial network, characterized by upregulated mitochondrial biogenesis and a downregulation of mitochondrial quality control (mitophagy), resulting in elevated numbers of small mitochondria with a depressed capacity for the generation of reactive oxygen species but improved capacity for ATP generation. These processes precondition cardiomyocyte mitochondria to be more resistant to IRI. Upon reperfusion, hearts with hß3AR overexpression display a restoration in the mitochondrial quality control and a rapid activation of antioxidant responses. Strong protection against IRI was also observed in mice infected with an adeno-associated virus (AAV) encoding hß3AR under a cardiomyocyte-specific promoter. These results confirm the translational potential of increased cardiomyocyte ß3AR expression, achieved either naturally through exercise or artificially through gene therapy approaches, to precondition the cardiomyocyte mitochondrial network to withstand future insults.

7.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R79-R87, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37899755

RESUMEN

Whole body exercise provides protection against endothelial ischemia-reperfusion (IR) injury. In this crossover study, we examined the effects of 1) single bout of local exercise (handgrip, squats) on endothelial responses to IR, and 2) if 7 days of daily local exercise bolsters these effects in individuals with cardiovascular disease (CVD) risk factors. Fifteen participants (9 women, 58 ± 5 yr, ≥2 CVD risk factors) attended the laboratory for six visits. Subsequent to familiarization (visit 1), during visit 2 (control) brachial artery flow-mediated dilation (FMD) was measured before and after IR (15-min upper-arm ischemia, 15-min reperfusion). One week later, participants were randomized to 4 × 5-min unilateral handgrip (50% maximal voluntary contraction, 25 rpm) or squat exercises (15 rpm), followed by IR plus FMD measurements. Subsequently, home-based exercise was performed (6 days), followed by another visit to the laboratory for the IR protocol plus FMD measurements (18-24 h after the last exercise bout). After a 2-wk washout period, procedures were repeated with the alternative exercise mode. For a single exercise bout, we found a significant IR injury × exercise mode interaction (P < 0.01) but no main effect of injury (P = 0.08) or condition (P = 0.61). A lower post-IR FMD was evident after control (pre-IR: 4.3 ± 2.1% to post-IR: 2.9 ± 1.9%, P < 0.01) but not after handgrip (pre-IR: 3.8 ± 1.6% to post-IR: 3.4 ± 1.5%, P = 0.31) or squats (pre-IR: 3.9 ± 1.8% to post-IR: 4.0 ± 1.9%, P = 0.74). After 7 days of daily exercise, we found no change in FMD post-IR following handgrip (pre-IR: 4.3 ± 1.9% to post-IR: 4.7 ± 3.2%) or squats (pre-IR: 3.7 ± 2.1% to post-IR: 4.7 ± 3.0%, P > 0.05). Single bouts of dynamic, local exercise (handgrip, squats) provide remote protection against endothelial IR-induced injury in individuals with CVD risk factors, with 1-wk daily, home-based exercise preserving these effects for up to 24 h following the last exercise bout.NEW & NOTEWORTHY We show that single bouts of dynamic handgrip and squat exercise provide remote protection against endothelial ischemia-reperfusion (IR)-induced injury in individuals with cardiovascular disease (CVD) risk factors, with 1-wk daily, home-based exercise preserving these effects for up to 24 h following the last exercise bout.


Asunto(s)
Enfermedades Cardiovasculares , Terapia por Ejercicio , Fuerza de la Mano , Daño por Reperfusión , Femenino , Humanos , Arteria Braquial , Estudios Cruzados , Endotelio Vascular , Isquemia , Daño por Reperfusión/prevención & control , Factores de Riesgo , Vasodilatación , Masculino , Persona de Mediana Edad
8.
Ann Surg Oncol ; 31(7): 4261-4270, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38413507

RESUMEN

BACKGROUND: Benign anastomotic stricture is a recognized complication following esophagectomy. Laparoscopic gastric ischemic preconditioning (LGIP) prior to esophagectomy has been associated with decreased anastomotic leak rates; however, its effect on stricture and the need for subsequent endoscopic intervention is not well studied. METHODS: This was a case-control study at an academic medical center using consecutive patients undergoing oncologic esophagectomies (July 2012-July 2022). Our institution initiated an LGIP protocol on 1 January 2021. The primary outcome was the occurrence of stricture within 1 year of esophagectomy, while secondary outcomes were stricture severity and frequency of interventions within the 6 months following stricture. Bivariable comparisons were performed using Chi-square, Fisher's exact, or Mann-Whitney U tests. Multivariable regression controlling for confounders was performed to generate risk-adjust odds ratios and to identify the independent effect of LGIP. RESULTS: Of 253 esophagectomies, 42 (16.6%) underwent LGIP prior to esophagectomy. There were 45 (17.7%) anastomotic strictures requiring endoscopic intervention, including three patients who underwent LGIP and 42 who did not. Median time to stricture was 144 days. Those who underwent LGIP were significantly less likely to develop anastomotic stricture (7.1% vs. 19.9%; p = 0.048). After controlling for confounders, this difference was no longer significant (odds ratio 0.46, 95% confidence interval 0.14-1.82; p = 0.29). Of those who developed stricture, there was a trend toward less severe strictures and decreased need for endoscopic dilation in the LGIP group (all p < 0.20). CONCLUSION: LGIP may reduce the rate and severity of symptomatic anastomotic stricture following esophagectomy. A multi-institutional trial evaluating the effect of LGIP on stricture and other anastomotic complications is warranted.


Asunto(s)
Anastomosis Quirúrgica , Neoplasias Esofágicas , Estenosis Esofágica , Esofagectomía , Precondicionamiento Isquémico , Laparoscopía , Complicaciones Posoperatorias , Humanos , Esofagectomía/efectos adversos , Masculino , Femenino , Precondicionamiento Isquémico/métodos , Persona de Mediana Edad , Laparoscopía/efectos adversos , Laparoscopía/métodos , Estudios de Casos y Controles , Neoplasias Esofágicas/cirugía , Anastomosis Quirúrgica/efectos adversos , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/etiología , Estenosis Esofágica/etiología , Estenosis Esofágica/prevención & control , Anciano , Estudios de Seguimiento , Estómago/cirugía , Estómago/irrigación sanguínea , Pronóstico , Constricción Patológica/etiología , Estudios Retrospectivos , Fuga Anastomótica/etiología , Fuga Anastomótica/prevención & control
9.
Rev Cardiovasc Med ; 25(4): 116, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39076569

RESUMEN

Background: Drug-coated balloons (DCBs) have become increasingly vital to percutaneous coronary intervention, offering many advantages. However, a significant challenge is that many patients are intolerant to the myocardial ischemia caused by DCB dilation. Remote ischemic preconditioning (RIPC) is known to enhance heart's tolerance to ischemia and hypoxia. This study investigated whether preoperative RIPC could extend the tolerated DCB inflation time and improve the long-term prognosis of patients with coronary artery disease (CAD). Methods: A total of 653 patients with CAD were recruited and randomized into a RIPC group (n = 323) and a control (n = 330) group. The RIPC group underwent RIPC on the left upper limb twice daily, starting three days before the DCB implantation. The patients were followed up for one year after the operation, and 197 patients returned for coronary angiography (CAG) examination where the quantitative flow ratio (QFR) of the target vessels was measured. The primary endpoint of the study was the incidence of target lesion failure (TLF), which included target lesion revascularization (TLR), target vessel myocardial infarction, and cardiac death. The secondary endpoint was the rate of QFR loss in the target vessels. Results: The findings revealed a significantly lower incidence of TLR in the RIPC group compared to the control group. Additionally, at the one-year follow-up, the rate of QFR loss in target vessels was lower in the RIPC group than in the control group. Conclusions: The preoperative application of RIPC effectively extended the duration patients could tolerate DCB inflation. Furthermore, this approach positively impacted the long-term prognosis of CAD patients undergoing DCB treatment. Clinical Trial Registration Information: NCT04766749.

10.
Stem Cells ; 41(1): 50-63, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36250949

RESUMEN

Atherosclerotic renal artery stenosis (ARAS) is associated with irreversible parenchymal renal disease and regenerative stem cell therapies may improve renal outcomes. Hypoxia preconditioning (HPC) may improve the regenerative functions of adipose tissue-derived mesenchymal stem cells (AMSC) by affecting DNA 5-hydroxymethylcytosine (5hmC) marks in angiogenic genes. Here, we investigated using a porcine ARAS model, whether growth of ARAS AMSCs in hypoxia (Hx) versus normoxia (Nx) would enhance renal tissue repair, and comprehensively analyze how HPC modifies DNA hydroxymethylation compared to untreated ARAS and healthy/normal pigs (n=5 each). ARAS pigs exhibited elevated serum cholesterol, serum creatinine and renal artery stenosis, with a concomitant decrease in renal blood flow (RBF) and increased blood pressure (BP) compared to healthy pigs. Renal artery injection of either autologous Nx or Hx AMSCs improved diastolic BP, reduced kidney tissue fibrosis, and inflammation (CD3+ T-cells) in ARAS pigs. In addition, renal medullary hypoxia significantly lowered with Nx but not Hx AMSC treatment. Mechanistically, levels of epigenetic 5hmC marks (which reflect gene activation) estimated using DNA immunoprecipitation technique were elevated in profibrotic and inflammatory genes in ARAS compared with normal AMSCs. HPC significantly reduced 5hmC levels in cholesterol biosynthesis and oxidative stress response pathways in ARAS AMSCs. Thus, autologous AMSCs improve key renovascular parameters and inflammation in ARAS pigs, with HPC mitigating pathological molecular effects on inflammatory and profibrotic genes which may play a role in augmenting regenerative capacity of AMSCs.


Asunto(s)
Células Madre Mesenquimatosas , Obstrucción de la Arteria Renal , Porcinos , Animales , Obstrucción de la Arteria Renal/terapia , Obstrucción de la Arteria Renal/patología , Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Colesterol/metabolismo , Inflamación/patología , Tejido Adiposo/metabolismo
11.
Exp Eye Res ; 246: 110005, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032624

RESUMEN

The stiffening effect of corneal crosslinking (CXL) treatment, a therapeutic approach for managing the progression of keratoconus, has been primarily investigated using uniaxial tensile experiments. However, this testing technique has several drawbacks and is unable to measure the mechanical response of cornea under a multiaxial loading state. In this work, we used biaxial mechanical testing method to characterize biomechanical properties of porcine cornea before and after CXL treatment. We also investigated the influence of preconditioning on measured properties and used TEM images to determine microstructural characteristics of the extracellular matrix. The conventional method of CXL treatment was used for crosslinking the porcine cornea. The biaxial experiments were done by an ElectroForce TestBench system at a stretch ratio of 1:1 and a displacement rate of 2 mm/min with and without preconditioning. The experimental measurements showed no significant difference in the mechanical properties of porcine cornea along the nasal temporal (NT) and superior inferior (SI) direction. Furthermore, the CXL therapy significantly enhanced the mechanical properties along both directions without creating anisotropic response. The samples tested with preconditioning showed significantly stiffer response than those tested without preconditioning. The TEM images showed that the CXL therapy did not increase the diameter of collagen fibers but significantly decreased their interfibrillar spacing, consistent with the mechanical property improvement of CXL treated samples.


Asunto(s)
Córnea , Reactivos de Enlaces Cruzados , Fármacos Fotosensibilizantes , Riboflavina , Animales , Reactivos de Enlaces Cruzados/farmacología , Porcinos , Córnea/efectos de los fármacos , Riboflavina/farmacología , Riboflavina/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fenómenos Biomecánicos , Colágeno/metabolismo , Elasticidad , Rayos Ultravioleta , Queratocono/tratamiento farmacológico , Queratocono/fisiopatología , Queratocono/metabolismo , Resistencia a la Tracción , Sustancia Propia/metabolismo , Sustancia Propia/efectos de los fármacos , Microscopía Electrónica de Transmisión
12.
FASEB J ; 37(5): e22910, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37071448

RESUMEN

Microgravity (µg) is among the major stressors in space causing immune cell dysregulations. These are frequently expressed as increased pro-inflammatory states of monocytes and reduced activation capacities in T cells. Hypergravity (as artificial gravity) has shown to have beneficial effects on the musculoskeletal and cardiovascular system both as a countermeasure option for µg-related deconditioning and as "gravitational therapy" on Earth. Since the impact of hypergravity on immune cells is sparsely explored, we investigated if an application of "mild" mechanical loading of 2.8 g is able to avoid or treat µg-mediated immune dysregulations. For this, T cell and monocyte activation states and cytokine pattern were first analyzed after whole blood antigen incubation in simulated µg (s-µg) by using the principle of fast clinorotation or in hypergravity. Subsequent hypergravity countermeasure approaches were run at three different sequences: one preconditioning setting, where 2.8 g was applied before s-µg exposure and two therapeutic approaches in which 2.8 g was set either intermediately or at the end of s-µg. In single g-grade exposure experiments, monocyte pro-inflammatory state was enhanced in s-µg and reduced in hypergravity, whereas T cells displayed reduced activation when antigen incubation was performed in s-µg. Hypergravity application in all three sequences did not alleviate the increased pro-inflammatory potential of monocytes. However, in T cells the preconditioning approach restored antigen-induced CD69 expression and IFNγ secretion to 1 g control values and beyond. This in vitro study demonstrates a proof of concept that mild hypergravity is a gravitational preconditioning option to avoid adaptive immune cell dysfunctions induced by (s-)µg and that it may act as a booster of immune cell functions.


Asunto(s)
Hipergravedad , Ingravidez , Linfocitos T , Citocinas
13.
Cell Commun Signal ; 22(1): 393, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118129

RESUMEN

BACKGROUND: Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS: An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS: Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS: This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.


Asunto(s)
Daño por Reperfusión , Intercambiador 1 de Sodio-Hidrógeno , Animales , Humanos , Masculino , Ratones , Ácidos/metabolismo , Línea Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Concentración de Iones de Hidrógeno , Precondicionamiento Isquémico , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/genética
14.
Neurochem Res ; 49(7): 1665-1676, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38411782

RESUMEN

Cerebral ischemic preconditioning (CIP) has been shown to improve brain ischemic tolerance against subsequent lethal ischemia. Reactive astrocytes play important roles in cerebral ischemia-reperfusion. Recent studies have shown that reactive astrocytes can be polarized into neurotoxic A1 phenotype (C3d) and neuroprotective A2 phenotype (S100A10). However, their role in CIP remains unclear. Here, we focused on the role of N-myc downstream-regulated gene 2 (NDRG2) in regulating the transformation of A1/A2 astrocytes and promoting to brain ischemic tolerance induced by CIP. A Sprague Dawley rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) was used. Rats were divided into the following six groups: (1) sham group; (2) CIP group: left middle cerebral artery was blocked for 10 min; (3) MCAO/R group: left middle cerebral artery was blocked for 90 min; (4) CIP + MCAO/R group: CIP was performed 72 h before MCAO/R; (5) AAV-NDRG2 + CIP + MCAO/R group: adeno-associated virus (AAV) carrying NDRG2 was administered 14 days before CIP + MCAO/R; (6) AAV-Ctrl + CIP + MCAO/R group: empty control group. The rats were subjected to neurological evaluation 24 h after the above treatments, and then were sacrificed for 2, 3, 5-triphenyltetraolium chloride staining, thionin staining, immunofluorescence and western blot analysis. In CIP + MCAO/R group, the neurological deficit scores decreased, infarct volume reduced, and neuronal density increased compared with MCAO/R group. Notably, CIP significantly increased S100A10 expression and the number of S100A10+/GFAP+ cells, and also increased NDRG2 expression. MCAO/R significantly decreased S100A10 expression and the number of S100A10+/GFAP+ cells yet increased C3d expression and the number of C3d+/GFAP+ cells and NDRG2 expression, and these trends were reversed by CIP + MCAO/R. Furthermore, over-expression of NDRG2 before CIP + MCAO/R, the C3d expression and the number of C3d+/GFAP+ cells increased, while S100A10 expression and the number of S100A10+/GFAP+ cells decreased. Meanwhile, over-expression of NDRG2 blocked the CIP-induced brain ischemic tolerance. Taken together, these results suggest that CIP exerts neuroprotective effects against ischemic injury by suppressing A1 astrocyte polarization and promoting A2 astrocyte polarization via inhibiting NDRG2 expression.


Asunto(s)
Astrocitos , Isquemia Encefálica , Infarto de la Arteria Cerebral Media , Precondicionamiento Isquémico , Ratas Sprague-Dawley , Animales , Precondicionamiento Isquémico/métodos , Masculino , Astrocitos/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Isquemia Encefálica/metabolismo , Ratas , Proteínas del Tejido Nervioso
15.
Mol Cell Biochem ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001984

RESUMEN

Ischemia-reperfusion (I/R) injury, as a pathological phenomenon, takes place when blood supply to an organ is disrupted and then aggravated during restoration of blood flow. Ischemic preconditioning (IPC) is a potent method for attenuating subsequent events of IR damage in numerous organs. IPC protocol is determined by a brief and sequential time periods of I/R before the main ischemia. MicroRNAs are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review introduces the physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated after I/R insult in different organs such as the liver, kidney, heart, brain, and intestine. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2023. Based on these literature studies, IPC/IR intervention can affect cellular mechanisms including oxidative stress, apoptosis, angiogenesis, and inflammation through up-regulation or down-regulation of multiple microRNAs and their target genes.

16.
Exp Brain Res ; 242(4): 869-878, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421411

RESUMEN

Ischemic stroke is one of the most vital causes of high neurological morbidity and mortality in the world. Preconditioning exercise is considered as the primary prevention of stroke to resistance to subsequent injury. We tried to research the underlying biological mechanisms of this exercise. Forty-two SD rats were randomly divided into three groups: middle cerebral artery occlusion (MCAO) group, exercise group with MCAO (EX + MCAO) group, and sham group, with 14 rats in each group. The EX + MCAO group underwent exercise preconditioning for 3 weeks before occlusion, and the other two groups were fed and exercised normally. After 3 weeks, MCAO model was made by thread plug method in the EX + MCAO group and MCAO group. After successful modeling, the Longa scale was used to evaluate the neurological impairment of rats at day 0, day 1, and day 2. The rats in each group were killed on the third day after modeling. TTC staining measured the infarct volume of each group. The morphology and apoptosis of cortical cells were observed by HE and Tunel staining. Three rats in each group underwent high-throughput sequencing. Bioinformatic analysis was used to find the deferentially expressed genes (DEGs) and predict the transcription factor binding sites (TFBS) of the next-generation sequencing results. Gene enrichment (GSEA) was used to analyze potential functional genes and their corresponding signaling pathways. The Longa scale showed EX + MCAO group had the neurological function better than the modeling group (P < 0.001). TTC staining showed that the infarct size of EX + MCAO group was less than MCAO group (P < 0.05). HE and Tunel staining showed that the cells in the EX + MCAO group and the sham group had normal morphology and fewer apoptotic cells than MCAO group. A new gene named 7994 was discovered and TFBS of this gene was predicted, which could interact with key genes such as Foxd3, Foxa2, NR4A2, SP1, CEBPA, and SOX10. GSEA showed that EX + MCAO group could promote and regulate angiogenesis and apoptosis through PI3K-AKT pathway. Preconditioning exercise could improve nerve function and reduce infarct size in rats. The underlying mechanism is to regulate the PI3K-AKT pathway through several key genes, promote cerebral angiogenesis, and reduce apoptosis.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Ratas Sprague-Dawley , Accidente Cerebrovascular Isquémico/prevención & control , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Infarto de la Arteria Cerebral Media , Encéfalo/metabolismo , Proteínas Represoras , Factores de Transcripción Forkhead/metabolismo
17.
Mol Biol Rep ; 51(1): 808, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002003

RESUMEN

BACKGROUND: Endothelial cells (ECs) can confer neuroprotection by secreting molecules. This study aimed to investigate whether DNA methylation contributes to the neuroprotective gene expression induced by hypoxia preconditioning (HPC) in ECs and to clarify that the secretion of molecules from HPC ECs may be one of the molecular mechanisms of neuroprotection. METHODS: Human microvascular endothelial cell-1 (HMEC-1) was cultured under normal conditions (C), hypoxia(H), and hypoxia preconditioning (HPC), followed by the isolation of culture medium (CM). SY5Y cell incubated with the isolated CM from HMEC-1 was exposed to oxygen-glucose deprivation (OGD). The DNA methyltransferases (DNMTs), global methylation level, miR-126 and its promotor DNA methylation level in HMEC-1 were measured. The cell viability and cell injury in SY5Y were detected. RESULTS: HPC decreased DNMTs level and global methylation level as well as increased miR-126 expression in HMEC-1. CM from HPC treated HMEC-1 also relieved SY5Y cell damage, while CM from HMEC-1 which over-expression of miR-126 can reduce injury in SY5Y under OGD condition. CONCLUSIONS: These findings indicate EC may secrete molecules, such as miR-126, to execute neuroprotection induced by HPC through regulating the expression of DNMTs.


Asunto(s)
Hipoxia de la Célula , Metilación de ADN , Células Endoteliales , MicroARNs , Neuronas , MicroARNs/genética , MicroARNs/metabolismo , Metilación de ADN/genética , Humanos , Células Endoteliales/metabolismo , Hipoxia de la Célula/genética , Neuronas/metabolismo , Regulación hacia Arriba/genética , Supervivencia Celular/genética , Glucosa/metabolismo , Línea Celular , Oxígeno/metabolismo , Regiones Promotoras Genéticas/genética
18.
Mol Biol Rep ; 51(1): 507, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622406

RESUMEN

BACKGROUND: Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD: The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS: HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION: HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.


Asunto(s)
Metilación de ADN , Hipocampo , Ratones , Animales , Metilación de ADN/genética , Bromodesoxiuridina/metabolismo , Hipocampo/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Receptores Notch/metabolismo , ARN Mensajero/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
19.
Int J Colorectal Dis ; 39(1): 65, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700747

RESUMEN

PURPOSE: Remote ischemic preconditioning (RIPC) reportedly reduces ischemia‒reperfusion injury (IRI) in various organ systems. In addition to tension and technical factors, ischemia is a common cause of anastomotic leakage (AL) after rectal resection. The aim of this pilot study was to investigate the potentially protective effect of RIPC on anastomotic healing and to determine the effect size to facilitate the development of a subsequent confirmatory trial. MATERIALS AND METHODS: Fifty-four patients with rectal cancer (RC) who underwent anterior resection were enrolled in this prospectively registered (DRKS0001894) pilot randomized controlled triple-blinded monocenter trial at the Department of Surgery, University Medicine Mannheim, Mannheim, Germany, between 10/12/2019 and 19/06/2022. The primary endpoint was AL within 30 days after surgery. The secondary endpoints were perioperative morbidity and mortality, reintervention, hospital stay, readmission and biomarkers of ischemia‒reperfusion injury (vascular endothelial growth factor, VEGF) and cell death (high mobility group box 1 protein, HMGB1). RIPC was induced through three 10-min cycles of alternating ischemia and reperfusion to the upper extremity. RESULTS: Of the 207 patients assessed, 153 were excluded, leaving 54 patients to be randomized to the RIPC or the sham-RIPC arm (27 each per arm). The mean age was 61 years, and the majority of patients were male (37:17 (68.5:31.5%)). Most of the patients underwent surgery after neoadjuvant therapy (29/54 (53.7%)) for adenocarcinoma (52/54 (96.3%)). The primary endpoint, AL, occurred almost equally frequently in both arms (RIPC arm: 4/25 (16%), sham arm: 4/26 (15.4%), p = 1.000). The secondary outcomes were comparable except for a greater rate of reintervention in the sham arm (9 (6-12) vs. 3 (1-5), p = 0.034). The median duration of endoscopic vacuum therapy was shorter in the RIPC arm (10.5 (10-11) vs. 38 (24-39) days, p = 0.083), although the difference was not statistically significant. CONCLUSION: A clinically relevant protective effect of RIPC on anastomotic healing after rectal resection cannot be assumed on the basis of these data.


Asunto(s)
Fuga Anastomótica , Precondicionamiento Isquémico , Neoplasias del Recto , Humanos , Neoplasias del Recto/cirugía , Masculino , Proyectos Piloto , Femenino , Fuga Anastomótica/etiología , Fuga Anastomótica/prevención & control , Persona de Mediana Edad , Precondicionamiento Isquémico/métodos , Anciano , Daño por Reperfusión/prevención & control , Daño por Reperfusión/etiología , Resultado del Tratamiento
20.
Artículo en Inglés | MEDLINE | ID: mdl-38916838

RESUMEN

OBJECTIVES: Noninvasive remote ischemic preconditioning (RIPC) is a practical, acceptable, and feasible conditioning technique reported to provide cardioprotection in myocardial ischemia-reperfusion injury (MIRI). It has been well-reported that quercetin possesses antioxidant and anti-inflammatory properties. This study investigates the modification of the cardioprotective response of RIPC by quercetin. METHODS: Adult Wistar rats were randomized into 12 groups of six animals each. MIRI was induced by subjecting the isolated hearts of Wistar rats to global ischemia for 30 min, succeeded by reperfusion of 120 min after mounting on the Langendorff PowerLab apparatus. Hind limb RIPC was applied in four alternate cycles of ischemia and reperfusion of 5 min each by tying the pressure cuff before isolation of hearts. RESULTS: MIRI was reflected by significantly increased infarct size, LDH-1, and CK-MB, TNF-α, TBARS, and decreased GSH, catalase, and hemodynamic index, and modulated Nrf2. Pretreatment of quercetin (25 and 50 mg/kg; i.p.) significantly attenuated the MIRI-induced cardiac damage and potentiated the cardioprotective response of RIPC at the low dose. Pretreatment of ketamine (10 mg/kg; i.p.), an mTOR-dependent autophagy inhibitor, significantly abolished the cardioprotective effects of quercetin and RIPC. CONCLUSIONS: The findings highlight the modification of the cardioprotective effect of RIPC by quercetin and that quercetin protects the heart against MIRI through multiple mechanisms, including mTOR-dependent activation of autophagy and Nrf-2 activation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda