Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 15.555
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38518773

RESUMEN

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Pulmón , Polisacáridos Bacterianos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Femenino , Masculino , Ratones , Biopelículas , Escherichia coli/fisiología , Hipotermia/metabolismo , Hipotermia/patología , Inflamación/metabolismo , Inflamación/patología , Pulmón/microbiología , Pulmón/patología , Neumonía/microbiología , Neumonía/patología , Pseudomonas aeruginosa/fisiología , Células Receptoras Sensoriales , Polisacáridos Bacterianos/metabolismo , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Nociceptores/metabolismo
2.
Cell ; 186(23): 5098-5113.e19, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37918395

RESUMEN

Drug-resistant Pseudomonas aeruginosa (PA) poses an emerging threat to human health with urgent need for alternative therapeutic approaches. Here, we deciphered the B cell and antibody response to the virulence-associated type III secretion system (T3SS) in a cohort of patients chronically infected with PA. Single-cell analytics revealed a diverse B cell receptor repertoire directed against the T3SS needle-tip protein PcrV, enabling the production of monoclonal antibodies (mAbs) abrogating T3SS-mediated cytotoxicity. Mechanistic studies involving cryoelectron microscopy identified a surface-exposed C-terminal PcrV epitope as the target of highly neutralizing mAbs with broad activity against drug-resistant PA isolates. These anti-PcrV mAbs were as effective as treatment with conventional antibiotics in vivo. Our study reveals that chronically infected patients represent a source of neutralizing antibodies, which can be exploited as therapeutics against PA.


Asunto(s)
Anticuerpos Antibacterianos , Anticuerpos Neutralizantes , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Anticuerpos Antibacterianos/farmacología , Microscopía por Crioelectrón , Inmunoglobulinas/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Infecciones por Pseudomonas/tratamiento farmacológico
3.
Cell ; 186(4): 864-876.e21, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36750095

RESUMEN

A fundamental strategy of eukaryotic antiviral immunity involves the cGAS enzyme, which synthesizes 2',3'-cGAMP and activates the effector STING. Diverse bacteria contain cGAS-like enzymes that produce cyclic oligonucleotides and induce anti-phage activity, known as CBASS. However, this activity has only been demonstrated through heterologous expression. Whether bacteria harboring CBASS antagonize and co-evolve with phages is unknown. Here, we identified an endogenous cGAS-like enzyme in Pseudomonas aeruginosa that generates 3',3'-cGAMP during phage infection, signals to a phospholipase effector, and limits phage replication. In response, phages express an anti-CBASS protein ("Acb2") that forms a hexamer with three 3',3'-cGAMP molecules and reduces phospholipase activity. Acb2 also binds to molecules produced by other bacterial cGAS-like enzymes (3',3'-cUU/UA/UG/AA) and mammalian cGAS (2',3'-cGAMP), suggesting broad inhibition of cGAS-based immunity. Upon Acb2 deletion, CBASS blocks lytic phage replication and lysogenic induction, but rare phages evade CBASS through major capsid gene mutations. Altogether, we demonstrate endogenous CBASS anti-phage function and strategies of CBASS inhibition and evasion.


Asunto(s)
Bacterias , Bacteriófagos , Animales , Bacterias/inmunología , Bacterias/virología , Bacteriófagos/fisiología , Inmunidad , Nucleotidiltransferasas/metabolismo
4.
Cell ; 184(13): 3528-3541.e12, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33984278

RESUMEN

Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Resistencia a la Enfermedad/inmunología , Inmunidad de la Planta , Transducción de Señal , Animales , Muerte Celular , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Ácido Glutámico/metabolismo , Membrana Dobles de Lípidos/metabolismo , Oocitos/metabolismo , Células Vegetales/metabolismo , Multimerización de Proteína , Protoplastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Imagen Individual de Molécula , Vacuolas/metabolismo , Xenopus
5.
Cell ; 182(4): 919-932.e19, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32763156

RESUMEN

Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm.


Asunto(s)
Biopelículas/crecimiento & desarrollo , ADN/química , Pseudomonas aeruginosa/fisiología , Piocianina/química , ADN/metabolismo , Técnicas Electroquímicas , Electrodos , Transporte de Electrón/efectos de los fármacos , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Fenazinas/química , Fenazinas/metabolismo , Fenazinas/farmacología , Piocianina/metabolismo
6.
Cell ; 179(1): 205-218.e21, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31522888

RESUMEN

The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Imitación Molecular/inmunología , Inmunidad de la Planta/fisiología , Adenosina Trifosfatasas/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/química , Células HEK293 , Proteínas HSP90 de Choque Térmico/química , Células HeLa , Interacciones Microbiota-Huesped/inmunología , Humanos , Fosforilación , Plásmidos/genética , Unión Proteica , Pliegue de Proteína , Proteínas Quinasas/metabolismo , Pseudomonas syringae/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Cell ; 178(6): 1452-1464.e13, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474367

RESUMEN

Phages express anti-CRISPR (Acr) proteins to inhibit CRISPR-Cas systems that would otherwise destroy their genomes. Most acr genes are located adjacent to anti-CRISPR-associated (aca) genes, which encode proteins with a helix-turn-helix DNA-binding motif. The conservation of aca genes has served as a signpost for the identification of acr genes, but the function of the proteins encoded by these genes has not been investigated. Here we reveal that an acr-associated promoter drives high levels of acr transcription immediately after phage DNA injection and that Aca proteins subsequently repress this transcription. Without Aca activity, this strong transcription is lethal to a phage. Our results demonstrate how sufficient levels of Acr proteins accumulate early in the infection process to inhibit existing CRISPR-Cas complexes in the host cell. They also imply that the conserved role of Aca proteins is to mitigate the deleterious effects of strong constitutive transcription from acr promoters.


Asunto(s)
Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas Virales/genética , Proteínas Asociadas a CRISPR/genética , Escherichia coli/virología , Regiones Promotoras Genéticas/genética , Pseudomonas aeruginosa/virología , Factores de Transcripción/genética , Transcripción Genética
8.
Cell ; 177(7): 1771-1780.e12, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31199917

RESUMEN

Cargo trafficking along microtubules is exploited by eukaryotic viruses, but no such examples have been reported in bacteria. Several large Pseudomonas phages assemble a dynamic, tubulin-based (PhuZ) spindle that centers replicating phage DNA sequestered within a nucleus-like structure. Here, we show that capsids assemble on the membrane and then move rapidly along PhuZ filaments toward the phage nucleus for DNA packaging. The spindle rotates the phage nucleus, distributing capsids around its surface. PhuZ filaments treadmill toward the nucleus at a constant rate similar to the rate of capsid movement and the linear velocity of nucleus rotation. Capsids become trapped along mutant static PhuZ filaments that are defective in GTP hydrolysis. Our results suggest a transport and distribution mechanism in which capsids attached to the sides of filaments are trafficked to the nucleus by PhuZ polymerization at the poles, demonstrating that the phage cytoskeleton evolved cargo-trafficking capabilities in bacteria.


Asunto(s)
Proteínas Bacterianas , Citoesqueleto , ADN Viral , Fagos Pseudomonas , Pseudomonas , Tubulina (Proteína) , Virión , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , ADN Viral/biosíntesis , ADN Viral/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas/virología , Fagos Pseudomonas/genética , Fagos Pseudomonas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Virión/genética , Virión/metabolismo
9.
Immunity ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39299238

RESUMEN

Toll/interleukin-1/resistance (TIR)-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that the lone enzymatic TIR-domain protein in the nematode C. elegans (TIR-1, homolog of mammalian sterile alpha and TIR motif-containing 1 [SARM1]) was strategically expressed on the membranes of a specific intracellular compartment called lysosome-related organelles. The positioning of TIR-1 on lysosome-related organelles enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. A virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed lysosome-related organelles. This pathogen-induced morphological change in lysosome-related organelles triggered TIR-1 multimerization, which engaged its intrinsic NAD+ hydrolase (NADase) activity to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, TIR-1 is a guard protein in an effector-triggered immune response, which enables intestinal epithelial cells to survey for pathogen-induced host damage.

10.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38513665

RESUMEN

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Asunto(s)
Interleucina-23 , Periodontitis , Humanos , Células Epiteliales , Inflamación , Receptor Toll-Like 5/metabolismo
11.
Cell ; 172(1-2): 121-134.e14, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29307490

RESUMEN

Chronic Pseudomonas aeruginosa infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P. aeruginosa toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator nfxB. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic P. aeruginosa populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring nfxB mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.


Asunto(s)
Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana , Evolución Molecular , Fenotipo , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Fibrosis Quística/complicaciones , Proteínas de Unión al ADN/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Selección Genética , Factores de Transcripción/genética
12.
Cell ; 174(4): 917-925.e10, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30033364

RESUMEN

Bacteria utilize CRISPR-Cas adaptive immune systems for protection from bacteriophages (phages), and some phages produce anti-CRISPR (Acr) proteins that inhibit immune function. Despite thorough mechanistic and structural information for some Acr proteins, how they are deployed and utilized by a phage during infection is unknown. Here, we show that Acr production does not guarantee phage replication when faced with CRISPR-Cas immunity, but instead, infections fail when phage population numbers fall below a critical threshold. Infections succeed only if a sufficient Acr dose is contributed to a single cell by multiple phage genomes. The production of Acr proteins by phage genomes that fail to replicate leave the cell immunosuppressed, which predisposes the cell for successful infection by other phages in the population. This altruistic mechanism for CRISPR-Cas inhibition demonstrates inter-virus cooperation that may also manifest in other host-parasite interactions.


Asunto(s)
Bacteriófagos/inmunología , Sistemas CRISPR-Cas/inmunología , Interacciones Huésped-Patógeno/inmunología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/virología , Proteínas Virales/inmunología , Evolución Molecular , Pseudomonas aeruginosa/genética , Proteínas Virales/metabolismo
13.
Cell ; 173(2): 456-469.e16, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576453

RESUMEN

Following a previous microbial inoculation, plants can induce broad-spectrum immunity to pathogen infection, a phenomenon known as systemic acquired resistance (SAR). SAR establishment in Arabidopsis thaliana is regulated by the Lys catabolite pipecolic acid (Pip) and flavin-dependent-monooxygenase1 (FMO1). Here, we show that elevated Pip is sufficient to induce an FMO1-dependent transcriptional reprogramming of leaves that is reminiscent of SAR. In planta and in vitro analyses demonstrate that FMO1 functions as a pipecolate N-hydroxylase, catalyzing the biochemical conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates in plants after microbial attack. When exogenously applied, it overrides the defect of NHP-deficient fmo1 in acquired resistance and acts as a potent inducer of plant immunity to bacterial and oomycete infection. Our work has identified a pathogen-inducible L-Lys catabolic pathway in plants that generates the N-hydroxylated amino acid NHP as a critical regulator of systemic acquired resistance to pathogen infection.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxigenasas/metabolismo , Ácidos Pipecólicos/metabolismo , Inmunidad de la Planta/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Cromatografía de Gases y Espectrometría de Masas , Lisina/metabolismo , Oomicetos/patogenicidad , Oxigenasas/genética , Ácidos Pipecólicos/análisis , Ácidos Pipecólicos/farmacología , Hojas de la Planta/enzimología , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Pseudomonas syringae/patogenicidad , Transaminasas/genética , Transaminasas/metabolismo
14.
Immunity ; 56(4): 768-782.e9, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36804958

RESUMEN

Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Receptores Citoplasmáticos y Nucleares/metabolismo , Inmunidad Innata , Bacterias , Pseudomonas aeruginosa/metabolismo
15.
Mol Cell ; 82(18): 3484-3498.e11, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36070765

RESUMEN

ADP-ribosyltransferases (ARTs) were among the first identified bacterial virulence factors. Canonical ART toxins are delivered into host cells where they modify essential proteins, thereby inactivating cellular processes and promoting pathogenesis. Our understanding of ARTs has since expanded beyond protein-targeting toxins to include antibiotic inactivation and DNA damage repair. Here, we report the discovery of RhsP2 as an ART toxin delivered between competing bacteria by a type VI secretion system of Pseudomonas aeruginosa. A structure of RhsP2 reveals that it resembles protein-targeting ARTs such as diphtheria toxin. Remarkably, however, RhsP2 ADP-ribosylates 2'-hydroxyl groups of double-stranded RNA, and thus, its activity is highly promiscuous with identified cellular targets including the tRNA pool and the RNA-processing ribozyme, ribonuclease P. Consequently, cell death arises from the inhibition of translation and disruption of tRNA processing. Overall, our data demonstrate a previously undescribed mechanism of bacterial antagonism and uncover an unprecedented activity catalyzed by ART enzymes.


Asunto(s)
ARN Catalítico , Sistemas de Secreción Tipo VI , ADP Ribosa Transferasas/química , Adenosina Difosfato/metabolismo , Antibacterianos/metabolismo , Bacterias/genética , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Bicatenario/metabolismo , Ribonucleasa P/genética , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia/metabolismo
16.
Mol Cell ; 81(3): 571-583.e6, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33412111

RESUMEN

The arms race between bacteria and phages has led to the evolution of diverse anti-phage defenses, several of which are controlled by quorum-sensing pathways. In this work, we characterize a quorum-sensing anti-activator protein, Aqs1, found in Pseudomonas phage DMS3. We show that Aqs1 inhibits LasR, the master regulator of quorum sensing, and present the crystal structure of the Aqs1-LasR complex. The 69-residue Aqs1 protein also inhibits PilB, the type IV pilus assembly ATPase protein, which blocks superinfection by phages that require the pilus for infection. This study highlights the remarkable ability of small phage proteins to bind multiple host proteins and disrupt key biological pathways. As quorum sensing influences various anti-phage defenses, Aqs1 provides a mechanism by which infecting phages might simultaneously dampen multiple defenses. Because quorum-sensing systems are broadly distributed across bacteria, this mechanism of phage counter-defense may play an important role in phage-host evolutionary dynamics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum , Transactivadores/metabolismo , Proteínas Virales/metabolismo , Proteínas Bacterianas/genética , Bacteriófagos/genética , Bacteriófagos/patogenicidad , Fimbrias Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Piocianina/metabolismo , Transactivadores/genética , Proteínas Virales/genética
17.
EMBO J ; 43(19): 4384-4405, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39143239

RESUMEN

Bacteriophages are the most abundant biological entities on Earth, but our understanding of many aspects of their lifecycles is still incomplete. Here, we have structurally analysed the infection cycle of the siphophage Casadabanvirus JBD30. Using its baseplate, JBD30 attaches to Pseudomonas aeruginosa via the bacterial type IV pilus, whose subsequent retraction brings the phage to the bacterial cell surface. Cryo-electron microscopy structures of the baseplate-pilus complex show that the tripod of baseplate receptor-binding proteins attaches to the outer bacterial membrane. The tripod and baseplate then open to release three copies of the tape-measure protein, an event that is followed by DNA ejection. JBD30 major capsid proteins assemble into procapsids, which expand by 7% in diameter upon filling with phage dsDNA. The DNA-filled heads are finally joined with 180-nm-long tails, which bend easily because flexible loops mediate contacts between the successive discs of major tail proteins. It is likely that the structural features and replication mechanisms described here are conserved among siphophages that utilize the type IV pili for initial cell attachment.


Asunto(s)
Microscopía por Crioelectrón , Fagos Pseudomonas , Pseudomonas aeruginosa , Replicación Viral , Pseudomonas aeruginosa/virología , Pseudomonas aeruginosa/metabolismo , Fagos Pseudomonas/ultraestructura , Fagos Pseudomonas/genética , Fagos Pseudomonas/metabolismo , Fagos Pseudomonas/fisiología , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Fimbrias Bacterianas/virología , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , ADN Viral/metabolismo , ADN Viral/genética , Siphoviridae/genética , Siphoviridae/ultraestructura , Siphoviridae/fisiología , Siphoviridae/metabolismo
18.
EMBO J ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39322758

RESUMEN

Toxin-antitoxin (TA) systems are widespread in bacteria and implicated in genome stability, virulence, phage defense, and persistence. TA systems have diverse activities and cellular targets, but their physiological roles and regulatory mechanisms are often unclear. Here, we show that the NatR-NatT TA system, which is part of the core genome of the human pathogen Pseudomonas aeruginosa, generates drug-tolerant persisters by specifically depleting nicotinamide dinucleotides. While actively growing P. aeruginosa cells compensate for NatT-mediated NAD+ deficiency by inducing the NAD+ salvage pathway, NAD depletion generates drug-tolerant persisters under nutrient-limited conditions. Our structural and biochemical analyses propose a model for NatT toxin activation and autoregulation and indicate that NatT activity is subject to powerful metabolic feedback control by the NAD+ precursor nicotinamide. Based on the identification of natT gain-of-function alleles in patient isolates and on the observation that NatT increases P. aeruginosa virulence, we postulate that NatT modulates pathogen fitness during infections. These findings pave the way for detailed investigations into how a toxin-antitoxin system can promote pathogen persistence by disrupting essential metabolic pathways.

19.
EMBO J ; 43(8): 1634-1652, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467832

RESUMEN

During bacterial cell growth, hydrolases cleave peptide cross-links between strands of the peptidoglycan sacculus to allow new strand insertion. The Pseudomonas aeruginosa carboxyl-terminal processing protease (CTP) CtpA regulates some of these hydrolases by degrading them. CtpA assembles as an inactive hexamer composed of a trimer-of-dimers, but its lipoprotein binding partner LbcA activates CtpA by an unknown mechanism. Here, we report the cryo-EM structures of the CtpA-LbcA complex. LbcA has an N-terminal adaptor domain that binds to CtpA, and a C-terminal superhelical tetratricopeptide repeat domain. One LbcA molecule attaches to each of the three vertices of a CtpA hexamer. LbcA triggers relocation of the CtpA PDZ domain, remodeling of the substrate binding pocket, and realignment of the catalytic residues. Surprisingly, only one CtpA molecule in a CtpA dimer is activated upon LbcA binding. Also, a long loop from one CtpA dimer inserts into a neighboring dimer to facilitate the proteolytic activity. This work has revealed an activation mechanism for a bacterial CTP that is strikingly different from other CTPs that have been characterized structurally.


Asunto(s)
Endopeptidasas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Endopeptidasas/metabolismo , Proteolisis
20.
Annu Rev Microbiol ; 76: 413-433, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35655342

RESUMEN

Microbial communities enmeshed in a matrix of macromolecules, termed as biofilms, are the natural setting of bacteria. Exopolysaccharide is a critical matrix component of biofilms. Here, we focus on biofilm matrix exopolysaccharides in Pseudomonas aeruginosa. This opportunistic pathogen can adapt to a wide range of environments and can form biofilms or aggregates in a variety of surfaces or environments, such as the lungs of people with cystic fibrosis, catheters, wounds, and contact lenses. The ability to synthesize multiple exopolysaccharides is one of the advantages that facilitate bacterial survival in different environments. P. aeruginosa can produce several exopolysaccharides, including alginate, Psl, Pel, and lipopolysaccharide. In this review, we highlight the roles of each exopolysaccharide in P. aeruginosa biofilm development and how bacteria coordinate the biosynthesis of multiple exopolysaccharides and bacterial motility. In addition, we present advances in antibiofilm strategies targeting matrix exopolysaccharides, with a focus on glycoside hydrolases.


Asunto(s)
Polisacáridos Bacterianos , Pseudomonas aeruginosa , Biopelículas , Humanos , Pseudomonas aeruginosa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda