Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042778

RESUMEN

We present detailed measurements of the double-layer capacitance of the Pt(111)-electrolyte interface close to the potential of zero charge (PZC) in the presence of several different electrolytes consisting of anions and cations that are considered to be nonspecifically adsorbed. For low electrolyte concentrations, we show strong deviations from traditional Gouy-Chapman-Stern (GCS) behavior that appear to be independent of the nature of the electrolyte ions. Focusing on the capacitance further away from PZC and the trends for increasing ion concentration, we observe ion-specific capacitance effects that appear to be related to the size or hydration strength of the ions. We formulate a model for the structure of the electric double layer of the Pt(111)-electrolyte interface that goes significantly beyond the GCS theory. By combining two existing models, namely, one capturing the water reorganization on Pt close to the PZC and one accounting for an attractive ion-surface interaction not included in the GCS model, we can reproduce and interpret the main features the experimental capacitance of the Pt(111)-electrolyte interface. The model suggests a picture of the double layer with an increased ion concentration close to the interface as a consequence of a weak attractive ion-surface interaction, and a changing polarizability of the Pt(111)-water interface due to the potential-dependent water adsorption and orientation.

2.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675633

RESUMEN

Surface charges of catalysts have important influences on the thermodynamics and kinetics of electrochemical reactions. Herein, we develop a modified version of the grand-canonical potential kinetics (GCP-K) method based on density functional theory (DFT) calculations to explore the effect of surface charges on reaction thermodynamics and kinetics. Using the hydrogen evolution reaction (HER) on the Pt(111) surface as an example, we show how to track the change of surface charge in a reaction and how to analyze its influence on the kinetics. Grand-canonical calculations demonstrate that the optimum hydrogen adsorption energy on Pt under the standard hydrogen electrode condition (SHE) is around -0.2 eV, rather than 0 eV established under the canonical ensemble, due to the high density of surface negative charges. By separating the surface charges that can freely exchange with the external electron reservoir, we obtain a Tafel barrier that is in good agreement with the experimental result. During the Tafel reaction, the net electron inflow into the catalyst leads to a stabilization of canonical energy and a destabilization of the charge-dependent grand-canonical component. This study provides a practical method for obtaining accurate grand-canonical reaction energetics and analyzing the surface charge induced changes.

3.
Angew Chem Int Ed Engl ; 61(44): e202210076, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36087075

RESUMEN

Scanning tunneling microscopy (STM) data for α-ketoester/1-(1-naphthyl)ethylamine complexes on Pt(111) reveal a tumbling motion that couples two neighboring binding states. The interconversion, resulting in prochiral inversion of the α-ketoester, occurs in single complexes without breaking them apart. This is a surprising observation because the overall motion requires rotation of the α-ketoester away from the surface without branching exclusively into diffusion away from the complex or desorption. The multi-step interconversion is rationalized in terms of sequences of bound states that combine transient H-bond interactions with the chiral molecule and weakened adsorption interactions with the metal. The observation of tumbling in single long-lived complexes is of relevance to self-assembly and directed molecular motion on surfaces, to ligand-controlled surface reactions, and most directly to stereocontrol in asymmetric heterogeneous catalysis.

4.
Angew Chem Int Ed Engl ; 59(15): 6182-6186, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-31919982

RESUMEN

CO adlayers on Pt(111) electrode surfaces are an important electrochemical system and of great relevance to electrocatalysis. The potential-dependent structure and dynamics of these adlayers are complex and still controversial, especially in the CO pre-oxidation regime. We here employ in situ high-speed scanning tunneling microscopy for studying the surface phase behavior in CO-saturated 0.1 m H2 SO4 on the millisecond time scale. At potentials near the onset of CO pre-oxidation local fluctuations in the (2×2)-CO adlayer are observed, which increase towards more positive potentials. Above 0.20 V (vs. Ag/AgCl), this leads to an adlayer where COad apparently reside on every top site, but still exhibit a (2×2) superstructure modulation. We interpret this observation as a dynamic effect, caused by a small number of highly mobile point defects in the (2×2)-CO adlayer. As shown by density functional theory calculations, the CO lattice near such defects relaxes into a local (1×1) arrangement, which can rapidly propagate across the surface. This scenario, where a static (2×2) COad sublattice coexists with a highly dynamic sublattice of partially occupied top sites, explains the pronounced COad surface mobility during electrooxidation.

5.
Angew Chem Int Ed Engl ; 59(2): 711-715, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31682314

RESUMEN

We report, for the first time, the observation of a Gouy-Chapman capacitance minimum at the potential of zero charge of the Pt(111)-aqueous perchlorate electrolyte interface. The potential of zero charge of 0.3 V vs. NHE agrees very well with earlier values obtained by different methods. The observation of the potential of zero charge of this interface requires a specific pH (pH 4) and anomalously low electrolyte concentrations (<10-3 m). By comparison to gold and mercury double-layer data, we conclude that the diffuse double layer structure at the Pt(111)-electrolyte interface deviates significantly from the Gouy-Chapman theory in the sense that the electrostatic screening is much better than predicted by purely electrostatic mean-field Poisson-Boltzmann theory.

6.
Proc Natl Acad Sci U S A ; 113(34): E4937-45, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27503889

RESUMEN

Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.

7.
Nano Lett ; 15(5): 3616-23, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25897635

RESUMEN

In heterogeneous catalysis molecule-metal interaction is often modulated through structural modifications at the surface or under the surface of the metal catalyst. Here, we suggest an alternative way toward this modulation by placing a two-dimensional (2D) cover on the metal surface. As an illustration, CO adsorption on Pt(111) surface has been studied under 2D hexagonal boron nitride (h-BN) overlayer. Dynamic imaging data from surface electron microscopy and in situ surface spectroscopic results under near ambient pressure conditions confirm that CO molecules readily intercalate monolayer h-BN sheets on Pt(111) in CO atmosphere but desorb from the h-BN/Pt(111) interface even around room temperature in ultrahigh vacuum. The interaction of CO with Pt has been strongly weakened due to the confinement effect of the h-BN cover, and consequently, CO oxidation at the h-BN/Pt(111) interface was enhanced thanks to the alleviated CO poisoning effect.

8.
Surf Sci ; 646: 5-12, 2015 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27279673

RESUMEN

We have deposited 4-aminophenol on Pt(111) surfaces in ultra-high vacuum and studied the strength of its adsorption through a combination of STM, LEED, XPS and ab initio calculations. Although an ordered (2√3×2√3)R30° phase appears, we have observed that molecule-substrate interaction dominates the adsorption geometry and properties of the system. At RT the high catalytic activity of Pt induces aminophenol to lose the H atom from the hydroxyl group, and a proportion of the molecules lose the complete hydroxyl group. After annealing above 420K, all deposited aminophenol molecules have lost the OH moiety and some hydrogen atoms from the amino groups. At this temperature, short single-molecule oligomer chains can be observed. These chains are the product of a new reaction that proceeds via the coupling of radical species that is favoured by surface diffusion.

9.
ACS Appl Mater Interfaces ; 16(4): 4540-4549, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38227931

RESUMEN

A proton exchange ionomer is one of the most important components in membrane electrode assemblies (MEAs) of polymer electrolyte membrane fuel cells (PEMFCs). It acts as both a proton conductor and a binder for nanocatalysts and carbon supports. The structure and the wetting conditions of the MEAs have a great impact on the microenvironment at the three-phase interphases in the MEAs, which can significantly influence the electrode kinetics such as the oxygen reduction reaction (ORR) at the cathode. Herein, by using the Pt(111)|X ionomer interface as a model system (X = Nafion, Aciplex, D72), we find that higher drying temperature lowers the onset potential for sulfonate adsorption and reduces apparent ORR current, while the current wave for OHad formation drops and shifts positively. Surprisingly, the intrinsic ORR activity is higher after properly correcting the blocking effect of Pt active sites by sulfonate adsorption and the poly(tetrafluoroethylene) (PTFE) skeleton. These results are well explained by the reduced water activity at the interfaces induced by the ionomer/PTFE, according to the mixed potential effect. Implications for how to prepare MEAs with improved ORR activity are provided.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38652177

RESUMEN

The concept of a solid catalyst with an ionic liquid layer (SCILL) is a promising approach to improve the selectivity of noble metal catalysts in heterogeneous reactions. In order to understand the origins of this selectivity control, we investigated the growth and thermal stability of ultrathin 1-ethyl-3-methylimidazolium trifluormethanesulfonate [C2C1Im][OTf] films on Pt(111) by infrared reflection absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy (XPS) in time-resolved and temperature-programmed experiments. We combined these spectroscopy experiments with scanning tunneling microscopy (STM) to obtain detailed insights into the orientation and adsorption geometry of the ions in the first IL layer. Furthermore, we propose a mechanism for the thermal evolution of [C2C1Im][OTf] on Pt(111). We observe an intact IL layer on the surface at temperatures below 200 K. Adsorbed [C2C1Im][OTf] forms islands, which are evenly distributed over the surface. The [OTf]- anion adsorbs via the SO3 group, with the molecular axis perpendicular to the surface. Anions and cations are arranged next to each other, alternating on the Pt(111) surface. Upon heating to 250 K, we observe changes in geometry and structural distribution. Whereas at low temperature, the ions are arranged alternately for electrostatic reasons, this driving force is no longer decisive at 250 K. Here, a phase separation of two different species is discernible in STM. We propose that this effect is due to a surface reaction, which changes the charge of the adsorbates. We assume that the IL starts to decompose at around 250 K, and thus, pristine IL and decomposition products coexist on the surface. Also, IRAS and XPS show indication of IL decomposition. Further heating leads to increased IL decomposition. The reaction products associated with the anions are volatile and leave the surface. In contrast, the cation fragments remain on the surface up to temperatures above 420 K.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda