Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Plant J ; 120(1): 302-317, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39180235

RESUMEN

Hypersensitive response-programmed cell death (HR-PCD) regulated by Ca2+ signal is considered the major regulator of resistance against Puccinia triticina (Pt.) infection in wheat. In this study, the bread wheat variety Thatcher and its near-isogenic line with the leaf rust resistance locus Lr26 were infected with the Pt. race 260 to obtain the compatible and incompatible combinations, respectively. The expression of translationally controlled tumor protein (TaTCTP) was upregulated upon infection with Pt., through a Ca2+-dependent mechanism in the incompatible combination. The knockdown of TaTCTP markedly increased the area of dying cell and the number of Pt. haustorial mother cells (HMCs) at the infection sites, whereas plants overexpressing the gene exhibited enhanced resistance. The interaction between TaTCTP and calcineurin B-like protein-interacting protein kinase 23 (TaCIPK23) was also investigated, and the interaction was found occurred in the endoplasmic reticulum. TaCIPK23 phosphorylated TaTCTP in vitro. The expression of a phospho-mimic TaTCTP mutant in Nicotiana benthamiana promoted HR-like cell death. Silencing TaCIPK23 or TaCIPK23/TaTCTP co-silencing resulted in the same results as silencing TaTCTP. This suggested that TaTCTP is a novel phosphorylation target of TaCIPK23, and both participate in the resistance of wheat to Pt. in the same pathway.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Proteínas de Plantas , Puccinia , Triticum , Triticum/genética , Triticum/microbiología , Triticum/metabolismo , Triticum/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Puccinia/fisiología , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/metabolismo , Nicotiana/inmunología , Regulación de la Expresión Génica de las Plantas , Fosforilación , Proteína Tumoral Controlada Traslacionalmente 1
2.
Plant Physiol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189546

RESUMEN

Leaf rust, caused by Puccinia triticina Erikss. (Pt), is a serious disease threatening wheat (Triticum aestivum L.) production worldwide. Hydrogen peroxide (H2O2) triggered by Pt infection in resistant wheat cultivars cause oxidative damage directly to biomolecules or is activated by calcium signaling and mediates the hypersensitive response. Calmodulin-binding transcriptional activator 4 (TaCAMTA4) has been reported to negatively regulate wheat resistance to Pt. In this study, we found that TaCAMTA4 was induced by Pt race 165 in its compatible host harboring the Pt resistant locus Lr26, TcLr26, and silencing of TaCAMTA4 increased local H2O2 accumulation and Pt resistance. Subcellular localization and autoactivation tests revealed that TaCAMTA4 is a nucleus-localized transcriptional activator. Furthermore, four DNA motifs recognized by TaCAMTA4 were identified by transcription factor-centered Y1H. Through analyzing the transcriptome database, four gene clusters were identified, each containing a different DNA motif on each promoter. Among them, the expression of catalase 1 (TaCAT1) with motif-1 was highly induced in the compatible interaction and was decreased when TaCAMTA4 was silenced. The results of EMSA, ChIP-qPCR, and RT-qPCR further showed that TaCAMTA4 directly bound motif-1 in the TaCAT1 promoter. Furthermore, silencing of TaCAT1 resulted in enhanced resistance to Pt and increased local H2O2 accumulation in wheat, which is consistent with that of TaCAMTA4. Since CAMTAs are Ca2+ sensors and catalases catalyze the decomposition of H2O2, we hypothesize that Ca2+ regulates the plant immune networks that are controlled by H2O2 and implicate a potential mechanism for Pt to suppress resistance by inducing the expression of the TaCAMTA4-TaCAT1 module, which consequently enhances H2O2 scavenging and attenuates H2O2-dependent resistance.

3.
New Phytol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39290056

RESUMEN

Thaumatin-like proteins (TLPs) in plants play a crucial role in combating stress, and they have been proven to possess antifungal properties. However, the role of TLPs in pathogens has not been reported. We identified a effector protein, Pt9029, which contained a Thaumatin domain in Puccinia triticina (Pt), possessing a chloroplast transit peptide and localized in the chloroplasts. Silencing Pt9029 in the Pt physiological race THTT resulted in a notable reduction in virulence and stunted growth and development of Pt hypha in near-isogenic wheat line TcLr2b. Overexpression of Pt9029 in wheat exerted a suppressive effect on H2O2 production, consequently impeding the wheat's disease resistance mechanisms. The TLP domain of Pt9029 targets the Rubisco activase (TaRCA) in chloroplasts. This interaction effectively inhibited the function of TaRCA, subsequently leading to a decrease in Rubisco enzyme activity. Therefore, this indicates that TLPs in Pt can inhibit host defense mechanisms during the pathogenic process of Pt. Moreover, TaRCA silencing resulted in reduced resistance of TcLr2b against Pt race THTT. This clearly demonstrated that TaRCA positively regulates wheat resistance to leaf rust. These findings reveal a novel strategy exploited by Pt to manipulate wheat rust resistance and promote pathogenicity.

4.
Arch Microbiol ; 206(5): 209, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587657

RESUMEN

The F-box proteins in fungi perform diverse functions including regulation of cell cycle, circadian clock, development, signal transduction and nutrient sensing. Genome-wide analysis revealed 10 F-box genes in Puccinia triticina, the causal organism for the leaf rust disease in wheat and were characterized using in silico approaches for revealing phylogenetic relationships, gene structures, gene ontology, protein properties, sequence analysis and gene expression studies. Domain analysis predicted functional domains like WD40 and LRR at C-terminus along with the obvious presence of F-box motif in N-terminus. MSA showed amino acid replacements, which might be due to nucleotide substitution during replication. Phylogenetic analysis revealed the F-box proteins with similar domains to be clustered together while some sequences were spread out in different clades, which might be due to functional diversity. The clustering of Puccinia triticina GG705409 with Triticum aestivum TaAFB4/TaAFB5 in a single clade suggested the possibilities of horizontal gene transfer during the coevolution of P. triticina and wheat. Gene ontological annotation categorized them into three classes and were functionally involved in protein degradation through the protein ubiquitination pathway. Protein-protein interaction network revealed F-box proteins to interact with other components of the SCF complex involved in protein ubiquitination. Relative expression analysis of five F-box genes in a time course experiment denoted their involvement in leaf rust susceptible wheat plants. This study provides information on structure elucidation of F-box proteins of a basidiomycetes plant pathogenic fungi and their role during pathogenesis.


Asunto(s)
Basidiomycota , Proteínas F-Box , Filogenia , Puccinia , Basidiomycota/genética , Proteínas F-Box/genética
5.
Mol Biol Rep ; 51(1): 162, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252357

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are novel class of non-coding RNAs, which are involved in various functions at the transcriptional and post-transcriptional level in response to a fungal pathogen (Puccinia triticina), including microRNA (miRNA) sponge, RNA binding proteins sponge, regulation of parental gene and biomarkers. Detailed analysis of wheat circRNAs is essential to accelerate the regulated expression of fungal miRNAs. Therefore, we suggest a protocol to aid circRNA identification through RNA-Seq data using various algorithms based on perl script followed by validation through divergent primer designing, standard PCR, and RT-qPCR assays. METHODS AND RESULT: The divergent primer has been widely used to detect, validate, and quantify back-spliced junction (BSJ) of circRNAs. The procedure covers index file formation, circRNA identification and BSJ detections. However, the laboratory validation of circRNA includes wheat genomic DNA isolation, RNA isolation and its cDNA conversion upto validation. In this study, we identified 28 circRNAs from RNA-Seq of S0 and R0, wherein six circRNAs are commonly present and 75% of the identified circRNAs were belongs to inter-genic, 14% were exonic and intronic category were 11%. Divergent primer designing method successfully validated the two circRNAs via RT-qPCR assay, where circRNA_2 showed less relative expression pattern than circRNA_1 in contrast with housekeeping genes. CONCLUSION: Thus, our results of identified and validated circRNAs showed that, this protocol is quite helpful, relatively easy, reliable, and accurate for large datasets as other algorithms need various dependencies and have complex scripts with high chances of error occurrence. Additionally, analysis time will vary depending on the expertise level and the number of RNA-Seq data. This proposed protocol can also be used for a wide range of monocotyledons belonging to the Poaceae plant family.


Asunto(s)
MicroARNs , Triticum , Triticum/genética , ARN Circular/genética , Poaceae , Algoritmos , Bioensayo
6.
Phytopathology ; 114(8): 1869-1877, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829930

RESUMEN

Leaf rust is a widespread foliar wheat disease causing substantial yield losses worldwide. Slow rusting is "adult plant" resistance that significantly slows epidemic development and thereby reduces yield loss. Wheat accession CI 13227 was previously characterized as having slow-rusting resistance. To validate the quantitative trait loci (QTLs) and develop diagnostic markers for slow rusting resistance in CI 13227, a new population of recombinant inbred lines of CI 13227 × Everest was evaluated for latent period, final severity, area under the disease progress curve, and infection type in greenhouses and genotyped using genotyping-by-sequencing. Four QTLs were identified on chromosome arms 2BL, 2DS, 3BS, and 7BL, explaining 6.82 to 28.45% of the phenotypic variance for these traits. Seven kompetitive allele-specific polymorphism markers previously reported to be linked to the QTLs in two other CI 13227 populations were validated. In addition, the previously reported QLr.hwwg-7AL was remapped to 2BL (renamed QLr.hwwg-2BL) after adding new markers in this study. Phenotypic data showed that the recombinant inbred lines harboring two or three of the QTLs had a significantly longer latent period. QLr.hwwg-2DS on 2DS showed a major effect on all rust resistance traits and was finely mapped to a 2.7-Mb interval by two newly developed flanking markers from exome capture. Three disease-resistance genes and two transporter genes were identified as the putative candidates for QLr.hwwg-2DS. The validated QTLs can be used as slow-rusting resistance resources, and the markers developed in this study will be useful for marker-assisted selection.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Triticum , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Triticum/microbiología , Triticum/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Basidiomycota/fisiología , Fenotipo , Mapeo Cromosómico , Puccinia , Marcadores Genéticos/genética , Genotipo , Cromosomas de las Plantas/genética , Alelos
7.
Plant Dis ; 108(2): 256-263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38289334

RESUMEN

The challenge of wheat leaf rust on wheat production is a recurring issue. Race identification of Puccinia triticina (Pt) serves as the foundation for preventing and controlling this disease. In a 15-year study, we identified 2,900 isolates of Pt from 20 provinces, cities, or autonomous regions in China during 2007 to 2021 and found 332 virulence phenotypes with 11 predominant phenotypes: PHT (8.3%), THT (5.4%), PHK (4.5%), PHJ (3.7%), THJ (3.6%), SHJ (3.5%), THS (3.3%), FGD (2.9%), THK (2.6%), PHS (2.4%), and PHD (2.0%). The virulence frequency for 40 Lr genes was identified across different years and areas; one major reason for the race dynamics was the attenuation to Lr1 and Lr26, which was more evident in southwest China. Lr9, Lr24, Lr28, Lr38, and Lr42 maintained effectiveness in China, while Lr2c, Lr10, Lr12, Lr14a, Lr14b, Lr22a, Lr33, and Lr36 nearly lost their effectiveness against wheat leaf rust disease. No significant difference was found among predominant phenotypes in different areas (P > 0.1). However, 12 Lr sites were found to have differences in virulence frequencies with values greater than 20% across various locations; furthermore, the lowest and highest virulence values were observed in north China (Area 1) and northwest China (Area 5), respectively. According to phenotype dynamics, PHT, THT, FGD, THK, and PHS are more likely to persist over time. In addition, much attention should be given toward discovering rising combinations of virulent phenotypes.


Asunto(s)
Basidiomycota , Puccinia , Basidiomycota/genética , Virulencia/genética , Enfermedades de las Plantas/genética , China
8.
Plant Dis ; 108(1): 13-19, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37526485

RESUMEN

Wheat leaf rust (Lr), which is caused by Puccinia triticina Eriks. (Pt), is one of the most important wheat diseases affecting wheat production globally. Using resistant wheat cultivars is the most economical and environmentally friendly way to control leaf rust. The Italian wheat cultivar Libellula has demonstrated good resistance to Lr in field studies. To identify the genetic basis of Lr resistance in 'Libellula', 248 F6 recombinant inbred lines from the cross 'Libellula'/'Huixianhong' was phenotyped for Lr severity in seven environments: the 2014/2015, 2016/2017, 2017/2018, and 2018/2019 cropping seasons at Baoding, Hebei Province, and the 2016/2017, 2017/2018, and 2018/2019 crop seasons at Zhoukou, Henan Province. Bulked segregant analysis and simple sequence repeat markers were then used to identify the quantitative trait loci (QTLs) for Lr adult-plant resistance in the population. Six QTLs were consequently detected and designated as QLr.hebau-1AL and QLr.hebau-1AS that were presumed to be new and QLr.hebau-1BL, QLr.hebau-3AL, QLr.hebau-4BL, and QLr.hebau-7DS that were identified at similar physical positions as previously reported QTLs. Based on chromosome positions and molecular marker tests, QLr.hebau-1BL and QLr.hebau-7DS share similar flanking markers with Lr46 and Lr34, respectively. Lr46 and Lr34 are race nonspecific adult plant resistance (APR) genes for leaf rust and stripe rust and powdery mildew. QLr.hebau-4BL showed multiple disease resistance to leaf rust, stripe rust, Fusarium head blight, and powdery mildew. The QTL identified in this study, as well as their closely linked markers, may potentially be used in marker-assisted selection in wheat breeding.


Asunto(s)
Basidiomycota , Puccinia , Triticum , Triticum/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Mapeo Cromosómico , Basidiomycota/genética , Italia
9.
Theor Appl Genet ; 136(1): 1, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36645449

RESUMEN

KEY MESSAGE: A novel adult-plant leaf rust resistance gene LrYang16G216 on wheat chromosome 6BL was identified and mapped to a 0.59 cM genetic interval by BSA and conventional linkage method. Leaf rust (Puccinia triticina) is one of the most devastating fungal diseases of wheat (Triticum aestivum L.). Discovery and identification of new resistance genes is essential to develop disease-resistant cultivars. An advanced breeding line Yang16G216 was previously identified to confer adult-plant resistance (APR) to leaf rust. In this research, a recombinant inbred line (RIL) population was constructed from the cross between Yang16G216 and a highly susceptible line Yang16M6393, and genotyped with exome capture sequencing and 55 K SNP array. Through bulked segregant analysis (BSA) and genetic linkage mapping, a stable APR gene, designated as LrYang16G216, was detected and mapped to the distal region of chromosome arm 6BL with a genetic interval of 2.8 cM. For further verification, another RIL population derived from the cross between Yang16G216 and a susceptible wheat variety Yangmai 29 was analyzed using the enriched markers in the target interval, and LrYang16G216 was further narrowed to a 0.59 cM genetic interval flanked by the KASP markers Ax109403980 and Ax95083494, corresponding to the physical position 712.34-713.94 Mb in the Chinese Spring reference genome, in which twenty-six disease resistance-related genes were annotated. Based on leaf rust resistance spectrum, mapping data and physical location, LrYang16G216 was identified to be a novel and effective APR gene. The LrYang16G216 with linked markers will be useful for marker-assisted selection in wheat resistance breeding.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Mapeo Cromosómico , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Hojas de la Planta
10.
Mol Genet Genomics ; 297(3): 731-749, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35305147

RESUMEN

Epigenetic regulation of the activity of defense genes during onset of diseases or resistance against diseases in plants is an active area of research. In the present study, a pair of wheat NILs for leaf rust resistance gene Lr28 (R) in the background of an Indian cultivar HD2329 (S) was used for a study of DNA methylation mediated regulation of gene expression. Leaf samples were collected at 0 h before (S0 and R0) and 96 h after inoculation (S96 and R96). The DNA samples were subjected to BS-Seq and sequencing data were used for identification of differentially methylated/demethylated regions/genes (DMRs and DMGs). Following four pairs of comparisons were used for this purpose: S0 vs S96; S0 vs R0; R0 vs R96; S96 vs R96. Major role of CHH methylation relative to that of CG and CHG methylation was observed. Some important observations include the following: (i) abundance of CHH methylation among DMRs; (ii) predominance of DMRs in intergenic region, relative to other genomic regions (promoters, exons, introns, TSS and TTS); (iii) abundance of transposable elements (TEs) in DMRs with CHH context; (iv) demethylation mediated high expression of genes during susceptible reaction (S0 vs S96) and methylation mediated low expression of genes during resistant reaction (R0 vs R96 and S96 vs R96); (v) major genes under regulation encode proteins, which differ from those encoded by genes regulated during susceptible reaction and (vi) ~ 500 DMGs carried differential binding sites for H3K4/K27me3 marks suggesting joint involvement of DNA and H3 methylation. Thus, CHH methylation either alone or in combination with histone methylation plays a major role in regulating the expression of genes involved in wheat-leaf rust interaction.


Asunto(s)
Basidiomycota , Triticum , Metilación de ADN , Epigénesis Genética , Enfermedades de las Plantas/genética , Triticum/genética
11.
Mol Genet Genomics ; 296(2): 279-287, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33245431

RESUMEN

NAC (NAM, AFAT1/2, and CUC2) transcription factors play important roles in plant growth and in resistance to abiotic and biotic stresses. Here, we show that the TaNAC35 gene negatively regulates leaf rust resistance in the wheat line Thatcher + Lr14b (TcLr14b) when challenged with a virulent isolate of Puccinia triticina (Pt). The TaNAC35 gene was cloned from this line, and blastp results showed that its open reading frame (ORF) was 96.16% identical to the NAC35-like sequence reported from Aegilops tauschii, and that it encoded a protein with 387 amino acids (aa) including a conserved NAM domain with 145 aa at the N-terminal alongside the transcriptional activation domain with 220 aa in the C-terminal. Yeast-one-hybrid analysis proved that the C-terminal of the TaNAC35 protein was responsible for transcriptional activation. A 250-bp fragment from the 3'-end of this target gene was introduced to a BSMV-VIGS vector and used to infect the wheat line Thatcher + Lr14b (TcLr14b). The BSMV-VIGS/TaNAC35-infected plant material showed enhanced resistance (infection type "1") to Pt pathotype THTT, which was fully virulent (infection type "4") on BSMV-VIGS only infected TcLr14b plants. Histological studies showed that inhibition of TaNAC35 reduced the formation of haustorial mother cells (HMC) and mycelial growth, implying that the TaNAC35 gene plays a negative role in the response of TcLr14b to Pt pathotype THTT. These results provide molecular insight into the interaction between Pt and its wheat host, and identify a potential target for engineering resistance in wheat to this damaging pathogen.


Asunto(s)
Resistencia a la Enfermedad , Puccinia/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/microbiología , Secuencia de Aminoácidos , Clonación Molecular , Interacciones Huésped-Patógeno , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios Proteicos , Factores de Transcripción/química , Activación Transcripcional , Triticum/genética
12.
Plant Dis ; 105(9): 2445-2452, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33529064

RESUMEN

In contrast to many other countries, the virulence and genetic diversity of the South African Puccinia triticina population before 1980 is unknown, because of the absence of regular and systematic race analysis data and viable rust cultures. Herbarium specimens housed at the National Collection of Fungi, Biosystematics Unit, Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa (SA), provided the opportunity to investigate the genetic development of the population using isolates collected between 1906 and 2010. Five subpopulations that survived between 21 and 82 years in the field were found. While three of these could represent the original races that entered SA during European settlement, two appear to be recent exotic introductions into SA, most probably from other African countries. The demise of the three oldest subpopulations might be from the release of resistant wheat cultivars. The population is clonal, where new virulence develops through single step mutations and selection for virulence. Although a possible case of somatic hybridization was found, sexual reproduction appears to be absent in SA. This study confirmed the importance of annual surveys in SA and its neighboring countries for the timely detection of new virulent races that could threaten wheat production in SA.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Basidiomycota/genética , Puccinia , Sudáfrica , Triticum
13.
Plant Dis ; 105(7): 1992-2000, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33439038

RESUMEN

Wheat is the second most cultivated cereal crop in the world and is an important crop in India. Leaf (brown) rust, caused by Puccinia triticina, was the most prevalent among the three rusts found in all the wheat-growing areas of India, Bhutan, and Nepal during 2016 to 2019. Leaf rust samples from wheat crops in these countries were pathotyped using the wheat differential genotypes and binomial Indian system of nomenclature. To facilitate international communication, each pathotype identified was also tested using the North American differentials. A total of 33 pathotypes were identified from 1,086 samples, including three new pathotypes: 61R47 (162-5 = KHTPM) and 93R49 (49 = NHKTN) from India and 93R57 (20-1 = NHKTN) from Nepal. Two pathotypes, 121R60-1 (77-9/52 = MHTKL) and 121R63-1 (77-5 = THTTM), accounted for 79.46% of the population. Virulence on Lr19 was identified in 0.27% of the samples from Nepal only. The proportion of pathotype 121R60-1 (77-9 = MHTKL) increased to 57.55% during these years. Virulence was not observed on Lr9, Lr24, Lr25, Lr28, Lr32, Lr39, Lr45, and Lr47 in the population of the Indian subcontinent. Eighteen polymorphic simple sequence repeat (SSR) primer pairs tested on the isolates amplified 48 alleles with an average of 2.66 alleles per primer pair. Based on SSR genotyping, these pathotypes could be grouped into two clades with another two subclades each. Many of the Lr genes present in Indian wheat germplasm (Lr1, Lr3a, Lr10, Lr11, Lr14a, Lr15, Lr16, Lr17, Lr20, Lr23, and Lr26) were ineffective for a majority of pathotypes. Most of these varieties possessed a high degree of leaf rust resistance. The field resistance of wheat varieties could be attributed to the interaction of genes, unknown resistance, or adult plant resistance.


Asunto(s)
Basidiomycota , Triticum , Basidiomycota/genética , Enfermedades de las Plantas , Puccinia , Triticum/genética , Virulencia
14.
Plant Dis ; 105(11): 3705-3714, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33779256

RESUMEN

The characterization of leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) resistance genes is the basis for breeding resistant wheat varieties and managing epidemics of these diseases in wheat. A cross between the susceptible wheat variety 'Apav#1' and resistant variety 'Neimai 836' was used to develop a mapping population containing 148 F5 recombinant inbred lines (RILs). Leaf rust phenotyping was done in field trials at Ciudad Obregón, Mexico, in 2017 and 2018, and stripe rust data were generated at Toluca, Mexico, in 2017 and in Mianyang, Ezhou, and Gansu, China, in 2019. Inclusive complete interval mapping (ICIM) was used to create a genetic map and identify significant resistance quantitative trait loci (QTL) with 2,350 polymorphic markers from a 15K wheat single-nucleotide polymorphism (SNP) array and simple-sequence repeats (SSRs). The pleiotropic multipathogen resistance gene Lr46/Yr29 and four QTL were identified, including two new loci, QLr.hzau-3BL and QYr.hzau-5AL, which explained 3 to 16% of the phenotypic variation in resistance to leaf rust and 7 to 14% of that to stripe rust. The flanking SNP markers for the two loci were converted to Kompetitive Allele-Specific PCR (KASP) markers and used to genotype a collection of 153 wheat lines, indicating the Chinese origin of the loci. Our results suggest that Neimai 836, which has been used as a parent for many wheat varieties in China, could be a useful source of high-level resistance to both leaf rust and stripe rust.


Asunto(s)
Basidiomycota , Triticum , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética
15.
Plant Mol Biol ; 104(1-2): 113-136, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32627097

RESUMEN

KEY MESSAGE: Present study revealed a complex relationship among histone H3 methylation (examined using H3K4/K27me3 marks), cytosine DNA methylation and differential gene expression during Lr28 mediated leaf rust resistance in wheat. During the present study, genome-wide histone modifications were examined in a pair of near isogenic lines (NILs) (with and without Lr28 in the background of cv. HD2329). The two histone marks used included H3K4me3 (an activation mark) and H3K27me3 (a repression mark). The results were compared with levels of expression (using RNA-seq) and DNA methylation (MeDIP) data obtained using the same pair of NILs. Some of the salient features of the present study include the following: (i) large scale differential binding sites (DBS) were available for only H3K4me3 in the susceptible cultivar, but for both H3K4me3 and H3K27me3 in its resistant NIL; (ii) DBSs for H3K27me3 mark were more abundant (> 80%) in intergenic regions, whereas DBSs for H3K4me3 were distributed in all genomic regions including exons, introns, intergenic, TTS (transcription termination sites) and promoters; (iii) fourteen (14) genes associated with DBSs showed co-localization for both the marks; (iv) only a small fraction (7% for H3K4me3 and 12% for H3K27me3) of genes associated with DBSs matched with the levels of gene expression inferred from RNA-seq data; (v) validation studies using qRT-PCR were conducted on 26 selected representative genes; results for only 11 genes could be validated. The proteins encoded by important genes involved in promoting infection included domains generally carried by R gene proteins such as Mlo like protein, protein kinases and purple acid phosphatase. Similarly, proteins encoded by genes involved in resistance included those carrying domains for lectin kinase, R gene, aspartyl protease, etc. Overall, the results suggest a very complex network of downstream genes that are expressed during compatible and incompatible interactions; some of the genes identified during the present study may be used in future validation studies involving RNAi/overexpression approaches.


Asunto(s)
Basidiomycota/metabolismo , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Genoma de Planta/genética , Histonas/genética , Enfermedades de las Plantas/genética , Triticum/genética , Triticum/metabolismo , Inmunoprecipitación de Cromatina , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Ligamiento Genético , Histonas/metabolismo , Anotación de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Alineación de Secuencia , Análisis de Secuencia , Análisis de Secuencia de ARN , Transcripción Genética , Triticum/microbiología
16.
Funct Integr Genomics ; 20(5): 711-721, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32705366

RESUMEN

Puccinia triticina (P. triticina) is one of the most devastating fungal pathogens of wheat which causes significant annual yield loss to the crop. Understanding the gene regulatory mechanism of the biotrophic pathogen is one of the important aspects of host-pathogen interaction studies. Dicer-like genes are considered as important mediators of RNAi-based gene regulation. In this study, we report the presence of three Dicer-like genes (Pt-DCL1, Pt-DCL2, Pt-DCL3) in P. triticina genome identified through computational and biological analyses. Quantitative real-time PCR studies revealed an increase in the expression of these genes in germinating spore stages. Heterologous expression combined with mass spectrometry analysis of Pt-DCL2 confirmed the presence of a canonical Dicer-like gene in P. triticina. Phylogenetic analysis of the Pt-DCLs with the Dicer-like proteins from other organisms showed a distinct cluster of rust pathogens from the order Pucciniales. The results indicated a species-specific duplication of Dicer-like genes within the wheat rust pathogens. This study, for the first time, reports the presence of Dicer-dependent RNAi pathway in P. triticina that may play a role in gene regulatory mechanism of the pathogen during its development. Our study serves as a vital source of information for further RNAi-based molecular studies for better understanding and management of the wheat leaf rust disease.


Asunto(s)
Genes Fúngicos , Puccinia/genética , Ribonucleasa III/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Puccinia/metabolismo , Ribonucleasa III/clasificación , Ribonucleasa III/metabolismo , Triticum/microbiología
17.
BMC Plant Biol ; 20(Suppl 1): 135, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33050873

RESUMEN

BACKGROUND: Leaf rust (Puccinia triticina Eriks.) is one of the most dangerous diseases of common wheat worldwide. Three approaches: genome-wide association study (GWAS), marker-assisted selection (MAS) and phytopathological evaluation in field, were used for assessment of the genetic diversity of Russian spring wheat varieties on leaf rust resistance loci and for identification of associated molecular markers. RESULTS: The collection, consisting of 100 Russian varieties of spring wheat, was evaluated over three seasons for resistance to the native population of leaf rust specific to the West Siberian region of Russia. The results indicated that most cultivars showed high susceptibility to P. triticina, with severity ratings (SR) of 60S-90S, however some cultivars showed a high level of leaf rust resistance (SR < 20MR-R). Based on the results of genome-wide association studies (GWAS) performed using the wheat 15 K genotyping array, 20 SNPs located on chromosomes 6D, 6A, 6B, 5A, 1B, 2A, 2B and 7A were revealed to be associated with leaf rust resistance. Genotyping with markers developed for known leaf rust resistance genes showed that most of the varieties contain genes Lr1, Lr3a, Lr9, Lr10, Lr17a, Lr20, Lr26 and Lr34, which are not currently effective against the pathogen. In the genome of three wheat varieties, gene Lr6Ai = 2 inherited from Th. intermedium was detected, which provides complete protection against the rust pathogen. It has been suggested that the QTL mapped to the chromosome 5AS of wheat cultivar Tulaikovskaya-zolotistaya, Tulaikovskaya-10, Samsar, and Volgouralskaya may be a new, previously undescribed locus conferring resistance to leaf rust. Obtained results also indicate that chromosome 1BL of the varieties Sonata, Otrada-Sibiri, Tertsiya, Omskaya-23, Tulaikovskaya-1, Obskaya-14, and Sirena may contain an unknown locus that provides a resistance response to local population. CONCLUSIONS: This study provides new insights into the genetic basis of resistance to leaf rust in Russian spring wheat varieties. The SNPs significantly associated with leaf rust resistance can be used for the development and application of diagnostic markers in marker-assisted selection schemes.


Asunto(s)
Enfermedades de las Plantas/genética , Puccinia , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Genoma de Planta , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Federación de Rusia , Estaciones del Año , Triticum/microbiología
18.
Phytopathology ; 110(12): 1886-1896, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32689896

RESUMEN

This study provides a bio-economic assessment of the global climate suitability and probabilistic crop-loss estimates attributable to wheat leaf rust. We draw on a purpose-built, spatially explicit, ecoclimatic suitability model for wheat leaf rust to estimate that 94.4% of global wheat production is vulnerable to the disease. To reflect the spatiotemporal variation in leaf rust losses, we used a probabilistic approach to estimate a representative rust loss distribution based on long-term, state-level annual U.S. loss estimates. Applying variants of this representative loss distribution to selected wheat production areas in 15 epidemiological zones throughout the world, we project global annual average losses of 8.6 million metric tons of grain for the period 2000 to 2050 based on a conservative, baseline scenario, and 18.3 million metric tons based on a high-loss scenario; equivalent to economic losses ranging from $1.5 to $3.3 billion per year (2016 U.S. prices). Even the more conservative baseline estimate implies that a sustained, worldwide investment of $50.5 million per year in leaf rust research is economically justified.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Puccinia , Triticum
19.
Plant Dis ; 104(8): 2095-2101, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32544001

RESUMEN

Wheat leaf rust, caused by Puccinia triticina, is a common fungal disease of wheat in China. In order to identify races and determine the individual virulence of isolates in different wheat-growing regions in China, leaf rust samples collected from 18 provinces in 2011 to 2013 were tested on 37 Thatcher near-isogenic lines each carrying a different single leaf rust resistance gene. A total of 158 races were identified. Races THTT (19.5%), THTS (16.9%), PHTT (7.7%), THJS (5.0%), THJT (4.2%), and PHTS (4.0%) were the most predominant races in 2011 to 2013. All of these races were avirulent to resistance genes Lr9 and Lr24. The two most frequent races, THTT and THTS, were widely distributed. The frequencies of the isolates with virulence to Lr1, Lr2c, Lr3, Lr16, Lr26, Lr17, LrB, Lr10, Lr14a, Lr3bg, Lr14b, Lr33, Lr37, and Lr50 exceeded 90%. Frequencies of virulence to Lr2a, Lr3ka, Lr11, Lr30, Lr2b, and Lr32 exceeded 70% but were less than 90%. Frequencies of virulence to Lr18, Lr21, Lr15, Lr23, Lr33+34, Lr36, Lr39, and Lr44 were below 70%, whereas the frequency of virulence to Lr25 was less than 1%. All isolates were avirulent to Lr9, Lr19, Lr24, Lr28, Lr42, Lr29, Lr38, and Lr47. The identified races and individual virulence frequencies provide a basis for selection of effective leaf rust resistance genes for use in breeding programs and can also provide information for the study of race evolution of P. triticina.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , China , Triticum , Virulencia
20.
Funct Integr Genomics ; 19(3): 391-407, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30618015

RESUMEN

Cross-kingdom RNAi is a well-documented phenomenon where sRNAs generated by host and pathogens may govern resistance or susceptible phenotypes during host-pathogen interaction. With the first example of the direct involvement of fungal generated sRNAs in virulence of plant pathogenic fungi Botrytis cinerea and recently from Puccinia striiformis f. sp. tritici, we attempted to identify sRNAs in Puccinia triticina (P. triticina). Four sRNA libraries were prepared and sequenced using Illumina sequencing technology and a total of ~ 1-1.28 million potential sRNAs and two microRNA-like small RNA (mil-RNAs) candidates were identified. Computational prediction of targets using a common set of sRNAs and P. triticina mil-RNAs (pt-mil-RNAs) within P. triticina and wheat revealed the majority of the targets as repetitive elements in P. triticina whereas in wheat, the target genes were identified to be involved in many biological processes including defense-related pathways. We found 9 receptor-like kinases (RLKs) and 14 target genes of each related to reactive oxygen species (ROS) pathway and transcription factors respectively, including significant numbers of target genes from various other categories. Expression analysis of twenty selected sRNAs, targeting host genes pertaining to ROS related, disease resistance, metabolic processes, transporter, apoptotic inhibitor, and transcription factors along with two pt-mil-RNAs by qRT-PCR showed distinct patterns of expression of the sRNAs in urediniospore-specific libraries. In this study, for the first time, we report identification of novel sRNAs identified in P. triticina including two pt-mil-RNAs that may play an important role in biotrophic growth and pathogenicity.


Asunto(s)
Basidiomycota/genética , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , Basidiomycota/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda