Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Chemistry ; 30(23): e202303972, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385831

RESUMEN

A safe and efficient method for the in-situ preparation of (diazomethyl)dimethylphosphine oxide - a hereto unexplored diazoalkane reagent - is developed. The method is based on the diazotization of the corresponding P(O)Me2-substituted amine (readily available in multigram quantities) in non-aqueous media. The protocol provides the target product as ca. 1.5 M CHCl3 solution which is stable at -18 °C. The utility of the synthesized diazoalkane is illustrated by its [3+2] cycloaddition with electron-poor alkynes and alkenes providing the corresponding P(O)Me2-substituted pyrazoles and pyrazolines with moderate to good efficiency. In this view, the title compound represents and an important extension of medicinally relevant phosphine oxide reagents.

2.
Bioorg Med Chem Lett ; 102: 129673, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38408511

RESUMEN

The eradication of multifactorial diseases, such as cancer, requires the design of drug candidates that attack multiple targets that contribute to the progression and proliferation of such diseases. Here, 1,5-diarylpyrazole derivatives bearing vanillin or sulfanilamide are developed as potential dual inhibitors of epidermal growth factor receptor (EGFR)/c-Jun N-terminal kinase 2 (JNK-2) for possible anticancer activity. These derivatives inhibited the growths of DLD-1, HeLa, K-562, SUIT-2 and HepG2 cancer cell lines, with minimum concentration required to inhibit half of the cellular growth (IC50) values of 2.7-63 µM. The tests confirmed that 5b and 5d were potent JNK-2 inhibitors, with IC50 of 2.0 and 0.9 µM, respectively, whereas 6 h selectively inhibited EGFR protein kinase (EGFR-PK) (IC50 = 1.7 µM). Notably, 6c inhibited both kinases, with IC50 values of 2.7 and 3.0 µM against EGFR-PK and JNK-2, respectively, offering a reference for designing mutual inhibitors of EGFR/JNK-2. The docking studies revealed the ability of the pyrazole ring to bind to the hinge region of the ATP binding site, thereby supporting the experimental inhibitory results. Furthermore, the developed compounds could induce apoptosis and induce cell cycle arrest at different cell phases.


Asunto(s)
Antineoplásicos , Humanos , Estructura Molecular , Relación Estructura-Actividad , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas/química , Receptores ErbB , Proliferación Celular , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Diseño de Fármacos
3.
Bioorg Chem ; 143: 107058, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159496

RESUMEN

The need for new ERK and RIPK3 kinase modulators arises from their central roles in cellular processes, especially in diseases like cancer. This research focused on a ligand-based strategy, incorporating previously documented 1,3,5-trisubstituted-1H-pyrazole derivatives, to craft innovative inhibitors specifically targeting ERK and RIPK3 kinases. Compounds 6, 7, 10a, 10c, and 10d exhibited significant cytotoxicity against PC-3 and MCF-7 cancer cell lines, with IC50 values ranging from 21.9 to 28.6 µM and 3.90-35.5 µM, respectively values surpassing those of the reference compound Doxorubicin. Additionally, cell cycle analysis revealed intriguing results, particularly with 10d inducing cell cycle arrest at the S phase in treated PC-3 cells, indicating potential DNA replication phase inhibition. Moreover, compounds 6, 10a, and 10d exhibited promising results in the in vitro kinase assay supported by molecular docking studies. The core scaffold of these compounds established interactions with vital amino acids within the active pockets of ERK and RIPK3 kinases, thereby securely anchoring them in place. These findings underscore the development of promising modulators for ERK and RIPK3 kinases, suggesting their potential for future contributions to cancer treatments.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Humanos , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Puntos de Control del Ciclo Celular , Pirazoles/química , Proliferación Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Estructura Molecular , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/farmacología
4.
Chem Biodivers ; : e202401010, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175307

RESUMEN

Cancer is a chronic disease reported with alarming rates of mortalities every year.  Herein, we reported the synthesis of nitrogen based novel heterocyclic disubstituted derivatives and evaluated them against L929 and A549 cell lines using MTT assay. Among all, 6a2 and 6c1 were significantly active against L929 with IC50 value of 2.61±9.58 and 2.64±8.97 µg/mL respectively. Compounds 6a2 and 6c1 were also active against A549 with IC50 value of 2.36±9.20 and 2.43±6.28 µg/mL respectively and were found to be more potent than the standard drug Doxorubicin. A molecular docking study of the active compounds was also done against EGFR, conferring good binding affinity and binding interactions. Further biological investigations may provide valuable insights towards exploring the therapeutic potential of the active compounds in future.

5.
Arch Pharm (Weinheim) ; : e2400437, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291901

RESUMEN

Class I histone deacetylases (HDACs) are considered promising targets in current cancer research. To obtain subtype-selective and potent HDAC inhibitors, we used the aminobenzamide scaffold as the zinc-binding group and prepared new derivatives with a pyrazole ring as the linking group. The synthesized compounds were analyzed in vitro using an enzymatic assay against HDAC1, -2, and -3. Compounds 12b, 15b, and 15i were found to be potent HDAC1 inhibitors, also in comparison to the reference compounds entinostat and tacedinaline, with IC50 values of 0.93, 0.22, and 0.68 µM, respectively. The best compounds were measured for their cellular effect and target engagement in acute myeloid leukemia (AML) cells. In addition, we studied the interaction of the compounds with HDAC subtypes using docking and molecular dynamic simulations. In summary, we have developed a new chemotype of HDAC1 inhibitors that can be used for further structure-based optimization.

6.
Arch Pharm (Weinheim) ; 357(10): e2400114, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38900588

RESUMEN

The design and synthesis of a library of 21 novel benzenesulfonamide-bearing 3-functionalized pyrazole-linked 1,2,3-triazole derivatives as dual inhibitors of cathepsin B and carbonic anhydrase enzymes are reported. The target 1,2,3-triazole-linked pyrazolic esters (16) were synthesized by the condensation of 1,2,3-triazolic diketo esters with 4-hydrazinobenzenesulfonamide hydrochloride, and these were further converted into the corresponding carboxylic acid (17) and carboxamide (18) analogs. The synthesized compounds were assayed in vitro for their inhibition potential against human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. They were found to be potent inhibitors at the low nanomolar level against the cancer-related hCA IX and XII and to be selective towards the cytosolic isoform hCA I. The physiologically important isoform hCA II was potently inhibited by all the newly synthesized compounds showing KI values ranging between 0.8 and 561.5 nM. The ester derivative 16c having 4-fluorophenyl (KI = 5.2 nM) was the most potent inhibitor of hCA IX, and carboxamide derivative 18b (KI = 2.2 nM) having 4-methyl substituted phenyl was the most potent inhibitor of hCA XII. The newly synthesized compounds exhibited potent cathepsin B inhibition at 10-7 M concentration. In general, the carboxamide derivatives (18) showed higher % inhibition as compared with the corresponding ester derivatives (16) and carboxylic acid derivatives (17) for cathepsin B. The interactions of the target compounds with the active sites of cathepsin B and CA were studied through molecular docking studies. Further, the in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of the target compounds were also studied.


Asunto(s)
Bencenosulfonamidas , Inhibidores de Anhidrasa Carbónica , Catepsina B , Simulación del Acoplamiento Molecular , Pirazoles , Sulfonamidas , Triazoles , Catepsina B/antagonistas & inhibidores , Catepsina B/metabolismo , Humanos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Sulfonamidas/farmacología , Sulfonamidas/química , Sulfonamidas/síntesis química , Relación Estructura-Actividad , Triazoles/farmacología , Triazoles/química , Triazoles/síntesis química , Pirazoles/farmacología , Pirazoles/síntesis química , Pirazoles/química , Estructura Molecular , Anhidrasas Carbónicas/metabolismo , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo
7.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791130

RESUMEN

The increase in multi-drug resistant Candida strains has caused a sharp rise in life-threatening fungal infections in immunosuppressed patients, including those with SARS-CoV-2. Novel antifungal drugs are needed to combat multi-drug-resistant yeasts. This study aimed to synthesize a new series of 2-oxazolines and evaluate the ligands in vitro for the inhibition of six Candida species and in silico for affinity to the CYP51 enzymes (obtained with molecular modeling and protein homology) of the same species. The 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j were synthesized using the Van Leusen reaction between 1,3-diphenyl-4-formylpyrazoles 4a-j and TosMIC 5 in the presence of K2CO3 or KOH without heating, resulting in short reaction times, high compound purity, and high yields. The docking studies revealed good affinity for the active site of the CYP51 enzymes of the Candida species in the following order: 6a-j > 4a-j > fluconazole (the reference drug). The in vitro testing of the compounds against the Candida species showed lower MIC values for 6a-j than 4a-j, and for 4a-j than fluconazole, thus correlating well with the in silico findings. According to growth rescue assays, 6a-j and 4a-j (like fluconazole) inhibit ergosterol synthesis. The in silico toxicity assessment evidenced the safety of compounds 6a-j, which merit further research as possible antifungal drugs.


Asunto(s)
Antifúngicos , Candida , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Candida/efectos de los fármacos , Humanos , Oxazoles/química , Oxazoles/farmacología , Oxazoles/síntesis química , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Simulación por Computador , SARS-CoV-2/efectos de los fármacos
8.
Molecules ; 29(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065010

RESUMEN

Novel fluorescent pyrazole-containing boron (III) complexes were synthesized employing a one-pot three-component reaction of 3-hydroxy-1-phenyl-1H-pyrazole-4-carbaldehyde, 2-aminobenzenecarboxylic acids, and boronic acids. The structures of the novel heterocyclic compounds were confirmed using 1H-, 13C-, 15N-, 19F-, and 11B-NMR, IR spectroscopy, HRMS, and single-crystal X-ray diffraction data. The photophysical properties of the obtained iminoboronates were investigated using spectroscopic techniques, such as UV-vis and fluorescence spectroscopies. Compounds display main UV-vis absorption maxima in the blue region, and fluorescence emission maxima are observed in the green region of the visible spectrum. It was revealed that compounds exhibit fluorescence quantum yield up to 4.3% in different solvents and demonstrate an aggregation-induced emission enhancement effect in mixed THF-water solutions.

9.
Molecules ; 29(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338376

RESUMEN

This review article discusses the recent progress in synthesizing seven-membered ring 1,3,5-triazepine and benzo[f][1,3,5]triazepine derivatives. These derivatives can be either unsaturated, saturated, fused, or separated. This review covers strategies and procedures developed over the past two decades, including cyclo-condensation, cyclization, methylation, chlorination, alkylation, addition, cross-coupling, ring expansions, and ring-closing metathesis. This review discusses the synthesis of 1,3,5-triazepine derivatives using nucleophilic or electrophilic substitution reactions with various reagents such as o-phenylenediamine, 2-aminobenzamide, isothiocyanates, pyrazoles, thiazoles, oxadiazoles, oxadiazepines, and hydrazonoyl chloride. This article systematically presents new approaches and techniques for preparing these compounds. It also highlights the biological importance of benzo[f][1,3,5]triazepine derivatives, which have been used as drugs for treating nervous system diseases. This review aims to provide researchers with the necessary information to create and develop new derivatives of these compounds as quickly as possible.


Asunto(s)
Ciclización , Alquilación
10.
Beilstein J Org Chem ; 20: 1453-1461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952956

RESUMEN

A series of 4-thio/seleno-cyanated pyrazoles was conveniently synthesized from 4-unsubstituted pyrazoles using NH4SCN/KSeCN as thio/selenocyanogen sources and PhICl2 as the hypervalent iodine oxidant. This metal-free approach was postulated to involve the in situ generation of reactive thio/selenocyanogen chloride (Cl-SCN/SeCN) from the reaction of PhICl2 and NH4SCN/KSeCN, followed by an electrophilic thio/selenocyanation of the pyrazole skeleton.

11.
Beilstein J Org Chem ; 20: 1518-1526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015621

RESUMEN

The enantioselective 1,4-addition reaction of pyrazolin-5-ones to α,ß-unsaturated ketones catalyzed by a cinchona alkaloid-derived primary amine-Brønsted acid composite is reported. Both enantiomers of the anticipated pyrazole derivatives were obtained in good to excellent yields (up to 97%) and high enantioselectivities (up to 98.5% ee) under mild reaction conditions. In addition, this protocol was further expanded to synthesize highly enantioenriched hybrid molecules bearing biologically relevant heterocycles.

12.
Bioorg Chem ; 139: 106742, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37480816

RESUMEN

Tumor selectivity is yet a challenge in chemotherapy-based cancer treatment. A series of calixarenes derivatized at the lower rim with 3-phenyl-1H-pyrazole units with variable upper-rim substituent and conformations of macrocyclic core, alkyl chain length between heterocycle and core, as well as phenolic monomer (5-(4-tert-butylphenyloxy)methoxy-3-phenyl-1H-pyrazole) have been synthesized and characterized in a range of therapeutically relevant cellular models (M-HeLa, MCF7, A-549, PC3, Chang liver, and Wi38) from different target organs/systems. Specific cytotoxicity for M-HeLa cells has been observed in tert-butylcalix[4]arene pyrazoles in 1,3-alternate (compound 7b) and partial cone (compound 7c) conformations with low mutagenicity and haemotoxicity and in vivo toxicity in mice. Compounds 7b,c have induced mitochondrial pathway of apoptosis of M-HeLa cells through caspase-9 activation preceded by the cell cycle arrest at G0/G1 phase. A concomitant overexpression of DNA damage markers in pyrazole-treated M-HeLa cells suggests that calixarene pyrazoles target DNA, which was supported by the presence of interactions between calixarenes and ctDNA at the air-water interface.


Asunto(s)
Calixarenos , Neoplasias , Poríferos , Humanos , Animales , Ratones , Calixarenos/farmacología , Células HeLa , Pirazoles/farmacología , Neoplasias/tratamiento farmacológico
13.
J Toxicol Environ Health A ; 86(5): 166-179, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36756738

RESUMEN

The aim of this study was to examine the chronic toxicity of imidacloprid (IMI), clothianidin (CLO) and fipronil (FIP) as a single exposure, as well as binary mixtures of IMI with CLO or FIP toward collembolans Folsomia candida, which are fauna present in the soil. Chronic toxicity assays were performed following an ISO guideline in a Tropical Artificial Soil (TAS), and the influence on the number and growth of the juveniles produced were determined. The range of nominal concentrations used in the tests with the individual compounds was 0.08-1.28 mg/kg (IMI), 0.079-1.264 mg/kg (FIP) and 0.007-0.112 mg/kg (CLO), whereas the mixture assays were performed with half the value used in the tests with individual compounds. Based upon single exposures, IMI produced a similar impact of reducing reproduction by 50% (EC50 ranging from 0.74 to 0.85 mg/kg) compared to FIP (EC50 = 0.78 mg/kg), whereas CLO was the most toxic to F. candida (EC50 = 0.08 mg/kg). Their mixtures generally resulted in a diminished effect on reproduction, as evidenced by the higher EC50 values. In contrast, in the case of the IMI+FIP combination at high concentrations at the EC50 level, a synergistic effect on toxicity was observed. The single exposure to the three insecticides and the mixture of IMI-FIP also decreased the size of generated juveniles, which was evidenced by the reduction in the proportion of large juveniles and increased proportion of small juveniles. However, both binary mixtures (IMI-FIP and IMI-CLO) presented antagonistic effects as evidenced by less than expected reductions in growth. Data on the toxic effects of IMI in a mixture with other seed dressing insecticides to collembolans provides useful information to environmental risk assessors by diminishing the uncertainties on the ecological risk of exposure to pesticides, enabling soil management degradation by utilizing multiple insecticides.


Asunto(s)
Artrópodos , Insecticidas , Animales , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Suelo
14.
J Enzyme Inhib Med Chem ; 38(1): 2201403, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37078174

RESUMEN

Design and synthesis of three novel series of aryl enaminones (3a-f and 5a-c) and pyrazole (4a-c) linked compounds with sulphonamides, sulfaguanidine, or carboxylic acid functionalities were reported as carbonic anhydrase inhibitors (CAIs) using the "tail approach" strategy in their design to achieve the most variable amino acids in the middle/outer rims of the hCAs active site. The synthesised compounds were assessed in vitro for their inhibitory activity against the following human (h) isoforms, hCA I, II, IX, and XII using stopped-flow CO2 hydrase assay. Enaminone sulphonamide derivatives (3a-c) potently inhibited the target tumour-associated isoforms hCA IX and hCA XII (KIs 26.2-63.7 nM) and hence compounds 3a and 3c were further screened for their in vitro cytotoxic activity against MCF-7 and MDA-MB-231 cancer cell lines under normoxic and hypoxic conditions. Derivative 3c showed comparable potency against both MCF-7 and MDA-MB-231 cancer cell lines under both normoxic ((IC50 = 4.918 and 12.27 µM, respectively) and hypoxic (IC50 = 1.689 and 5.898 µM, respectively) conditions compared to the reference drug doxorubicin under normoxic (IC50 = 3.386 and 4.269 µM, respectively) and hypoxic conditions (IC50 = 1.368 and 2.62 µM, respectively). Cell cycle analysis and Annexin V-FITC and propidium iodide double staining methods were performed to reinforce the assumption that 3c may act as a cytotoxic agent through the induction of apoptosis in MCF-7 cancer cells.


Asunto(s)
Antineoplásicos , Anhidrasas Carbónicas , Humanos , Anhidrasas Carbónicas/metabolismo , Anhidrasa Carbónica IX , Sulfaguanidina , Relación Estructura-Actividad , Ácidos Carboxílicos/farmacología , Sulfonamidas/química , Antineoplásicos/química , Inhibidores de Anhidrasa Carbónica/química , Pirazoles/farmacología , Pirazoles/química , Estructura Molecular
15.
Chem Biodivers ; 20(4): e202200518, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36988046

RESUMEN

Two series of piperazine-linked bis(chromene) hybrids that are attached to pyrazole units were synthesized in the current study. Both series are attached to an acyl unit at pyrazole-C3, with one series attached to an acetyl unit and the other to an ethoxycarbonyl unit. A [3+2] cycloaddition protocol was conducted to produce the target hybrids with good yields by reacting the appropriate hydrazonoyl chlorides with chromene-based bis(enaminone) in dioxane containing triethylamine at reflux for 4 h. New hybrids were tested for acetylcholinesterase inhibitory activity at concentrations of 15 and 25 µM, as well as their ability to quench 2,2-diphenylpicrylhydrazyl (DPPH) free radicals at a concentration of 25 µg/mL. In general, the inhibitory activity is related to the electronic properties of the para-substituent that is attached to the arene unit at pyrazole-N1. Furthermore, the acyl unit attached to pyrazole-C3 has a significant effect on the new hybrids' inhibitory activity. At the previous concentrations, the (3-acetylpyrazole)-linked hybrid attached to p-NO2 units demonstrated the best acetylcholinesterase inhibitory activity, with inhibition percentages of 79.7 and 90.2. Furthermore, the previous hybrid demonstrated the most effective DPPH inhibitory activity, with an inhibition percentage of 87.5.


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Inhibidores de la Colinesterasa/química , Benzopiranos/química , Relación Estructura-Actividad , Reacción de Cicloadición , Pirazoles/química , Piperazinas/farmacología , Simulación del Acoplamiento Molecular
16.
J Fluor Chem ; 2662023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37638129

RESUMEN

A series of soluble epoxide hydrolase (sEH) inhibitors containing halogenated pyrazoles was developed. Inhibition potency of the obtained compounds ranges from 0.8 to 27.5 nM. 1-Adamantyl-3-[(4,5-dichloro-1-methyl-1Н-pyrazol-3-yl)methyl]urea (3f, IC50 = 0.8 nM) and 1-[(Adamantan-1-yl)methyl]-3-[(4,5-dichloro-1-methyl-1Н-pyrazol-3-yl)methyl]urea (4f, IC50 = 1.2 nM) were found to be the most potent sEH inhibitors within the described series.

17.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674627

RESUMEN

Here, to develop new topical antibacterial formulations to treat staphylococcal infections, two pyrazoles (3c and 4b) previously reported as antibacterial agents, especially against staphylococci, were formulated as hydrogels (R1-HG-3c and R1HG-4b) using a cationic polystyrene-based resin (R1) and here synthetized and characterized as gelling agents. Thanks to the high hydrophilicity, high-level porosity, and excellent swelling capabilities of R1, R1HG-3c and R1HG-4b were achieved with an equilibrium degree of swelling (EDS) of 765% (R1HG-3c) and 675% (R1HG-4b) and equilibrium water content (EWC) of 88% and 87%, respectively. The chemical structure of soaked and dried gels was investigated by PCA-assisted attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy, while their morphology was investigated by optical microscopy. Weight loss studies were carried out with R1HG-3c and R1HG-4b to investigate their water release profiles and the related kinetics, while their stability was evaluated over time both by monitoring their inversion properties to detect possible impairments of the 3D network and by PCA-assisted ATR-FTIR spectroscopy to detect possible structural changes. The flow and dynamic rheological characterization of the gels was assessed by determining their viscosity vs. shear rate, applying the Cross rheological equation to achieve the curves of shear stress vs. shear rate, and carrying out amplitude and frequency sweep experiments. Finally, their content in NH3+ groups was determined by potentiometric titrations. Due to their favorable physicochemical characteristic and the antibacterial effects of 3c and 4b possibly improved by the cationic R1, the pyrazole-enriched gels reported here could represent new weapons to treat severe skin and wound infections sustained by MDR bacteria of staphylococcal species.


Asunto(s)
Hidrogeles , Poliestirenos , Hidrogeles/química , Antibacterianos/farmacología , Antibacterianos/química , Excipientes , Composición de Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier
18.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834475

RESUMEN

Neuroblastoma (NB) is a childhood cancer, commonly treated with drugs, such as etoposide (ETO), whose efficacy is limited by the onset of resistance. Here, aiming at identifying new treatments for chemo-resistant NB, the effects of two synthesized imidazo-pyrazoles (IMPs) (4G and 4I) were investigated on ETO-sensitive (HTLA-230) and ETO-resistant (HTLA-ER) NB cells, detecting 4I as the more promising compound, that demonstrated IC50 values lower than those of ETO on HTLA ER. Therefore, to further improve the activity of 4I, we developed 4I-loaded palmitic acid (PA) and polystyrene-based (P5) cationic nanoparticles (P5PA-4I NPs) with high drug loading (21%) and encapsulation efficiency (97%), by a single oil-in-water emulsification technique. Biocompatible PA was adopted as an emulsion stabilizer, while synthesized P5 acted as an encapsulating agent, solubilizer and hydrophilic-lipophilic balance (HLB) improver. Optic microscopy and cytofluorimetric analyses were performed to investigate the micromorphology, size and complexity distributions of P5PA-4I NPs, which were also structurally characterized by chemometric-assisted Fourier transform infrared spectroscopy (FTIR). Potentiometric titrations allowed us to estimate the milliequivalents of PA and basic nitrogen atoms present in NPs. P5PA-4I NPs afforded dispersions in water with excellent buffer capacity, essential to escape lysosomal degradation and promote long residence time inside cells. They were chemically stable in an aqueous medium for at least 40 days, while in dynamic light scattering (DLS) analyses, P5PA-4I showed a mean hydrodynamic diameter of 541 nm, small polydispersity (0.194), and low positive zeta potentials (+8.39 mV), assuring low haemolytic toxicity. Biological experiments on NB cells, demonstrated that P5PA-4I NPs induced ROS-dependent cytotoxic effects significantly higher than those of pristine 4I, showing a major efficacy compared to ETO in reducing cell viability in HTLA-ER cells. Collectively, this 4I-based nano-formulation could represent a new promising macromolecular platform to develop a new delivery system able to increase the cytotoxicity of the anticancer drugs.


Asunto(s)
Antineoplásicos , Nanopartículas , Neuroblastoma , Humanos , Niño , Portadores de Fármacos/química , Ácido Palmítico/farmacología , Poliestirenos , Etopósido , Antineoplásicos/farmacología , Neuroblastoma/tratamiento farmacológico , Nanopartículas/química , Agua
19.
Molecules ; 28(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298822

RESUMEN

Regio- and stereoselective switchable synthesis of (E)- and (Z)-N-carbonylvinylated pyrazoles is first developed by using the Michael addition reaction of pyrazoles and conjugated carbonyl alkynes. Ag2CO3 plays a key role in the switchable synthesis of (E)- and (Z)-N-carbonylvinylated pyrazoles. Ag2CO3-free reactions lead to thermodynamically stable (E)-N-carbonylvinylated pyrazoles in excellent yields whereas reactions with Ag2CO3 give (Z)-N-carbonylvinylated pyrazoles in good yields. It is noteworthy that (E)- or (Z)-N1-carbonylvinylated pyrazoles are obtained with high regioselectivity when asymmetrically substituted pyrazoles react with conjugated carbonyl alkynes. The method can also extend to the gram scale. A plausible mechanism is proposed on the basis of the detailed studies, wherein Ag+ acts as coordination guidance.


Asunto(s)
Alquinos , Pirazoles , Estereoisomerismo , Catálisis
20.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838701

RESUMEN

Pyrazole core represents a privilege scaffold in medicinal chemistry; a number of pyrazole compounds are endowed with various pharmacological activities in different therapeutic areas including antimalarial treatment. Supported by this evidence, a series of 5-anilino-3-(hetero)arylpyrazoles were evaluated for their antiplasmodial activity in in vitro assays. The compounds were synthesized according to regioselective and versatile protocols that combine active methylene reagents, aryl isothiocyanates and (substituted)hydrazines. The considered derivatives 2 allowed the definition of consistent structure-activity relationships and compounds 2b,e,k,l were identified as the most interesting derivatives of the series showing micromolar IC50 values against chloroquine-sensitive and chloroquine-resistant Plasmodium strains. Additionally, the most active anilino-pyrazoles did not show any cytotoxicity against tumor and normal cells and were predicted to have favorable drug-like and pharmacokinetic properties.


Asunto(s)
Antimaláricos , Antimaláricos/farmacología , Cloroquina/farmacología , Relación Estructura-Actividad , Indicadores y Reactivos , Plasmodium falciparum
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda