Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Más filtros

Publication year range
1.
Appl Environ Microbiol ; 90(3): e0162923, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38335112

RESUMEN

We used quantitative microbial risk assessment to estimate ingestion risk for intI1, erm(B), sul1, tet(A), tet(W), and tet(X) in private wells contaminated by human and/or livestock feces. Genes were quantified with five human-specific and six bovine-specific microbial source-tracking (MST) markers in 138 well-water samples from a rural Wisconsin county. Daily ingestion risk (probability of swallowing ≥1 gene) was based on daily water consumption and a Poisson exposure model. Calculations were stratified by MST source and soil depth over the aquifer where wells were drilled. Relative ingestion risk was estimated using wells with no MST detections and >6.1 m soil depth as a referent category. Daily ingestion risk varied from 0 to 8.8 × 10-1 by gene and fecal source (i.e., human or bovine). The estimated number of residents ingesting target genes from private wells varied from 910 (tet(A)) to 1,500 (intI1 and tet(X)) per day out of 12,000 total. Relative risk of tet(A) ingestion was significantly higher in wells with MST markers detected, including wells with ≤6.1 m soil depth contaminated by bovine markers (2.2 [90% CI: 1.1-4.7]), wells with >6.1 m soil depth contaminated by bovine markers (1.8 [1.002-3.9]), and wells with ≤6.1 m soil depth contaminated by bovine and human markers simultaneously (3.1 [1.7-6.5]). Antibiotic resistance genes (ARGs) were not necessarily present in viable microorganisms, and ingestion is not directly associated with infection. However, results illustrate relative contributions of human and livestock fecal sources to ARG exposure and highlight rural groundwater as a significant point of exposure.IMPORTANCEAntibiotic resistance is a global public health challenge with well-known environmental dimensions, but quantitative analyses of the roles played by various natural environments in transmission of antibiotic resistance are lacking, particularly for drinking water. This study assesses risk of ingestion for several antibiotic resistance genes (ARGs) and the class 1 integron gene (intI1) in drinking water from private wells in a rural area of northeast Wisconsin, United States. Results allow comparison of drinking water as an exposure route for antibiotic resistance relative to other routes like food and recreational water. They also enable a comparison of the importance of human versus livestock fecal sources in the study area. Our study demonstrates the previously unrecognized importance of untreated rural drinking water as an exposure route for antibiotic resistance and identifies bovine fecal material as an important exposure factor in the study setting.


Asunto(s)
Antibacterianos , Agua Potable , Animales , Humanos , Bovinos , Antibacterianos/farmacología , Genes Bacterianos , Ganado , Heces , Suelo , Medición de Riesgo , Farmacorresistencia Microbiana/genética , Ingestión de Alimentos
2.
Environ Sci Technol ; 58(15): 6540-6551, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574283

RESUMEN

Water age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of Legionella pneumophila via a growth model. In turn, the L. pneumophila concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection (Pinf) and clinically severe illness (Pcsi) due to showering. Risk reductions achieved by purging devices, which reduce water age, were also quantified. The median annual Pinf exceeded the commonly used 1 in 10,000 (10-4) risk benchmark in all scenarios, but the median annual Pcsi was always 1-3 orders of magnitude below 10-4. The median annual Pcsi was lower in homes with two occupants (4.7 × 10-7) than with one occupant (7.5 × 10-7) due to more frequent use of water fixtures, which reduced water ages. The median annual Pcsi for homes with one occupant was reduced by 39-43% with scheduled purging 1-2 times per day. Smart purging devices, which purge only after a certain period of nonuse, maintained these lower annual Pcsi values while reducing additional water consumption by 45-62%.


Asunto(s)
Agua Potable , Legionella pneumophila , Legionella , Abastecimiento de Agua , Microbiología del Agua , Ingeniería Sanitaria , Medición de Riesgo
3.
Risk Anal ; 44(1): 24-39, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37067226

RESUMEN

Ornamental fountains are attractive urban infrastructures helping cities to cope with global warming, as water sprays have great cooling effects due to evaporative properties; however, exposure to microbiologically impaired water from ornamental fountains during recreational activities may result in adverse health outcomes for the exposed population. This study assesses the microbial water quality of four ornamental water fountains (Blätterbrunnen, Körtingbrunnen, Klaus-Bahlsen-Brunnen, and Marstallbrunnen) and performs a quantitative microbial risk assessment (QMRA) for children using Escherichia coli, Enterococci, and Salmonella to quantify the probability of gastrointestinal illnesses and Pseudomonas aeruginosa to quantify the risk of dermal infections. Samples were collected fortnightly in two campaigns in 2020 and 2021 and processed to determine bacterial concentrations. Data on exposure time were obtained during field observations on the selected fountains; a total of 499 people were observed of which 30% were children. Mean bacterial concentrations ranged from 1.6 × 101 to 6.1 × 102 most probable number (MPN)/100 mL for E. coli, 1.2 × 101 -1.2 × 103  MPN/100 mL for Enterococci, 8.6 × 103 -3.1 × 105  CFU/100 mL for Salmonella, and 2.5 × 103 -3.2 × 104  MPN/100 mL for P. aeruginosa. The results of the QMRA study showed that the USEPA illness rate of 36 NEEAR-gastrointestinal illnesses/1000 was exceeded for Enterococci at the Körtingbrunnen, Klaus-Bahlsen-Brunnen, and Marstallbrunnen fountains and for Salmonella and P. aeruginosa at the Körtingbrunnen fountain, suggesting that exposure to microbiologically contaminated water from ornamental fountains may pose a health risk to children. The scenario analysis shows the importance of keeping low bacterial concentrations in ornamental fountains so that the risk of illness/infection to children does not exceed the USEPA illness rate benchmark.


Asunto(s)
Escherichia coli , Calidad del Agua , Niño , Humanos , Ciudades , Salmonella , Bacterias , Enterococcus , Medición de Riesgo , Microbiología del Agua
4.
Foodborne Pathog Dis ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957952

RESUMEN

Despite heavy contamination of the Bogotá River with domestic and industrial waste, it remains vital for various purposes, including agricultural use at La Ramada Irrigation District. There are important concerns regarding pathogen concentrations in irrigation water at La Ramada, including the presence of antibiotic-resistant Salmonella spp. This study aimed to estimate the risk of Salmonella-related illness from consuming lettuce irrigated with Bogotá River water at La Ramada. We collected lettuce samples from 4 different sites, all irrigated with water from La Ramada. The methodology involved a process to detach Salmonella spp. from lettuce leaves, quantification through plate counts on SS agar, and establishment of antibiotic-resistant bacteria concentrations through growth on media supplemented with ampicillin or ciprofloxacin. The results showed concentrations of Salmonella spp. of 103.59,102.66, and 104.56 CFU/g lettuce at sites 1, 2, and 3, respectively, and ampicillin-resistant Salmonella spp. of 101.93, 101.31, and 102.07 CFU/g lettuce at sites 1, 2, and 3, respectively. No colonies were obtained from lettuce samples collected from site 4. Notably, we detected no isolates resistant to ciprofloxacin at any of the sites. Salmonella spp. concentrations varied greatly among sampling sites. Salmonella spp. concentrations were used to predict the daily probability of illness, with a probability of 0.59 (0.33 to 0.78, CI 95%) for Salmonella spp. and 0.3 (0.03 to 0.53, CI 95%) for ampicillin-resistant Salmonella spp.

5.
J Environ Manage ; 354: 120331, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368808

RESUMEN

Pathogens are ubiquitously detected in various natural and engineered water systems, posing potential threats to public health. However, it remains unclear which human-accessible waters are hotspots for pathogens, how pathogens transmit to these waters, and what level of health risk associated with pathogens in these environments. This review collaboratively focuses and summarizes the contamination levels of pathogens on the 5 water systems accessible to humans (natural water, drinking water, recreational water, wastewater, and reclaimed water). Then, we showcase the pathways, influencing factors and simulation models of pathogens transmission and survival. Further, we compare the health risk levels of various pathogens through Quantitative Microbial Risk Assessment (QMRA), and assess the limitations of water-associated QMRA application. Pathogen levels in wastewater are consistently higher than in other water systems, with no significant variation for Cryptosporidium spp. among five water systems. Hydraulic conditions primarily govern the transmission of pathogens into human-accessible waters, while environmental factors such as temperature impact pathogens survival. The median and mean values of computed public health risk levels posed by pathogens consistently surpass safety thresholds, particularly in the context of recreational waters. Despite the highest pathogens levels found in wastewater, the calculated health risk is significantly lower than in other water systems. Except pathogens concentration, variables like the exposure mode, extent, and frequency are also crucial factors influencing the public health risk in water systems. This review shares valuable insights to the more accurate assessment and comprehensive management of public health risk in human-accessible water environments.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Agua Potable , Humanos , Aguas Residuales , Simulación por Computador , Medición de Riesgo , Microbiología del Agua
6.
Water Sci Technol ; 89(11): 3122-3132, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877634

RESUMEN

In Haiti, manual pit emptiers, known as bayakous, face significant health risks. They work by descending naked into latrine pits, exposing themselves to pathogens and contributing to environmental contamination. This study employs the quantitative microbial risk assessment (QMRA) method to evaluate the microbial risks associated with this practice, considering nine prevalent pathogens in Haiti. Three ingestion scenarios were developed: hand-to-mouth contact, ingestion while immersed in excreta, and a combination of both. A sensitivity analysis assessed the impact of input data on study outcomes. The results indicate a high probability of infection and illness during pit emptying operations annually for all scenarios and pathogens. Recommendations include adopting personal protective equipment (PPE) and using a manual Gulper waste pump to eliminate the need to descend directly into the pits, thereby reducing the risk of injury from sharp objects. The study proposes the establishment of intermediate disposal points approximately 5 km from collection sites to deter illegal dumping. National regulations and professionalization of the bayakou profession are suggested, along with awareness campaigns to promote PPE and Gulper pump usage. Addressing these issues is crucial for safeguarding the health of bayakou and public health in Haiti.


Asunto(s)
Equipo de Protección Personal , Medición de Riesgo , Haití , Humanos , Exposición Profesional
7.
Environ Monit Assess ; 196(5): 439, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592554

RESUMEN

In this study, the Quantitative Microbial Risk Assessment (QMRA) methodology was applied to estimate the annual risk of Giardia and Cryptosporidium infection associated with a water treatment plant in southern Brazil. The efficiency of the treatment plant in removing protozoa and the effectiveness of the Brazilian legislation on microbiological protection were evaluated, emphasizing the relevance of implementing the QMRA in this context. Two distinct approaches were employed to estimate the mechanical removal of protozoa: The definitions provided by the United States Environmental Protection Agency (USEPA), and the model proposed by Neminski and Ongerth. Although the raw water collected had a higher concentration of Giardia cysts than Cryptosporidium oocysts, the estimated values for the annual risk of infection were significantly higher for Cryptosporidium than for Giardia. From a general perspective, the risk values of protozoa infection were either below or very near the limit set by the World Health Organization (WHO). In contrast, all the risk values of Cryptosporidium infection exceeded the threshold established by the USEPA. Ultimately, it was concluded that the implementation of the QMRA methodology should be considered by the Brazilian authorities, as the requirements and guidelines provided by the Brazilian legislation proved to be insufficient to guarantee the microbiological safety of drinking water. In this context, the QMRA application can effectively contribute to the prevention and investigation of outbreaks of waterborne disease.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Estados Unidos , Humanos , Criptosporidiosis/epidemiología , Brasil/epidemiología , Monitoreo del Ambiente , Giardia , Medición de Riesgo
8.
J Environ Sci (China) ; 146: 186-197, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969447

RESUMEN

As an important means to solve water shortage, reclaimed water has been widely used for landscape water supply. However, with the emergence of large-scale epidemic diseases such as SARS, avian influenza and COVID-19 in recent years, people are increasingly concerned about the public health safety of reclaimed water discharged into landscape water, especially the pathogenic microorganisms in it. In this study, the water quality and microorganisms of the Old Summer Palace, a landscape water body with reclaimed water as the only replenishment water source, were tracked through long-term dynamic monitoring. And the health risks of indicator microorganisms were analyzed using Quantitative Microbial Risk Assessment (QMRA). It was found that the concentration of indicator microorganisms Enterococcus (ENT), Escherichia coli (EC) and Fecal coliform (FC) generally showed an upward trend along the direction of water flow and increased by more than 0.6 log at the end of the flow. The concentrations of indicator microorganisms were higher in summer and autumn than those in spring. And there was a positive correlation between the concentration of indicator microorganisms and COD. Further research suggested that increased concentration of indicator microorganisms also led to increased health risks, which were more than 30% higher in other areas of the park than the water inlet area and required special attention. In addition, (water) surface operation exposure pathway had much higher health risks than other pathways and people in related occupations were advised to take precautions to reduce the risks.


Asunto(s)
Microbiología del Agua , Medición de Riesgo , Calidad del Agua , Escherichia coli/aislamiento & purificación , Abastecimiento de Agua , Monitoreo del Ambiente , Enterococcus/aislamiento & purificación , Humanos
9.
Appl Environ Microbiol ; 89(7): e0012823, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37310232

RESUMEN

Essential food workers experience elevated risks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection due to prolonged occupational exposures in food production and processing areas, shared transportation (car or bus), and employer-provided shared housing. Our goal was to quantify the daily cumulative risk of SARS-CoV-2 infection for healthy susceptible produce workers and to evaluate the relative reduction in risk attributable to food industry interventions and vaccination. We simulated daily SARS-CoV-2 exposures of indoor and outdoor produce workers through six linked quantitative microbial risk assessment (QMRA) model scenarios. For each scenario, the infectious viral dose emitted by a symptomatic worker was calculated across aerosol, droplet, and fomite-mediated transmission pathways. Standard industry interventions (2-m physical distancing, handwashing, surface disinfection, universal masking, ventilation) were simulated to assess relative risk reductions from baseline risk (no interventions, 1-m distance). Implementation of industry interventions reduced an indoor worker's relative infection risk by 98.0% (0.020; 95% uncertainty interval [UI], 0.005 to 0.104) from baseline risk (1.00; 95% UI, 0.995 to 1.00) and an outdoor worker's relative infection risk by 94.5% (0.027; 95% UI, 0.013 to 0.055) from baseline risk (0.487; 95% UI, 0.257 to 0.825). Integrating these interventions with two-dose mRNA vaccinations (86 to 99% efficacy), representing a worker's protective immunity to infection, reduced the relative infection risk from baseline for indoor workers by 99.9% (0.001; 95% UI, 0.0002 to 0.005) and outdoor workers by 99.6% (0.002; 95% UI, 0.0003 to 0.005). Consistent implementation of combined industry interventions, paired with vaccination, effectively mitigates the elevated risks from occupationally acquired SARS-CoV-2 infection faced by produce workers. IMPORTANCE This is the first study to estimate the daily risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection across a variety of indoor and outdoor environmental settings relevant to food workers (e.g., shared transportation [car or bus], enclosed produce processing facility and accompanying breakroom, outdoor produce harvesting field, shared housing facility) through a linked quantitative microbial risk assessment framework. Our model has demonstrated that the elevated daily SARS-CoV-2 infection risk experienced by indoor and outdoor produce workers can be reduced below 1% when vaccinations (optimal vaccine efficacy, 86 to 99%) are implemented with recommended infection control strategies (e.g., handwashing, surface disinfection, universal masking, physical distancing, and increased ventilation). Our novel findings provide scenario-specific infection risk estimates that can be utilized by food industry managers to target high-risk scenarios with effective infection mitigation strategies, which was informed through more realistic and context-driven modeling estimates of the infection risk faced by essential food workers daily. Bundled interventions, particularly if they include vaccination, yield significant reductions (>99%) in daily SARS-CoV-2 infection risk for essential food workers in enclosed and open-air environments.


Asunto(s)
COVID-19 , Exposición Profesional , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Aerosoles y Gotitas Respiratorias , Exposición Profesional/prevención & control , Control de Infecciones
10.
Environ Sci Technol ; 57(1): 549-560, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36516327

RESUMEN

Synanthropic filth flies transport enteric pathogens from feces to food, which upon consumption poses an infection risk. We evaluated the effect of an onsite sanitation intervention─including fly control measures─in Maputo, Mozambique, on the risk of infection from consuming fly-contaminated food. After enumerating flies at intervention and control sites, we cultured fecal indicator bacteria, quantified gene copies for 22 enteric pathogens via reverse transcription quantitative polymerase chain reaction (RT-qPCR), and developed quantitative microbial risk assessment (QMRA) models to estimate annual risks of infection attributable to fly-contaminated foods. We found that the intervention reduced fly counts at latrine entrances by 69% (aRR = 0.31, [0.13, 0.75]) but not at food preparation areas (aRR = 0.92, [0.33, 2.6]). Half of (23/46) of individual flies were positive for culturable Escherichia coli, and we detected ≥1 pathogen gene from 45% (79/176) of flies, including enteropathogenic E. coli (37/176), adenovirus (25/176), Giardia spp. (13/176), and Trichuris trichiura (12/176). We detected ≥1 pathogen gene from half the flies caught in control (54%, 30/56) and intervention compounds (50%, 17/34) at baseline, which decreased 12 months post-intervention to 43% (23/53) at control compounds and 27% (9/33) for intervention compounds. These data indicate flies as a potentially important mechanical vector for enteric pathogen transmission in this setting. The intervention may have reduced the risk of fly-mediated enteric infection for some pathogens, but infrequent detection resulted in wide confidence intervals; we observed no apparent difference in infection risk between groups in a pooled estimate of all pathogens assessed (aRR = 0.84, [0.61, 1.2]). The infection risks posed by flies suggest that the design of sanitation systems and service delivery should include fly control measures to prevent enteric pathogen transmission.


Asunto(s)
Dípteros , Saneamiento , Animales , Escherichia coli , Mozambique , Bacterias , Heces
11.
Environ Sci Technol ; 57(14): 5771-5781, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37000413

RESUMEN

Using aerosol-based tracers to estimate risk of infectious aerosol transmission aids in the design of buildings with adequate protection against aerosol transmissible pathogens, such as SARS-CoV-2 and influenza. We propose a method for scaling a SARS-CoV-2 bulk aerosol quantitative microbial risk assessment (QMRA) model for impulse emissions, coughing or sneezing, with aerosolized synthetic DNA tracer concentration measurements. With point-of-emission ratios describing relationships between tracer and respiratory aerosol emission characteristics (i.e., volume and RNA or DNA concentrations) and accounting for aerosolized pathogen loss of infectivity over time, we scale the inhaled pathogen dose and risk of infection with time-integrated tracer concentrations measured with a filter sampler. This tracer-scaled QMRA model is evaluated through scenario testing, comparing the impact of ventilation, occupancy, masking, and layering interventions on infection risk. We apply the tracer-scaled QMRA model to measurement data from an ambulatory care room to estimate the risk reduction resulting from HEPA air cleaner operation. Using DNA tracer measurements to scale a bulk aerosol QMRA model is a relatively simple method of estimating risk in buildings and can be applied to understand the impact of risk mitigation efforts.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Aerosoles y Gotitas Respiratorias , Medición de Riesgo/métodos , ADN
12.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796790

RESUMEN

AIMS: The growing need to access recycled water as a source for drinking water supply necessitates management of perceived risks. This study aimed to use quantitative microbial risk analysis (QMRA) to evaluate microbiological risks of indirect water recycling. METHODS AND RESULTS: Scenario analyses of risk probabilities of pathogen infection were conducted to investigate four key quantitative microbial risk assessment model assumptions: treatment process failure, drinking water consumption events per day, inclusion or exclusion of an engineered storage buffer, and treatment process redundancy. Results demonstrated that the proposed water recycling scheme could meet WHO pathogen risk guidelines of ∼10-3 annual risk of infection under 18 simulated scenarios.


Asunto(s)
Agua Potable , Purificación del Agua , Purificación del Agua/métodos , Aguas Residuales , Abastecimiento de Agua , Agua Potable/microbiología , Medición de Riesgo , Reciclaje , Microbiología del Agua
13.
Risk Anal ; 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37806768

RESUMEN

A quantitative microbiological risk assessment model for the cross-contamination transmission route in the kitchen (KCC) is presented. Bacteria are transmitted from contaminated (chicken) meat to hands, kitchen utensils, and other surfaces, subsequently contaminating a salad. The model aims to estimate the fraction of bacteria on the meat that is ingested due to cross-contamination, determine the importance of the different transmission routes, and assess the effect of scenarios (interventions) on the fraction ingested. The cross-contamination routes defined, bacterial source-to-recipient transfer fractions as available and derived from literature, and important characteristics (e.g., washing in cold water vs. hot water with soap) shaped the KCC model. With this model, 32 scenarios of an eight-step preparation of a "meat and salad" meal in a domestic kitchen were stochastically simulated. The "cutting board-salad" route proved dominant and the salad plays a major role in the final exposure. A realistic scenario (washing hands, cutting board, and knife with cold water after cutting the meat) estimates that a mean fraction of 3.2E - 3 of the bacteria on the meat is ingested. In the case of "hand washing with hot water and soap" and "cutting board and knife replacement," the mean fraction ingested is 3.6E - 6. For a subsequent meal, where the contaminated sources were kitchen fomites, the estimated mean fraction is 4.3E - 4. In case of hamburger, part of the bacteria is unavailable for cross-contamination, resulting in a mean fraction ingested of about 5.4E - 5. The role of the dishcloth in cross-contamination transmission proved to be minor.

14.
Risk Anal ; 43(4): 700-708, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35491413

RESUMEN

The COVID 19 pandemic has triggered concerns and assumptions globally about transmission of the SARS-CoV-2 virus via cash transactions. This paper assesses the risk of contracting COVID-19 through exposure to SARS-CoV-2 via cash acting as a fomite in payment transactions. A quantitative microbial risk assessment was conducted for a scenario assuming an infectious person at the onset of symptoms, when virion concentrations in coughed droplets are at their highest. This person then contaminates a banknote by coughing on it and immediately hands it over to another person, who might then be infected by transferring the virions with a finger from the contaminated banknote to a facial mucous membrane. The scenario considered transfer efficiency of virions on the banknote to fingertips when droplets were still wet and after having dried up and subsequently being touched by finger printing or rubbing the object. Accounting for the likelihood of the scenario to occur by considering (1) a local prevalence of 100 COVID-19 cases/100,000 persons, (2) a maximum of about one-fifth of infected persons transmit high virus loads, and (3) the numbers of cash transactions/person/day, the risk of contracting COVID-19 via person-to-person cash transactions was estimated to be much lower than once per 39,000 days (107 years) for a single person. In the general populace, there will be a maximum of 2.6 expected cases/100,000 persons/day. The risk for a cashier at an average point of sale was estimated to be much less than once per 430 working days (21 months). The depicted scenario is a rare event, therefore, for a single person, the risk of contracting COVID-19 via person-to-person cash transactions is very low. At a point of sale, the risk to the cashier proportionally increases but it is still low.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Fómites , Medición de Riesgo
15.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139510

RESUMEN

In order to effectively balance enforced guidance/regulation during a pandemic and limit infection transmission, with the necessity for public transportation services to remain safe and operational, it is imperative to understand and monitor environmental conditions and typical behavioural patterns within such spaces. Social distancing ability on public transport as well as the use of advanced computer vision techniques to accurately measure this are explored in this paper. A low-cost depth-sensing system is deployed on a public bus as a means to approximate social distancing measures and study passenger habits in relation to social distancing. The results indicate that social distancing on this form of public transport is unlikely for an individual beyond a 28% occupancy threshold, with an 89% chance of being within 1-2 m from at least one other passenger and a 57% chance of being within less than one metre from another passenger at any one point in time. Passenger preference for seating is also analysed, which clearly demonstrates that for typical passengers, ease of access and comfort, as well as seats having a view, are preferred over maximising social-distancing measures. With a highly detailed and comprehensive set of acquired data and accurate measurement capability, the employed equipment and processing methodology also prove to be a robust approach for the application.


Asunto(s)
Distanciamiento Físico , Transportes , Transportes/métodos , Pandemias/prevención & control
16.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36476053

RESUMEN

The concepts of "D-value," "thermal death time" and "commercial sterility," innovative and useful at their inception, are based on untenable assumptions, notably that the log-linear isothermal inactivation model has universal applicability, that extrapolation over several orders of magnitude below the detection level is permissible, and that total microbial inactivation is theoretically impossible. Almost all commonly observed inactivation patterns, the log-linear is just a special case, can be described by both deterministic and fully stochastic models, examples of which are given. Unlike the deterministic, the stochastic models predict either complete elimination of the targeted cells or spores in realistic finite time, or residual survival. In most cases, the published survival data do not contain enough information to establish which actually happens. The microbial safety of thermally processed foods can be compromised not only by under-processing but also by a variety of mishaps whose occurrence probabilities are unrelated to the inactivation kinetics. Moreover, the available sampling plans to detect microbial contamination in sterilized containers through incubation alone are insensitive to levels of potential safety concerns. In principle, many of these issues could be resolved by developing new dramatically improved detection methods and/or verifiable methods to predict very low levels of microbial survival.

17.
Environ Sci Technol ; 56(10): 6315-6324, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35507527

RESUMEN

Infection risk from waterborne pathogens can be estimated via quantitative microbial risk assessment (QMRA) and forms an important consideration in the management of public groundwater systems. However, few groundwater QMRAs use site-specific hazard identification and exposure assessment, so prevailing risks in these systems remain poorly defined. We estimated the infection risk for 9 waterborne pathogens based on a 2-year pathogen occurrence study in which 964 water samples were collected from 145 public wells throughout Minnesota, USA. Annual risk across all nine pathogens combined was 3.3 × 10-1 (95% CI: 2.3 × 10-1 to 4.2 × 10-1), 3.9 × 10-2 (2.3 × 10-2 to 5.4 × 10-2), and 1.2 × 10-1 (2.6 × 10-2 to 2.7 × 10-1) infections person-1 year-1 for noncommunity, nondisinfecting community, and disinfecting community wells, respectively. Risk estimates exceeded the U.S. benchmark of 10-4 infections person-1 year-1 in 59% of well-years, indicating that the risk was widespread. While the annual risk for all pathogens combined was relatively high, the average daily doses for individual pathogens were low, indicating that significant risk results from sporadic pathogen exposure. Cryptosporidium dominated annual risk, so improved identification of wells susceptible to Cryptosporidium contamination may be important for risk mitigation.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Virus , Bacterias , Humanos , Minnesota , Medición de Riesgo , Microbiología del Agua , Abastecimiento de Agua , Pozos de Agua
18.
J Appl Microbiol ; 133(6): 3523-3533, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36000509

RESUMEN

AIMS: To estimate the risk of human rotavirus (RV) and astrovirus (HAstV) infections for swimmers and fishers at Las Cañas beach, Uruguay. METHODS AND RESULTS: Surface water samples were collected monthly for 1 year. The dose-response models used were ß-Poisson and 1 F1 hypergeometric for RV and HAstV, respectively. The probabilities of infection were calculated using a kernel density estimate to fitting the data and then sampling from this distribution (Monte Carlo simulation). The probability of RV infection for fishers was between 0 and 65% and for swimmers was between 0 and 50% (<18 years old) and between 0 and 38% (>18 years old). For HAstV, the probability of infection for fishers was between 0% and 45% and for swimmers was between 0 and 38% (<18 years old) and between 0 and 18% (>18 years old). CONCLUSIONS: This study suggests that fishers are at higher risk of infection for both viruses compared with swimmers mainly due to higher viral frequency and concentration at the site for fishing activities.


Asunto(s)
Infecciones por Astroviridae , Mamastrovirus , Rotavirus , Humanos , Adolescente , Rotavirus/genética , Mamastrovirus/genética , Natación , Uruguay/epidemiología , Caza , Heces
19.
J Appl Microbiol ; 132(2): 1435-1448, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34465009

RESUMEN

AIMS: Contaminated laundry can spread infections. However, current directives for safe laundering are limited to healthcare settings and not reflective of domestic conditions. We aimed to use quantitative microbial risk assessment to evaluate household laundering practices (e.g., detergent selection, washing and drying temperatures, and sanitizer use) relative to log10 reductions in pathogens and infection risks during the clothes sorting, washer/dryer loading, folding and storing steps. METHODS AND RESULTS: Using published data, we characterized laundry infection risks for respiratory and enteric pathogens relative to a single user contact scenario and a 1.0 × 10-6 acceptable risk threshold. For respiratory pathogens, risks following cold water wash temperatures (e.g. median 14.4℃) and standard detergents ranged from 2.2 × 10-5 to 2.2 × 10-7 . Use of advanced, enzymatic detergents reduced risks to 8.6 × 10-8 and 2.2 × 10-11 respectively. For enteric pathogens, however, hot water, advanced detergents, sanitizing agents and drying are needed to reach risk targets. SIGNIFICANCE AND IMPACT OF THE STUDY: Conclusions provide guidance for household laundry practices to achieve targeted risk reductions, given a single user contact scenario. A key finding was that hand hygiene implemented at critical control points in the laundering process was the most significant driver of infection prevention, additionally reducing infection risks by up to 6 log10 .


Asunto(s)
Lavandería , Textiles , Detergentes
20.
Environ Manage ; 70(4): 633-649, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35543727

RESUMEN

Worldwide Low Impact Developments (LIDs) are used for sustainable stormwater management; however, both the stormwater and LIDs carry microbial pathogens. The widespread development of LIDs is likely to increase human exposure to pathogens and risk of infection, leading to unexpected disease outbreaks in urban communities. The risk of infection from exposure to LIDs has been assessed via Quantitative Microbial Risk Assessment (QMRA) during the operation of these infrastructures; no effort is made to evaluate these risks during the planning phase of LID treatment train in urban communities. We developed a new integrated "Regression-QMRA method" by examining the relationship between pathogens' concentration and environmental variables. Applying of this methodology to a planned LID train shows that the predicted disease burden of diarrhea from Campylobacter is highest (i.e. 16.902 DALYs/1000 persons/yr) during landscape irrigation and playing on the LID train, followed by Giardia, Cryptosporidium, and Norovirus. These results illustrate that the risk of microbial infection can be predicted during the planning phase of LID treatment train. These predictions are of great value to municipalities and decision-makers to make informed decisions and ensure risk-based planning of stormwater systems before their development.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Criptosporidiosis/epidemiología , Humanos , Salud Pública , Medición de Riesgo/métodos , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda