Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34893875

RESUMEN

Island biogeography is one of the most powerful subdisciplines of ecology: its mathematical predictions that island size and distance to mainland determine diversity have withstood the test of time. A key question is whether these predictions follow at a population-genomic level. Using rigorous ancient-DNA protocols, we retrieved approximately 1,000 genomic markers from approximately 100 historic specimens of two Southeast Asian songbird complexes from across the Sunda Shelf archipelago collected 1893-1957. We show that the genetic affinities of populations on small shelf islands defy the predictions of geographic distance and appear governed by Earth-historic factors including the position of terrestrial barriers (paleo-rivers) and persistence of corridors (Quaternary land bridges). Our analyses suggest that classic island-biogeographic predictors may not hold well for population-genomic dynamics on the thousands of shelf islands across the globe, which are exposed to dynamic changes in land distribution during Quaternary climate change.


Asunto(s)
Ríos , Pájaros Cantores , Animales , Genoma , Islas , Filogenia , Dinámica Poblacional , Pájaros Cantores/genética
2.
BMC Biol ; 20(1): 231, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36224580

RESUMEN

BACKGROUND: Antarctica harbors the bulk of the species diversity of the dominant teleost fish suborder-Notothenioidei. However, the forces that shape their evolution are still under debate. RESULTS: We sequenced the genome of an icefish, Chionodraco hamatus, and used population genomics and demographic modelling of sequenced genomes of 52 C. hamatus individuals collected mainly from two East Antarctic regions to investigate the factors driving speciation. Results revealed four icefish populations with clear reproduction separation were established 15 to 50 kya (kilo years ago) during the last glacial maxima (LGM). Selection sweeps in genes involving immune responses, cardiovascular development, and photoperception occurred differentially among the populations and were correlated with population-specific microbial communities and acquisition of distinct morphological features in the icefish taxa. Population and species-specific antifreeze glycoprotein gene expansion and glacial cycle-paced duplication/degeneration of the zona pellucida protein gene families indicated fluctuating thermal environments and periodic influence of glacial cycles on notothenioid divergence. CONCLUSIONS: We revealed a series of genomic evidence indicating differential adaptation of C. hamatus populations and notothenioid species divergence in the extreme and unique marine environment. We conclude that geographic separation and adaptation to heterogeneous pathogen, oxygen, and light conditions of local habitats, periodically shaped by the glacial cycles, were the key drivers propelling species diversity in Antarctica.


Asunto(s)
Cubierta de Hielo , Perciformes , Animales , Regiones Antárticas , Peces/genética , Genoma , Metagenómica , Oxígeno , Filogenia
3.
Syst Biol ; 66(5): 715-736, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334079

RESUMEN

Understanding the effects of past climatic fluctuations on the distribution and population-size dynamics of cold-adapted species is essential for predicting their responses to ongoing global climate change. In spite of the heterogeneity of cold-adapted species, two main contrasting hypotheses have been proposed to explain their responses to Late Quaternary glacial cycles, namely, the interglacial contraction versus the interglacial expansion hypotheses. Here, we use the cold-adapted plant Primula farinosa to test two demographic models under each of the two alternative hypotheses and a fifth, null model. We first approximate the time and extent of demographic contractions and expansions during the Late Quaternary by projecting species distribution models across the last 72 ka. We also generate genome-wide sequence data using a Reduced Representation Library approach to reconstruct the spatial structure, genetic diversity, and phylogenetic relationships of lineages within P. farinosa. Finally, by integrating the results of climatic and genomic analyses in an Approximate Bayesian Computation framework, we propose the most likely model for the extent and direction of population-size changes in $P$. farinosa through the Late Quaternary. Our results support the interglacial expansion of $P$. farinosa, differing from the prevailing paradigm that the observed distribution of cold-adapted species currently fragmented in high altitude and latitude regions reflects the consequences of postglacial contraction processes.


Asunto(s)
Adaptación Fisiológica/fisiología , Clima , Frío , Variación Genética , Cubierta de Hielo , Filogenia , Primula/genética , Teorema de Bayes , Genoma de Planta/genética , Primula/fisiología
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(1): 135-147, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29697024

RESUMEN

Molecular phylogeography and species distribution modelling (SDM) suggest that late Quaternary glacial cycles have portrayed a significant role in structuring current population genetic structure and diversity. Based on phylogenetic relationships using Bayesian inference and maximum likelihood of 535 bp mtDNA (D-loop) and 745 bp mtDNA (Cytb) in 62 individuals of the Mediterranean Horseshoe Bat, Rhinolophus euryale, from 13 different localities in Iran we identified two subspecific populations with differing population genetic structure distributed in southern Zagros Mts. and northern Elburz Mts. Analysis of molecular variance (AMOVA) obtained from D-loop sequences indicates that 21.18% of sequence variation is distributed among populations and 10.84% within them. Moreover, a degree of genetic subdivision, mainly attributable to the existence of significant variance among the two regions is shown (θCT = 0.68, p = .005). The positive and significant correlation between geographic and genetic distances (R2 = 0.28, r = 0.529, p = .000) is obtained following controlling for environmental distance. Spatial distribution of haplotypes indicates that marginal population of the species in southern part of the species range have occupied this section as a glacial refugia. However, this genetic variation, in conjunction with results of the SDM shows a massive postglacial range expansion for R. euryale towards higher latitudes in Iran.


Asunto(s)
Quirópteros/genética , ADN Mitocondrial/genética , Evolución Molecular , Polimorfismo Genético , Animales , ADN Mitocondrial/química , Complejo IV de Transporte de Electrones/genética , Haplotipos , Irán , Filogeografía
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda