Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Bipolar Disord ; 24(4): 400-411, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34606159

RESUMEN

BACKGROUND: Recently, functional homotopy (FH) architecture, defined as robust functional connectivity (FC) between homotopic regions, has been frequently reported to be altered in MDD patients (MDDs) but with divergent locations. METHODS: In this study, we obtained resting-state functional magnetic resonance imaging (R-fMRI) data from 1004 MDDs (mean age, 33.88 years; age range, 18-60 years) and 898 matched healthy controls (HCs) from an aggregated dataset from 20 centers in China. We focused on interhemispheric function integration in MDDs and its correlation with clinical characteristics using voxel-mirrored homotopic connectivity (VMHC) devised to inquire about FH patterns. RESULTS: As compared with HCs, MDDs showed decreased VMHC in visual, motor, somatosensory, limbic, angular gyrus, and cerebellum, particularly in posterior cingulate gyrus/precuneus (PCC/PCu) (false discovery rate [FDR] q < 0.002, z = -7.07). Further analysis observed that the reduction in SMG and insula was more prominent with age, of which SMG reflected such age-related change in males instead of females. Besides, the reduction in MTG was found to be a male-special abnormal pattern in MDDs. VMHC alterations were markedly related to episode type and illness severity. The higher Hamilton Depression Rating Scale score, the more apparent VMHC reduction in the primary visual cortex. First-episode MDDs revealed stronger VMHC reduction in PCu relative to recurrent MDDs. CONCLUSIONS: We confirmed a significant VMHC reduction in MDDs in broad areas, especially in PCC/PCu. This reduction was affected by gender, age, episode type, and illness severity. These findings suggest that the depressive brain tends to disconnect information exchange across hemispheres.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
2.
Hum Brain Mapp ; 40(3): 833-854, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30357998

RESUMEN

Functional connectivity network provides novel insights on how distributed brain regions are functionally integrated, and its deviations from healthy brain have recently been employed to identify biomarkers for neuropsychiatric disorders. However, most of brain network analysis methods utilized features extracted only from one functional connectivity network for brain disease detection and cannot provide a comprehensive representation on the subtle disruptions of brain functional organization induced by neuropsychiatric disorders. Inspired by the principles of multi-view learning which utilizes information from multiple views to enhance object representation, we propose a novel multiple network based framework to enhance the representation of functional connectivity networks by fusing the common and complementary information conveyed in multiple networks. Specifically, four functional connectivity networks corresponding to the four adjacent values of regularization parameter are generated via a sparse regression model with group constraint ( l2,1 -norm), to enhance the common intrinsic topological structure and limit the error rate caused by different views. To obtain a set of more meaningful and discriminative features, we propose using a modified version of weighted clustering coefficients to quantify the subtle differences of each group-sparse network at local level. We then linearly fuse the selected features from each individual network via a multi-kernel support vector machine for autism spectrum disorder (ASD) diagnosis. The proposed framework achieves an accuracy of 79.35%, outperforming all the compared single network methods for at least 7% improvement. Moreover, compared with other multiple network methods, our method also achieves the best performance, that is, with at least 11% improvement in accuracy.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Vías Nerviosas/diagnóstico por imagen , Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/fisiopatología , Máquina de Vectores de Soporte
3.
Hum Brain Mapp ; 39(2): 902-915, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29143409

RESUMEN

The human brain is a large, interacting dynamic network, and its architecture of coupling among brain regions varies across time (termed the "chronnectome"). However, very little is known about whether and how the dynamic properties of the chronnectome can characterize individual uniqueness, such as identifying individuals as a "fingerprint" of the brain. Here, we employed multiband resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 105) and a sliding time-window dynamic network analysis approach to systematically examine individual time-varying properties of the chronnectome. We revealed stable and remarkable individual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and variability), which was mainly distributed in three higher order cognitive systems (i.e., default mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimotor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could successfully identify individuals with high accuracy and could further significantly predict individual higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily contributed by the higher order cognitive systems. Together, our findings highlight that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease.


Asunto(s)
Identificación Biométrica/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma , Imagen por Resonancia Magnética , Adulto , Cognición/fisiología , Conectoma/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Reproducibilidad de los Resultados , Descanso , Adulto Joven
4.
Neuroimage ; 125: 587-600, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26481679

RESUMEN

Motivated by recent progress in signal processing on graphs, we have developed a matched signal detection (MSD) theory for signals with intrinsic structures described by weighted graphs. First, we regard graph Laplacian eigenvalues as frequencies of graph-signals and assume that the signal is in a subspace spanned by the first few graph Laplacian eigenvectors associated with lower eigenvalues. The conventional matched subspace detector can be applied to this case. Furthermore, we study signals that may not merely live in a subspace. Concretely, we consider signals with bounded variation on graphs and more general signals that are randomly drawn from a prior distribution. For bounded variation signals, the test is a weighted energy detector. For the random signals, the test statistic is the difference of signal variations on associated graphs, if a degenerate Gaussian distribution specified by the graph Laplacian is adopted. We evaluate the effectiveness of the MSD on graphs both with simulated and real data sets. Specifically, we apply MSD to the brain imaging data classification problem of Alzheimer's disease (AD) based on two independent data sets: 1) positron emission tomography data with Pittsburgh compound-B tracer of 30 AD and 40 normal control (NC) subjects, and 2) resting-state functional magnetic resonance imaging (R-fMRI) data of 30 early mild cognitive impairment and 20 NC subjects. Our results demonstrate that the MSD approach is able to outperform the traditional methods and help detect AD at an early stage, probably due to the success of exploiting the manifold structure of the data.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Mapeo Encefálico/métodos , Encéfalo/patología , Interpretación de Imagen Asistida por Computador/métodos , Modelos Neurológicos , Algoritmos , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Modelos Teóricos , Tomografía de Emisión de Positrones
5.
Neuroimage ; 107: 345-355, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25514514

RESUMEN

Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting-state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia, which may underscore the abnormal brain performance in this mental illness.


Asunto(s)
Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Esquizofrenia/patología , Adolescente , Adulto , Anciano , Algoritmos , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Adulto Joven
6.
Hum Brain Mapp ; 36(9): 3677-86, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26096541

RESUMEN

Children exposed to natural disasters are vulnerable to the development of posttraumatic stress disorder (PTSD). Recent studies of other neuropsychiatric disorders have used graph-based theoretical analysis to investigate the topological properties of the functional brain connectome. However, little is known about this connectome in pediatric PTSD. Twenty-eight pediatric PTSD patients and 26 trauma-exposed non-PTSD patients were recruited from 4,200 screened subjects after the 2008 Sichuan earthquake to undergo a resting-state functional magnetic resonance imaging scan. Functional connectivity between 90 brain regions from the automated anatomical labeling atlas was established using partial correlation coefficients, and the whole-brain functional connectome was constructed by applying a threshold to the resultant 90 * 90 partial correlation matrix. Graph theory analysis was then used to examine the group-specific topological properties of the two functional connectomes. Both the PTSD and non-PTSD control groups exhibited "small-world" brain network topology. However, the functional connectome of the PTSD group showed a significant increase in the clustering coefficient and a normalized characteristic path length and local efficiency, suggesting a shift toward regular networks. Furthermore, the PTSD connectomes showed both enhanced nodal centralities, mainly in the default mode- and salience-related regions, and reduced nodal centralities, mainly in the central-executive network regions. The clustering coefficient and nodal efficiency of the left superior frontal gyrus were positively correlated with the Clinician-Administered PTSD Scale. These disrupted topological properties of the functional connectome help to clarify the pathogenesis of pediatric PTSD and could be potential biomarkers of brain abnormalities.


Asunto(s)
Encéfalo/fisiopatología , Trastornos por Estrés Postraumático/fisiopatología , Adolescente , Atlas como Asunto , Niño , Análisis por Conglomerados , Conectoma/métodos , Terremotos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/fisiopatología , Reconocimiento de Normas Patrones Automatizadas/métodos , Descanso , Trastornos por Estrés Postraumático/etiología
7.
Brain Connect ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302050

RESUMEN

BACKGROUND: Functional magnetic resonance imaging (fMRI) has not previously been used to localize the swallowing functional area in repetitive transcranial magnetic stimulation (rTMS) treatment for post-stroke dysphagia; Traditionally, the target area for rTMS is the hotspot, which is defined as the specific region of the brain identified as the optimal location for transcranial magnetic stimulation (TMS). This study aims to compare the network differences between the TMS hotspot and the saliva swallowing fMRI activation to determine the better rTMS treatment site and investigate changes in functional connectivity related to post-stroke dysphagia using resting-state fMRI. METHODS: Using an information-based approach, we conducted a single case study to explore neural functional connectivity in a patient with post-stroke dysphagia before, immediately after rTMS, and four weeks after rTMS intervention. 20 healthy participants underwent fMRI and TMS hotspot localization as a control group. Neural network alterations were assessed , and functional connections related to post-stroke dysphagia were examined using resting-state fMRI. RESULTS: Compared to the TMS-induced hotspots, the fMRI activation peaks were located significantly more posteriorly and exhibited stronger functional connectivity with bilateral postcentral gyri. Following rTMS treatment, this patient developed functional connection between the brainstem and the bilateral insula, caudate, anterior cingulate cortex, and cerebellum. CONCLUSION: The saliva swallowing fMRI activation peaks show more intense functional connectivity with bilateral postcentral gyri compared to the TMS hotspots. Activation peak-guided rTMS treatment improves swallowing function in post-stroke dysphagia. This study proposes a novel and potentially more efficacious therapeutic target for rTMS, expanding its therapeutic options for treating post-stroke dysphagia.

8.
Neuroimage ; 82: 683-91, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23123682

RESUMEN

Over a decade ago, the fMRI Data Center (fMRIDC) pioneered open-access data sharing in the task-based functional neuroimaging community. Well ahead of its time, the fMRIDC effort encountered logistical, sociocultural and funding barriers that impeded the field-wise instantiation of open-access data sharing. In 2009, ambitions for open-access data sharing were revived in the resting state functional MRI community in the form of two grassroots initiatives: the 1000 Functional Connectomes Project (FCP) and its successor, the International Neuroimaging Datasharing Initiative (INDI). Beyond providing open access to thousands of clinical and non-clinical imaging datasets, the FCP and INDI have demonstrated the feasibility of large-scale data aggregation for hypothesis generation and testing. Yet, the success of the FCP and INDI should not be confused with widespread embracement of open-access data sharing. Reminiscent of the challenges faced by fMRIDC, key controversies persist and include participant privacy, the role of informatics, and the logistical and cultural challenges of establishing an open science ethos. We discuss the FCP and INDI in the context of these challenges, highlighting the promise of current initiatives and suggesting solutions for possible pitfalls.


Asunto(s)
Bases de Datos Factuales , Difusión de la Información , Imagen por Resonancia Magnética , Informática Médica , Humanos , Difusión de la Información/ética , Difusión de la Información/métodos , Informática Médica/ética , Informática Médica/métodos , Informática Médica/organización & administración
9.
J Affect Disord ; 329: 257-272, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863463

RESUMEN

BACKGROUND: The advances in resting-state functional magnetic resonance imaging techniques motivate parsing heterogeneity in major depressive disorder (MDD) through neurophysiological subtypes (i.e., biotypes). Based on graph theories, researchers have observed the functional organization of the human brain as a complex system with modular structures and have found wide-spread but variable MDD-related abnormality regarding the modules. The evidence implies the possibility of identifying biotypes using high-dimensional functional connectivity (FC) data in ways that suit the potentially multifaceted biotypes taxonomy. METHODS: We proposed a multiview biotype discovery framework that involves theory-driven feature subspace partition (i.e., "view") and independent subspace clustering. Six views were defined using intra- and intermodule FC regarding three MDD focal modules (i.e., the sensory-motor system, default mode network, and subcortical network). For robust biotypes, the framework was applied to a large multisite sample (805 MDD participants and 738 healthy controls). RESULTS: Two biotypes were stably obtained in each view, respectively characterized by significantly increased and decreased FC compared to healthy controls. These view-specific biotypes promoted the diagnosis of MDD and showed different symptom profiles. By integrating the view-specific biotypes into biotype profiles, a broad spectrum in the neural heterogeneity of MDD and its separation from symptom-based subtypes was further revealed. LIMITATIONS: The power of clinical effects is limited and the cross-sectional nature cannot predict the treatment effects of the biotypes. CONCLUSIONS: Our findings not only contribute to the understanding of heterogeneity in MDD, but also provide a novel subtyping framework that could transcend current diagnostic boundaries and data modality.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Estudios Transversales , Encéfalo , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Análisis por Conglomerados
10.
Psychoradiology ; 2(1): 32-42, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38665141

RESUMEN

Despite a growing neuroimaging literature on the pathophysiology of major depressive disorder (MDD), reproducible findings are lacking, probably reflecting mostly small sample sizes and heterogeneity in analytic approaches. To address these issues, the Depression Imaging REsearch ConsorTium (DIRECT) was launched. The REST-meta-MDD project, pooling 2428 functional brain images processed with a standardized pipeline across all participating sites, has been the first effort from DIRECT. In this review, we present an overview of the motivations, rationale, and principal findings of the studies so far from the REST-meta-MDD project. Findings from the first round of analyses of the pooled repository have included alterations in functional connectivity within the default mode network, in whole-brain topological properties, in dynamic features, and in functional lateralization. These well-powered exploratory observations have also provided the basis for future longitudinal hypothesis-driven research. Following these fruitful explorations, DIRECT has proceeded to its second stage of data sharing that seeks to examine ethnicity in brain alterations in MDD by extending the exclusive Chinese original sample to other ethnic groups through international collaborations. A state-of-the-art, surface-based preprocessing pipeline has also been introduced to improve sensitivity. Functional images from patients with bipolar disorder and schizophrenia will be included to identify shared and unique abnormalities across diagnosis boundaries. In addition, large-scale longitudinal studies targeting brain network alterations following antidepressant treatment, aggregation of diffusion tensor images, and the development of functional magnetic resonance imaging-guided neuromodulation approaches are underway. Through these endeavours, we hope to accelerate the translation of functional neuroimaging findings to clinical use, such as evaluating longitudinal effects of antidepressant medications and developing individualized neuromodulation targets, while building an open repository for the scientific community.

11.
Psychiatry Investig ; 19(7): 562-569, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35903058

RESUMEN

OBJECTIVE: Some pharmacological treatments are ineffective in parts of patients with major depressive disorder (MDD), hence this needs prediction of effective treatment responses. The study aims to examine the relationship between dynamic functional connectivity (dFC) of the hippocampal subregion and antidepressant improvement of MDD patients and to estimate the capability of dFC to predict antidepressant efficacy. METHODS: The data were from 70 MDD patients and 43 healthy controls (HC); the dFC of hippocampal subregions was estimated by sliding-window approach based on resting-state functional magnetic resonance imaging (R-fMRI). After 3 months treatment, 36 patients underwent second R-fMRI scan and were then divided into the response group and non-response group according to clinical responses. RESULTS: The result manifested that MDD patients exhibited lower mean dFC of the left rostral hippocampus (rHipp.l) compared with HC. After 3 months therapy, the response group showed lower dFC of rHipp.l compared with the non-response group. The dFC of rHipp.l was also negatively correlated with the reduction rate of Hamilton Depression Rating Scale. CONCLUSION: These findings highlighted the importance of rHipp in MDD from the dFC perspective. Detection and estimation of these changes might demonstrate helpful for comprehending the pathophysiological mechanism and for assessment of treatment reaction of MDD.

12.
Front Neuroinform ; 16: 761942, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273487

RESUMEN

An increasing number of resting-state functional magnetic resonance neuroimaging (R-fMRI) studies have used functional connections as discriminative features for machine learning to identify patients with brain diseases. However, it remains unclear which functional connections could serve as highly discriminative features to realize the classification of autism spectrum disorder (ASD). The aim of this study was to find ASD-related functional connectivity patterns and examine whether these patterns had the potential to provide neuroimaging-based information to clinically assist with the diagnosis of ASD by means of machine learning. We investigated the whole-brain interregional functional connections derived from R-fMRI. Data were acquired from 48 boys with ASD and 50 typically developing age-matched controls at NYU Langone Medical Center from the publicly available Autism Brain Imaging Data Exchange I (ABIDE I) dataset; the ASD-related functional connections identified by the Boruta algorithm were used as the features of support vector machine (SVM) to distinguish patients with ASD from typically developing controls (TDC); a permutation test was performed to assess the classification performance. Approximately, 92.9% of participants were correctly classified by a combined SVM and leave-one-out cross-validation (LOOCV) approach, wherein 95.8% of patients with ASD were correctly identified. The default mode network (DMN) exhibited a relatively high network degree and discriminative power. Eight important brain regions showed a high discriminative power, including the posterior cingulate cortex (PCC) and the ventrolateral prefrontal cortex (vlPFC). Significant correlations were found between the classification scores of several functional connections and ASD symptoms (p < 0.05). This study highlights the important role of DMN in ASD identification. Interregional functional connections might provide useful information for the clinical diagnosis of ASD.

13.
Front Hum Neurosci ; 15: 748919, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867242

RESUMEN

It remains controversial whether long-term logographic-logographic bilingual experience shapes the special brain functional subnetworks underlying different components of executive function (EF). To address this question, this study explored the differences in the functional connections underlying EF between the Cantonese-Mandarin bilinguals and Mandarin monolinguals. 31 Cantonese-Mandarin bilinguals and 31 Mandarin monolinguals were scanned in a 3-T magnetic resonance scanner at rest. 4 kinds of behavioral tasks of EF were tested. Network-based statistics (NBS) was performed to compare the connectomes of fronto-parietal (FP) and cingulo-opercular (CO) network between groups. The results showed that the bilinguals had stronger connectivity than monolinguals in a subnetwork located in the CO network rather than the FP network. The identified differential subnetwork referred to as the CO subnetwork contained 9 nodes and 10 edges, in which the center node was the left mid-insula with a degree centrality of 5. The functional connectivity of the CO subnetwork was significantly negatively correlated with interference effect in bilinguals. The results suggested that long-term Cantonese-Mandarin bilingual experience was associated with stronger functional connectivity underlying inhibitory control in the CO subnetwork.

14.
Front Neurosci ; 15: 768418, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744623

RESUMEN

The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N = 227, aged 18-76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects' age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.

15.
Data Brief ; 38: 107333, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34504919

RESUMEN

To investigate the impact of adult age on the brain functional connectivity, whole-brain resting-state functional magnetic resonance imaging (R-fMRI) data were acquired on a 3T clinical MRI scanner in a cohort of 227, right-handed, native Swedish-speaking, healthy adult volunteers (N=227, aged 18-74 years old, male/female=99/128). The dataset is mainly consisted of a younger (18-30 years old n=124, males/females=51/73) and elderly adult (n=76, 60-76 years old, males/females=35/41) subgroups. The dataset was analyzed using a new data-driven analysis (QDA) framework. With QDA two types of threshold-free voxel-wise resting-state functional connectivity (RFC) metrics were derived: the connectivity strength index (CSI) and connectivity density index (CDI), which can be utilized to assess the brain changes in functional connectivity associated with adult age. The dataset can also be useful as a reference to identify abnormal changes in brain functional connectivity resulted from neurodegenerative or neuropsychiatric disorders.

16.
Med Image Anal ; 65: 101752, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32623273

RESUMEN

Higher spatial resolution in resting-state functional magnetic resonance imaging (R-fMRI) can give reliable information about the functional networks in the cerebral cortex. Typical methods can achieve higher spatial or temporal resolution by speeding up scans using either (i) complex pulse-sequence designs or (ii) k-space undersampling coupled with priors on the signal. We propose to undersample the R-fMRI acquisition in k-space and time to speedup scans in order to improve spatial resolution. We propose a novel model-based R-fMRI reconstruction framework using a robust, subject-invariant, spatially regularized dictionary prior on the signal. Furthermore, we propose a novel inference framework based on variational Bayesian expectation maximization with nested minorization (VB-EM-NM). Our inference framework allows us to provide an estimate of uncertainty of the reconstruction, unlike typical reconstruction methods. Empirical evaluation of (i) simulated R-fMRI reconstruction and (ii) functional-network estimates from brain R-fMRI reconstructions demonstrate that our framework improves over the state of the art, and, additionally, enables significantly higher spatial resolution.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Teorema de Bayes , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador
17.
Brain Imaging Behav ; 14(1): 186-199, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30382529

RESUMEN

Bipolar disorder (BD) is frequently misdiagnosed as major depressive disorder (MDD) in clinical practice, especially during depressive episodes. A unifying triple-network model, involving the default mode network (DMN), central executive network (CEN) and salience network (SN), has been proposed to explain the neural physiopathology of psychiatric and neurological disorders. Although several studies revealed shared and specific alterations between BD and MDD in key regions of DMN, CEN, and SN, and a few studies used different measures to detect detailed alterations in the triple networks in BD and MDD, their shared and specific patterns of altered functional connectivity (FC) in the triple networks has remained unclear. In this study, we acquired resting-state fMRI (R-fMRI) data from 38 unmedicated BD and 35 unmedicated MDD patients during depressive episodes along with 47 healthy controls. We first determined the spatially independent components of the DMN, SN, and CEN by using independent component analysis (ICA); then we estimated the inter-ROI and inter-network FC for each group. By comparing the differences between the three groups, we obtained the following results: (1) both the BD and MDD patients showed shared weaker intra-network FC in the left mPFC and right precuneus within the DMN as well as weaker inter-ROI FC between the left AI and right AI compared with the healthy controls; (2) the BD had weaker while the MDD had stronger intra-network FC in the right dlPFC within the rCEN as well as stronger inter-ROI FC between the right dlPFC and right ANG compared with the healthy controls; (3) the BD showed specific, stronger inter-ROI FC between the left PPC and right AI as well as stronger inter-network FC between the lCEN and SN compared with either the MDD or the control group. Our findings provide new information for understanding the neural physiopathology and clinical symptoms of depressed BD and MDD patients.


Asunto(s)
Trastorno Bipolar/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Vías Nerviosas/fisiopatología , Adulto , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Conectoma/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Lóbulo Parietal/fisiopatología , Corteza Prefrontal/fisiopatología , Descanso/fisiología
18.
Front Aging Neurosci ; 12: 604995, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381021

RESUMEN

Early- and late-onset Parkinson's disease (EOPD and LOPD, respectively) have different risk factors, clinical features, and disease course; however, the functional outcome of these differences have not been well characterized. This study investigated differences in global brain synchronization changes and their clinical significance in EOPD and LOPD patients. Patients with idiopathic PD including 25 EOPD and 24 LOPD patients, and age- and sex-matched healthy control (HC) subjects including 27 younger and 26 older controls (YCs and OCs, respectively) were enrolled. Voxel-based degree centrality (DC) was calculated as a measure of global synchronization and compared between PD patients and HC groups matched in terms of disease onset and severity. DC was decreased in bilateral Rolandic operculum and left insula and increased in the left superior frontal gyrus (SFG) and precuneus of EOPD patients compared to YCs. DC was decreased in the right putamen, mid-cingulate cortex, bilateral Rolandic operculum, and left insula and increased in the right cerebellum-crus1 of LOPD patients compared to OCs. Correlation analyses showed that DC in the right cerebellum-crus1 was inversely associated with the Hamilton Depression Scale (HDS) score in LOPD patients. Thus, EOPD and LOPD patients show distinct alterations in global synchronization relative to HCs. Furthermore, our results suggest that the left SFG and right cerebellum-crus1 play important roles in the compensation for corticostriatal-thalamocortical loop injury in EOPD and LOPD patients, whereas the cerebellum is a key hub in the neural mechanisms underlying LOPD with depression. These findings provide new insight into the clinical heterogeneity of the two PD subtypes.

19.
Neuropsychiatr Dis Treat ; 16: 691-702, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210565

RESUMEN

PURPOSE: In recent years, machine learning techniques have received increasing attention as a promising approach to differentiating patients from healthy subjects. Therefore, some resting-state functional magnetic resonance neuroimaging (R-fMRI) studies have used interregional functional connections as discriminative features. The aim of this study was to investigate ADHD-related spatially distributed discriminative features derived from whole-brain resting-state functional connectivity patterns using machine learning. PATIENTS AND METHODS: We measured the interregional functional connections of the R-fMRI data from 40 ADHD patients and 28 matched typically developing controls. Machine learning was used to discriminate ADHD patients from controls. Classification performance was assessed by permutation tests. RESULTS: The results from the model with the highest classification accuracy showed that 85.3% of participants were correctly identified using leave-one-out cross-validation (LOOV) with support vector machine (SVM). The majority of the most discriminative functional connections were located within or between the cerebellum, default mode network (DMN) and frontoparietal regions. Approximately half of the most discriminative connections were associated with the cerebellum. The cerebellum, right superior orbitofrontal cortex, left olfactory cortex, left gyrus rectus, right superior temporal pole, right calcarine gyrus and bilateral inferior occipital cortex showed the highest discriminative power in classification. Regarding the brain-behaviour relationships, some functional connections between the cerebellum and DMN regions were significantly correlated with behavioural symptoms in ADHD (P < 0.05). CONCLUSION: This study indicated that whole-brain resting-state functional connections might provide potential neuroimaging-based information for clinically assisting the diagnosis of ADHD.

20.
Front Psychiatry ; 10: 418, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249539

RESUMEN

Background: Neuroimaging studies have shown that the high synchrony of spontaneous neural activity in the homotopic regions between hemispheres is an important functional structural feature of normal human brains, and this feature is abnormal in the patients with various mental disorders. However, little is known about this feature in obsessive-compulsive disorder (OCD). This study aimed to further analyze the underlying neural mechanisms of OCD and to explore whether clinical characteristics are correlated with the alerted homotopic connectivity in patients with OCD. Methods: Using voxel-mirrored homotopic connectivity (VMHC) during resting state, we compared 46 OCD patients and 46 healthy controls (HCs) matched for age, gender, and education level. A partial correlation analysis was used to investigate the relationship between altered VMHC and clinical characteristics in patients with OCD. Results: Patients with OCD showed lower VMHC than HCs in fusiform gyrus/inferior occipital gyrus, lingual gyrus, postcentral gyrus/precentral gyrus, putamen, and orbital frontal gyrus. A significant positive correlation was observed between altered VMHC in the angular gyrus/middle occipital gyrus and illness duration in patients. Conclusions: Interhemispheric functional imbalance may be an essential aspect of the pathophysiological mechanism of OCD, which is reflected not only in the cortico-striato-thalamo-cortical (CSTC) loop but also elsewhere in the brain.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda