Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Clin Transl Radiat Oncol ; 35: 70-75, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35633653

RESUMEN

Background: For small primary liver tumors, favorable outcomes have been reported with both of proton beam therapy (PBT) and X-ray therapy (XRT). However, no clear criteria have been proposed in the cases for which and when of PBT or XRT has to be used. The aim of this study is to investigate cases that would benefit from PBT based on the predicted rate of hepatic toxicity. Materials and methods: Eligible patients were those who underwent PBT for primary liver tumors with a maximum diameter of ≤ 5 cm and Child-Pugh grade A (n = 40). To compare the PBT-plan, the treatment plan using volumetric modulated arc therapy was generated as the XRT-plan. The rate of predicted hepatic toxicity was estimated using five normal tissue complication probability (NTCP) models with three different endpoints. The differences in NTCP values (ΔNTCP) were calculated to determine the relative advantage of PBT. Factors predicting benefits of PBT were analyzed by logistic regression analysis. Results: From the dose-volume histogram comparisons, an advantage of PBT was found in sparing of the normal liver receiving low doses. The factors predicting the benefit of PBT differed depending on the selected NTCP model. From the five models, the total tumor diameter (sum of the target tumors), location (hepatic hilum vs other), and number of tumors (1 vs 2) were significant factors. Conclusions: From the radiation-related hepatic toxicity, factors were identified to predict benefits of PBT in primary liver tumors with Child-Pugh grade A, with the maximum tumor diameter of ≤ 5 cm.

2.
Phys Imaging Radiat Oncol ; 22: 51-56, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35514527

RESUMEN

Background and purpose: Specific proton-beam configurations are needed to spare organs at risk (OARs), including lungs, heart, and spinal cord, when treating esophageal squamous cell carcinoma (ESCC) in the thoracic region. This study aimed to propose new intensity-modulated proton therapy (IMPT) beam configurations and to demonstrate the benefit of IMPT compared with intensity-modulated x-ray therapy (IMXT) for treating ESCC. Material and methods: IMPT plans with three different beam angle configurations were generated on CT datasets of 25 ESCC patients that were treated with IMXT. The IMPT beam designs were two commonly-used beam configurations (anteroposterior and posterior oblique) and a recently proposed beam configuration (anterosuperior with posteroinferior). The target doses were 50-54 Gy(RBE) and 60-64 Gy(RBE) to the low-risk and high-risk target volumes, respectively. Robust optimization was applied for the IMPT plans. The differences in the dose-volume parameters between the IMXT and IMPT plans were compared. Results: With target coverage comparable to standard IMXT, IMPT had significantly lower mean doses to the OARs. IMPT with an anteroposterior opposing beam generated the lowest lung dose (mean = 7.1 Gy(RBE), V20 = 14.1%) and the anterosuperior with posteroinferior beam resulted in the lowest heart dose (mean = 12.8 Gy(RBE), V30 = 15.7%) and liver dose (mean = 3.9 Gy(RBE), V30 = 5.9%). For the subgroup of patients with an inferior tumor location (PTVs overlapping a part of the contoured heart), the novel beam demonstrated the optimal OARs sparing. Conclusion: Compared with IMXT, the IMPT plans significantly reduced the radiation dose to the surrounding organs when treating ESCC. IMPT beam configuration selection depends on the tumor location relative to the heart.

3.
Clin Transl Radiat Oncol ; 26: 24-29, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33294643

RESUMEN

BACKGROUND AND PURPOSE: Patients who receive carbon-ion radiotherapy (C-ion RT) for primary pancreatic cancer may experience locoregional recurrence; however, the treatment options for such patients are limited. We aimed to investigate the feasibility and efficacy of carbon-ion re-irradiation for patients with pancreatic cancer who experienced recurrence after initial C-ion RT. MATERIALS AND METHODS: Twenty-one patients with recurrent pancreatic cancer who underwent repeat C-ion RT between December 2010 and November 2016 at our institute were retrospectively evaluated. The sites of post-initial C-ion RT failure were in-field central in 16 patients (76.2%) and marginal in 5 (23.8%). The median doses of initial and repeat C-ion RT were both 52.8 Gy (relative biological effectiveness [RBE]). Thirteen patients (61.9%) received concurrent chemotherapy with re-irradiation, while 11 (52.4%) received adjuvant chemotherapy. RESULTS: The median follow-up period after re-irradiation was 11 months. The 1-year local control, progression-free survival, and overall survival rates were 53.5%, 24.5%, and 48.7%, respectively. Toxicity data was obtained from the patients' charts. Only 1 patient (4.8%) developed grade 3 acute toxicities and none developed grade ≥3 late toxicities. Univariate analysis indicated that patients who received adjuvant chemotherapy had significantly improved local control rates compared with those who did not; the 1-year local control rates were 80.0% and 0.0%, respectively (P = 0.0469). CONCLUSION: Repeating C-ion RT may be a reasonable option with tolerable toxicity for patients with recurrent pancreatic cancers. Adjuvant chemotherapy appears to improve the local control rate. This is the first study to examine re-irradiation using C-ion for recurrent pancreatic cancer after initial C-ion RT.

4.
Clin Transl Radiat Oncol ; 17: 51-56, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31211251

RESUMEN

BACKGROUND: The role of radiotherapy in malignant melanoma is still in discussion due to its relative resistance to radiation. In various literature, heavy ions show a higher relative biological effectiveness than photons. The aim of this work is to evaluate the radiotherapeutical effect from photons as well as heavy ions on malignant melanoma cells and to indicate the possible radiosensitivity based on its proliferation-inhibitory effect. METHODS: Two different cell lines of malignant melanoma, WM115 (primary tumor) and WM266-4 (metastatic site, skin) were used in this in vitro study. The cells were treated with photons or heavy ions (C12 and O16 ions). Cell-proliferation assay using hemocytometer was used for the quantitative and qualitative evaluation of cell growth. Furthermore, flow cytometry was also used to analyze the cell cycle distribution. RESULTS: Heavy ions compared to photons and between the two heavy ion modalities, O16 ions showed an improved suppression of cell growth in both cell lines. Furthermore, a G2/M arrest was detected in both cell lines after all radiotherapy modalities - with the arrest increasing with the dose applied. CONCLUSION: Heavy ions showed a greater inhibitory effect on cell proliferation compared to photons and an increased G2/M arrest. Therefore, C12 and O16 heavy ions might overcome the relative radioresistance of malignant melanoma to photons. Further research is warranted.

5.
Clin Transl Radiat Oncol ; 19: 80-86, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31650043

RESUMEN

BACKGROUND AND PURPOSE: Patient-level benefits of proton beam therapy (PBT) relative to photon therapy for prostate cancer (PC) continue to be the focus of debate. Although trials comparing the two modalities are underway, most are being conducted using "conventional" PBT (passive scattering/uniform scanning [PS/US]) rather than pencil beam scanning (PBS). The dosimetric benefits of PBS are well-known, but comparative data are limited. This analysis compares PBS toxicity rates with those of PS/US in a prospective multicenter registry. METHODS: We evaluated acute/late gastrointestinal (GI) and genitourinary (GU) toxicity rates for men with low-to-intermediate risk PC enrolled in PCG 001-09. Acute toxicities with the two techniques were compared using χ2 tests, and the cumulative incidence methods for late toxicity. Multivariable analyses (MVAs) for acute toxicity were performed using logistic regression, and cox proportional hazards models for late toxicity. RESULTS: Patients were treated using PS/US (n = 1105) or PBS (n = 238). Acute grade ≥2 GI toxicity in PBS did not significantly differ from that with PS/US (2.9% and 2.1%, respectively; P = 0.47). Acute grade ≥2 GU toxicity was significantly higher with PBS (21.9% and 15.1%; P < 0.01). In MVA, PBS was significantly associated with increased acute grade ≥2 GU toxicity (RR = 1.57, p < 0.001). Late grade ≥2 GI and GU toxicities did not differ significantly between groups. CONCLUSIONS: This is the first multi-institutional comparative effectiveness evaluation of PBT techniques in PC. Differences in acute GU toxicity warrant further evaluation, and highlight the urgent need for prospective data using PBT.

6.
Clin Transl Radiat Oncol ; 14: 25-32, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30511024

RESUMEN

BACKGROUND AND PURPOSES: Carbon ion radiotherapy (CIRT) with raster scanning technology is a promising treatment for lung cancer and thoracic malignancies. Determining normal tissue tolerance of organs at risk is of utmost importance for the success of CIRT. Here we report the relative biological effectiveness (RBE) of CIRT as a function of dose and fractionation for development of pulmonary fibrosis using well established fibrosis index (FI) model. MATERIALS AND METHODS: Dose series of fractionated clinical quality CIRT versus conventional photon irradiation to the whole thorax were compared in C57BL6 mice. Quantitative assessment of pulmonary fibrosis was performed by applying the FI to computed tomography (CT) data acquired 24-weeks post irradiation. RBE was calculated as the ratio of photon to CIRT dose required for the same level of FI. Further RBE predictions were performed using the derived equation from high-linear energy transfer biologically effective dose (high-LET BED) model. RESULTS: The averaged lung fibrosis RBE of 5-fraction CIRT schedule was determined as 2.75 ±â€¯0.55. The RBE estimate at the half maximum effective dose (RBEED50) was estimated at 2.82 for clinically relevant fractional sizes of 1-6 Gy. At the same dose range, an RBE value of 2.81 ±â€¯0.40 was predicted by the high-LET BED model. The converted biologically effective dose (BED) of CIRT for induction of half maximum FI (BEDED50) was identified to be 58.12 Gy3.95. In accordance, an estimated RBE of 2.88 was obtained at the BEDED50 level. The LQ model radiosensitivity parameters for 5-fraction was obtained as αH = 0.3030 ±â€¯0.0037 Gy-1 and ßH = 0.0056 ±â€¯0.0007 Gy-2. CONCLUSION: This is the first report of RBE estimation for CIRT with the endpoint of pulmonary fibrosis in-vivo. We proposed in present study a novel way to mathematically modeling RBE by integrating RBEmax and α/ßL based on conventional high-LET BED conception. This model well predicted RBE in the clinically relevant dose range but is sensitive to the uncertainties of α/ß estimates from the reference photon irradiation (α/ßL). These findings will assist to eliminate current uncertainties in prediction of CIRT induced normal tissue complications and builds a solid foundation for development of more accurate in-vivo data driven RBE estimates.

7.
Clin Transl Radiat Oncol ; 7: 79-82, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29594233

RESUMEN

This case report shows the high PSMA-uptake in a patient with an adenoid cystic carcinoma of the maxillary sinus. Due to the intense ligand-uptake additional information for target volume delineation was obtained and the Treatment plan for bimodal radiotherapy with carbon ions was adapted accordingly.

8.
Artículo en Inglés | MEDLINE | ID: mdl-26520371

RESUMEN

We determined the relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) of micronuclei (MN) formation in clamped (hypoxic) and non-clamped (normoxic) solid tumors in mice legs following exposure to X-rays and heavy ions. Single-cell suspensions (aerobic) of non-irradiated tumors were prepared in parallel and used directly to determine the radiation response for aerobic cells. Squamous cell carcinoma (SCCVII) cells were transplanted into the right hind legs of syngeneic C3H/He male mice. Irradiation doses with either X-rays or heavy ions at a dose-averaged LET (linear energy transfer) of 14-192keV/µm were delivered to 5-mm diameter tumors and aerobic single-cells in sample-tubes. After irradiation, the tumors were excised and trypsinized to observe MN in single-cells. The single-cell suspensions were used for MN formation assays. The RBE values increased with increasing LET. The maximum RBE values for the three different oxygen conditions; hypoxic tumor, normoxic tumor, and aerobic cells, were 8.18, 5.30, and 3.76 at an LET of 192keV/µm, respectively. After X-irradiation, the OERh/n values (hypoxic tumor/normoxic tumor) were lower than the OERh/a (hypoxic tumor/aerobic cells), and were 1.73 and 2.58, respectively. We found that the OER for the in vivo studies were smaller in comparison to that for the in vitro studies. Both of the OER values at 192keV/µm were small in comparison to those of the X-ray irradiated samples. The OERh/n and OERh/a values at 192keV/µm were 1.12 and 1.19, respectively. Our results suggest that high LET radiation has a large biological effect even if a solid tumor includes substantial numbers of hypoxic cells. To conclude, we found that the RBE values under each oxygen state for non-MN fraction increased with increasing LET and that the OER values for both tumors in vivo and cells in vitro decreased with increasing LET.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Consumo de Oxígeno/efectos de la radiación , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Iones Pesados , Técnicas In Vitro , Transferencia Lineal de Energía , Masculino , Ratones , Ratones Endogámicos C3H , Pruebas de Micronúcleos , Trasplante de Neoplasias , Efectividad Biológica Relativa , Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda