Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 281-284, 2024 May 30.
Artículo en Zh | MEDLINE | ID: mdl-38863094

RESUMEN

In magnetic resonance examination, the interaction between implants and the radio frequency (RF) fields induces heating in human tissue and may cause tissue damage. To assess the RF-induced heating of implants, three steps should be executed, including electromagnetic model construction, electromagnetic model validation, and virtual human body simulations. The crucial step of assessing RF-induced heating involves the construction of a test environment for electromagnetic model validation. In this study, a hardware environment, comprised of a RF generation system, electromagnetic field measurement system, and a robotic arm positioning system, was established. Furthermore, an automated control software environment was developed using a Python-based software development platform to enable the creation of a high-precision automated integrated test environment. The results indicate that the electric field generated in this test environment aligns well with the simulated electric field, making it suitable for assessing the RF-induced heating effects of implants.


Asunto(s)
Campos Electromagnéticos , Calor , Prótesis e Implantes , Ondas de Radio , Programas Informáticos , Humanos , Imagen por Resonancia Magnética
2.
Magn Reson Med ; 90(4): 1728-1737, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37350426

RESUMEN

PURPOSE: To improve intraoral transverse loop coil design for high-resolution dental MRI. METHODS: The transverse intraoral loop coil (tLoop) was modified (mtLoop) by overlapping the feed port conductors, bending the posterior section, introducing a parallel plate capacitor, optimizing the insulation thickness, and using it in receive-only mode. In addition, an MR-silent insulation was introduced. The performances of the mtLoop and tLoop coils were compared in terms of sensitivity, image SNR, and eddy currents using electromagnetic simulations and MRI measurements at 3T. RESULTS: The receive-only mode of the mtLoop increases the sensitivity at the apices of the roots, and the overlapped feed port design eliminated signal voids along the incisors. The bent posterior section with the parallel plate capacitor reduced the unwanted signal of the tongue by a factor of 2.3 in the selected region off interest and lowered the eddy currents by 10%. The proposed new coil provided higher SNR by elevenfold and 2.5-fold at the incisors and apices of the molar roots within the selected regions of interest, respectively, in the experiments, as well as improved comfort. Optimal insulation thickness was determined as 1 mm. With the mtLoop, a (250 µm)3 isotropic resolution of the dental arch could be realized using a UTE sequence within 2 min total acquisition time. A T2 -SPACE protocol with (350 µm)2 in-plane resolution was also demonstrated. CONCLUSION: The proposed new coil offers higher SNR at the incisors and apices of the molar roots, less unwanted signals from tongue, lower eddy currents, and improved patient comfort.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Humanos , Diseño de Equipo , Fantasmas de Imagen , Imagen por Resonancia Magnética/métodos
3.
MAGMA ; 36(3): 439-449, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37195365

RESUMEN

OBJECTIVE: Low-field MRI systems are expected to cause less RF heating in conventional interventional devices due to lower Larmor frequency. We systematically evaluate RF-induced heating of commonly used intravascular devices at the Larmor frequency of a 0.55 T system (23.66 MHz) with a focus on the effect of patient size, target organ, and device position on maximum temperature rise. MATERIALS AND METHODS: To assess RF-induced heating, high-resolution measurements of the electric field, temperature, and transfer function were combined. Realistic device trajectories were derived from vascular models to evaluate the variation of the temperature increase as a function of the device trajectory. At a low-field RF test bench, the effects of patient size and positioning, target organ (liver and heart) and body coil type were measured for six commonly used interventional devices (two guidewires, two catheters, an applicator and a biopsy needle). RESULTS: Electric field mapping shows that the hotspots are not necessarily localized at the device tip. Of all procedures, the liver catheterizations showed the lowest heating, and a modification of the transmit body coil could further reduce the temperature increase. For common commercial needles no significant heating was measured at the needle tip. Comparable local SAR values were found in the temperature measurements and the TF-based calculations. CONCLUSION: At low fields, interventions with shorter insertion lengths such as hepatic catheterizations result in less RF-induced heating than coronary interventions. The maximum temperature increase depends on body coil design.


Asunto(s)
Calefacción , Ondas de Radio , Humanos , Imagen por Resonancia Magnética/métodos , Temperatura , Fantasmas de Imagen , Calor
4.
Neuroimage ; 264: 119691, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375783

RESUMEN

Many neurological disorders are analyzed and treated with implantable electrodes. Many patients with such electrodes have to undergo MRI examinations - often unrelated to their implant - at the risk of radio-frequency induced heating. The number of electrode contact sites of these implants keeps increasing due to improvements in manufacturing and computational algorithms. Electrode grids with multiple receive channels couple to the RF fields present in MRI, but, due to their proximity, a combination of leads has a coupling response which is not a superposition of the individual leads' response. To investigate the problem of RF-induced heating of coupled multi-lead implants, temperature mapping was performed on a set of intra-cranial electroencephalogram (icEEG) electrode grid prototypes with increasing number of contact sites (1-16). Additionally, electric field measurements were used to investigate the radio-frequency heating characteristics of the implants in different media combinations, simulating the device being partially immersed inside the patient. MR measurements show RF-induced heating up to 19.6 K for the single electrode, reducing monotonically with larger number of contact sites to a minimum of 0.9 K for the largest grid. The SAR calculated from temperature measurements agrees well with electric field mapping: The same trend is visible for different insertion lengths, however, the energy dissipated by the whole implant varies with the grid size and insertion length. Thus, in the tested circumstances, a larger electrode number either reduced or had a similar risk of RF induced heating, indicating, that the size of electrode grids is a design parameter, which can be used to change an implants RF response and in turn to reduce the risk of RF induced heating and improve the safety of patient with neuro-implants undergoing MRI examinations.


Asunto(s)
Calor , Ondas de Radio , Humanos , Ondas de Radio/efectos adversos , Electroencefalografía , Electrodos Implantados/efectos adversos , Imagen por Resonancia Magnética/efectos adversos , Fantasmas de Imagen
5.
Magn Reson Med ; 87(1): 349-364, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34374457

RESUMEN

PURPOSE: The paper presents a novel method to reduce the RF-induced heating of active implantable medical devices during MRI. METHODS: With the addition of an energy decoying and dissipating structure, RF energy can be redirected toward the dissipating rings through the decoying conductor. Three lead groups (45 cm-50 cm) and 4 (50 cm-100 cm) were studied in 1.5 Tesla MR systems by simulation and measurement, respectively. In vivo modeling was performed using human models to estimate the RF-induced heating of an active implantable medical device for spinal cord treatment. RESULT: In the simulation study, it was shown that the peak 1g-averaged specific absorption rate near the lead-tips can be reduced by 70% to 80% compared to those from the control leads. In the experimental measurements during a 2-min exposure test in a 1.5 Telsa MR system, the temperature rises dropped from the original 18.3℃, 25.8℃, 8.1℃, and 16.1℃ (control leads 1-4) to 5.4℃, 6.9℃, 1.6℃, and 3.3℃ (leads 1-4 with the energy decoying and dissipation structure). The in vivo calculation results show that the maximum induced temperature rise among all cases can be substantially reduced (up to 80%) when the energy decoying and dissipating structures were used. CONCLUSION: Our studies confirm the effectiveness of the novel technique for a variety of scanning scenarios. The results also indicate that the decoying conductor length, number of rings, and ring area must be carefully chosen and validated.


Asunto(s)
Calefacción , Ondas de Radio , Simulación por Computador , Calor , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Prótesis e Implantes
6.
Magn Reson Med ; 87(1): 337-348, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34355817

RESUMEN

PURPOSE: To assess RF-induced heating hazards in 1.5T MR systems caused by body-loop postures. METHODS: Twelve advanced high-resolution anatomically correct human body models with different body-loop postures are created based on poseable human adult male models. Numerical simulations are performed to assess the radiofrequency (RF)-induced heating of these 12 models at 11 landmarks. A customized phantom is developed to validate the numerical simulations and quantitatively analyze factors affecting the RF-induced heating, eg, the contact area, the loop size, and the loading position. The RF-induced heating inside three differently posed phantoms is measured. RESULTS: The RF-induced heating from the body-loop postures can be up to 11 times higher than that from the original posture. The RF-induced heating increases with increasing body-loop size and decreasing contact area. The magnetic flux increases when the body-loop center and the RF coil isocenter are close to each other, leading to increased RF-induced heating. An air gap created in the body loop or generating a polarized magnetic field parallel to the body loop can reduce the heating by a factor of three at least. Experimental measurements are provided, validating the correctness of the numerical results. CONCLUSION: Safe patient posture during MR examinations is recommended with the use of insulation materials to prevent loop formation and consequently avoiding high RF-induced heating. If body loops cannot be avoided, the body loop should be placed outside the RF transmitting coil. In addition, linear polarization with magnetic fields parallel to the body loop can be used to circumvent high RF-induced heating.


Asunto(s)
Calefacción , Ondas de Radio , Calor , Humanos , Campos Magnéticos , Imagen por Resonancia Magnética , Masculino , Fantasmas de Imagen
7.
Magn Reson Med ; 87(1): 394-408, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34378816

RESUMEN

PURPOSE: During MR scans, abandoned leads from active implantable medical devices (AIMDs) can experience excessive heating at the lead tip, depending on the type of termination applied to the proximal contacts (proximal end treatment). The influence of different proximal end treatments (ie, [1] freely exposed in the tissue, [2] terminated with metal in contact with the tissue, or [3] capped with plastic, and thereby fully insulated, on the RF-induced lead-tip heating) are studied. A technique to ensure that MR Conditional AIMD leads remain MR Conditional even when abandoned is recommended. METHODS: Abandoned leads from three MR Conditional AIMDs ([1] a sacral neuromodulation system, [2] a cardiac rhythm management pacemaker system, and [3] a deep brain stimulator system) were investigated in this study. The computational lead models (ie, the transfer functions) for different proximal end treatments were measured and used to assess the in vivo lead-tip heating for four virtual human models (FATS, Duke, Ella, and Billie) and compared with the lead-tip heating of the complete MR Conditional AIMD system. RESULT: The average and maximum lead-tip heating for abandoned leads proximally capped with metal is always lower than that from the complete AIMD system. Abandoned leads proximally insulated could lead to an average in vivo temperature rise up to 3.5 times higher than that from the complete AIMD system. CONCLUSION: For the three investigated AIMDs under 1.5T MR scanning, our results indicate that RF-induced lead-tip heating of abandoned leads strongly depends on the proximal lead termination. A metallic cap applied to the proximal termination of the tested leads could significantly reduce the RF-induced lead-tip heating.


Asunto(s)
Imagen por Resonancia Magnética , Prótesis e Implantes , Calefacción , Humanos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Prótesis e Implantes/efectos adversos , Ondas de Radio
8.
Magn Reson Med ; 85(3): 1669-1680, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32970911

RESUMEN

PURPOSE: This paper studies the RF-induced heating for modular external fixation devices applied on the leg regions of the human bodies. Through numerical investigations of RF-induced heating related to different patient orientations, landmark positions, and device positions under 1.5T and 3T MRI systems, simple and practical methods to reduce RF-induced heating are recommended. METHODS: Numerical simulations using a full-wave electromagnetic solver based on the finite-difference time-domain method were performed to characterize the effects of patient orientations (head-first/feet-first), landmark positions (the scanning area of the patient), and device positions (device on left or right leg) on the RF-induced heating of the external fixation devices. The G32 coil design and three anatomical human models (Duke model, Ella model, and Fats model) were adopted to model the MRI RF coil and the patients. RESULTS: The relative positions of the patient, device, and coil can significantly affect the RF-induced heating. With other conditions remaining the same, changing the device position or patient orientation can lead to a peak 1-g averaged spatial absorption ratio variation of a factor around four. By changing the landmark position and the patient orientation, the RF-induced heating can be reduced from 1323.6 W/kg to 217.5 W/kg for the specific scanning situations studied. CONCLUSION: Patient orientations, landmark positions, and device positions influence the RF-induced heating of modular external fixation devices at 1.5 T and 3 T. These features can be used to reduce the RF-induced heating during MRI simply and practically.


Asunto(s)
Fijadores Externos , Calefacción , Fijación de Fractura , Calor , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Ondas de Radio
9.
Magn Reson Med ; 86(6): 3360-3372, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34286866

RESUMEN

PURPOSE: We present in vivo testing of a parallel transmit system intended for interventional MR-guided cardiac procedures. METHODS: The parallel transmit system was connected in-line with a conventional 1.5 Tesla MRI system to transmit and receive on an 8-coil array. The system used a current sensor for real-time feedback to achieve real-time current control by determining coupling and null modes. Experiments were conducted on 4 Charmoise sheep weighing 33.9-45.0 kg with nitinol guidewires placed under X-ray fluoroscopy in the atrium or ventricle of the heart via the femoral vein. Heating tests were done in vivo and post-mortem with a high RF power imaging sequence using the coupling mode. Anatomical imaging was done using a combination of null modes optimized to produce a useable B1 field in the heart. RESULTS: Anatomical imaging produced cine images of the heart comparable in quality to imaging with the quad mode (all channels with the same amplitude and phase). Maximum observed temperature increases occurred when insulation was stripped from the wire tip. These were 4.1℃ and 0.4℃ for the coupling mode and null modes, respectively for the in vivo case; increasing to 6.0℃ and 1.3℃, respectively for the ex vivo case, because cooling from blood flow is removed. Heating < 0.1℃ was observed when insulation was not stripped from guidewire tips. In all tests, the parallel transmit system managed to reduce the temperature at the guidewire tip. CONCLUSION: We have demonstrated the first in vivo usage of an auxiliary parallel transmit system employing active feedback-based current control for interventional MRI with a conventional MRI scanner.


Asunto(s)
Imagen por Resonancia Magnética Intervencional , Animales , Diseño de Equipo , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Fantasmas de Imagen , Ondas de Radio , Ovinos
10.
Magn Reson Med ; 84(5): 2754-2764, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32459032

RESUMEN

PURPOSE: This paper presents a method to search for the worst-case configuration leading to the highest RF exposure for a multiconfiguration implantable fixation system under MRI. METHODS: A two-step method combining an artificial neural network and a genetic algorithm is developed to achieve this purpose. In the first step, the level of RF exposure in terms of peak 1-g and/or 10-g averaged specific absorption rate (SAR1g/10g ), related to the multiconfiguration system, is predicted using an artificial neural network. A genetic algorithm is then used to search for the worst-case configuration of this multidimensional nonlinear problem within both the enumerated discrete sample space and generalized continuous sample space. As an example, a generic plate system with a total of 576 configurations is used for both 1.5T and 3T MRI systems. RESULTS: The presented method can effectively identify the worst-case configuration and accurately predict the SAR1g/10g with no more than 20% of the samples in the studied discrete sample space, and can even predict the worst case in the generalized continuous sample space. The worst-case prediction error in the generalized continuous sample space is less than 1.6% for SAR1g and less than 1.3% for SAR10g compared with the simulation results. CONCLUSION: The combination of an artificial neural network with genetic algorithm is a robust technique to determine the worst-case RF exposure level for a multiconfiguration system, and only needs a small amount of training data from the entire system.


Asunto(s)
Imagen por Resonancia Magnética , Redes Neurales de la Computación , Algoritmos , Simulación por Computador , Técnicas Histológicas , Prótesis e Implantes
11.
Magn Reson Med ; 83(3): 1055-1065, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31468593

RESUMEN

PURPOSE: The paper investigates factors that affect the RF-induced heating for commonly used wire-based sternal closure under 1.5 T and 3 T MRI systems and clarifies the heating mechanisms. METHODS: Numerical simulations based on the finite-difference time-domain method and experimental measurements in ASTM (American Society for Testing and Materials) phantom were used in the study. Various configurations of the wire-based sternal closure in the phantom were studied based on parameter sweeps to understand key factors related to the RF-induced heating. In vivo simulations were further performed to explore the RF-induced heating in computational human phantoms for clinically relevant scenarios. RESULTS: The wire-based sternal closure can lead to peak 1-g averaged spatial absorption ratio of 106.3 W/kg and 75.2 W/kg in phantom and peak 1-g averaged specific absorption rate of 32.1 W/kg and 62.1 W/kg in computational human models near the device at 1.5 T and 3 T, respectively. In phantom, the simulated maximum temperature rises for 15-minute RF exposure are 9.4°C at 1.5 T and 5.8°C at 3 T. Generally, the RF-induced heating will be higher when the electrical length of the device is close to the resonant length or when multiple components are spaced closely along the longitudinal direction. CONCLUSION: The RF-induced heating related to wire-based sternal closure can be significant due to the antenna effect and capacitive mutual coupling effect related to the specific geometries of devices.


Asunto(s)
Imagen por Resonancia Magnética , Esternón/patología , Imagen de Cuerpo Entero , Adulto , Algoritmos , Niño , Simulación por Computador , Femenino , Calor , Humanos , Masculino , Metales , Modelos Anatómicos , Modelos Teóricos , Permeabilidad , Fantasmas de Imagen , Prótesis e Implantes , Ondas de Radio
12.
Magn Reson Med ; 80(5): 2246-2255, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29607551

RESUMEN

PURPOSE: To study the role of temperature in biological systems, diagnostic contrasts and thermal therapies, RF pulses for MR spin excitation can be deliberately used to apply a thermal stimulus. This application requires dedicated transmit/receive (Tx/Rx) switches that support high peak powers for MRI and high average powers for RF heating. To meet this goal, we propose a high-performance Tx/Rx switch based on positive-intrinsic-negative diodes and quarter-wavelength (λ/4) stubs. METHODS: The λ/4 stubs in the proposed Tx/Rx switch design route the transmitted RF signal directly to the RF coil/antenna without passing through any electronic components (e.g., positive-intrinsic-negative diodes). Bench measurements, MRI, MR thermometry, and RF heating experiments were performed at f = 297 MHz (B0 = 7 T) to examine the characteristics and applicability of the switch. RESULTS: The proposed design provided an isolation of -35.7dB/-41.5dB during transmission/reception. The insertion loss was -0.41dB/-0.27dB during transmission/reception. The switch supports high peak (3.9 kW) and high average (120 W) RF powers for MRI and RF heating at f = 297 MHz. High-resolution MRI of the wrist yielded image quality competitive with that obtained with a conventional Tx/Rx switch. Radiofrequency heating in phantom monitored by MR thermometry demonstrated the switch applicability for thermal modulation. Upon these findings, thermally activated release of a model drug attached to thermoresponsive polymers was demonstrated. CONCLUSION: The high-power Tx/Rx switch enables thermal MR applications at 7 T, contributing to the study of the role of temperature in biological systems and diseases. All design files of the switch will be made available open source at www.opensourceimaging.org.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Termometría/instrumentación , Diseño de Equipo , Calor , Humanos , Fantasmas de Imagen , Ondas de Radio , Relación Señal-Ruido , Muñeca/diagnóstico por imagen
13.
Electromagn Biol Med ; 36(4): 379-386, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29087742

RESUMEN

This paper presents a numerical investigation of radio frequency (RF)-induced heating for various esophageal stent designs under magnetic resonance imaging (MRI). The length, patterns and insulation layer as well as the radius of the wire are comprehensively evaluated. It is shown that different stent designs can alter the induced current distributions on the stent and consequently its corresponding heating. Detailed discussions on these factors on RF heating are presented.


Asunto(s)
Campos Electromagnéticos , Esófago/cirugía , Imagen por Resonancia Magnética/métodos , Diseño de Prótesis , Ondas de Radio , Stents , Simulación por Computador , Diseño de Equipo , Calor , Humanos , Modelos Teóricos , Fantasmas de Imagen
14.
Med Phys ; 51(2): 1074-1082, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38116822

RESUMEN

BACKGROUND: The imaging of patients with implanted electrically-conductive devices via magnetic resonance imaging at ultra-high fields is hampered by uncertainties relating to the potential for inducing tissue heating adjacent to the implant due to coupling of energy from the incident electromagnetic field into the implant. Existing data in the peer-reviewed literature of comparisons across field strengths of tissue heating and its surrogate, the specific absorption rate (SAR), is scarce and contradictory, leading to further doubts pertaining to the safety of imaging patients with such devices. PURPOSE: The radiofrequency-induced SAR adjacent to orthopedic screws of varying length and at frequencies of 64 to 498 MHz was investigated via full-wave electromagnetic simulations, to provide an accurate comparison of SAR across MRI field strengths. METHODS: Dipole antennas were used for RF transmission to achieve a uniform electric field tangential to the screws located 120 mm above the antenna midpoints, embedded in a bone-mimicking material. The input power to the antennas was constrained to achieve the following targets without the screw present: (i) E = 100 V/m, (ii) B1 +  = 2 µT, and (iii) global-average-SAR = 3.2 W/kg. Simulations were performed with a spatial resolution of 0.2 mm in the volume surrounding the screws, resulting in 76-137 MCells, noting the maximum 1 g-averaged SAR value in each case. Simulations were repeated at 128 and 297 MHz for screws embedded in muscle tissue. RESULTS: The peak SAR, occurring at the resonant screw length, substantially increased as the frequency decreased when the input power to the dipole antenna was constrained to achieve constant electric field in background tissue at the screws' locations. A similar pattern was observed when constraining input power to achieve constant B1 + and global-average-SAR. The dielectric properties of the tissue in which the screws were embedded dominated the SAR comparisons between 297 and 128 MHz. CONCLUSIONS: The study design allowed for a direct comparison to be performed of SAR across frequencies and implant lengths without the confounding effect of variable incident electric field. Lower frequencies produced substantially larger SAR values for implants approaching the resonant length for the worst-case uniform incident electric field along the screws' length. The data may inform risk-benefit assessments for imaging patients with orthopedic implants at the new clinical field strength of 7 Tesla.


Asunto(s)
Campos Electromagnéticos , Ondas de Radio , Humanos , Simulación por Computador , Prótesis e Implantes , Imagen por Resonancia Magnética , Fantasmas de Imagen
15.
Phys Med Biol ; 69(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38324901

RESUMEN

A direct comparison of the impact of RF coil design under specific absorption rate andB1+rmslimitations are investigated and quantified using RF coils of different geometries and topologies at 64 MHz and 128 MHz. The RF-inducedin vivoelectric field and power deposition of a 50 cm long pacemaker and 55 cm long deep brain stimulator (DBS) are evaluated within two anatomical models exposed with these RF coils. The associated uncertainty is quantified and analyzed under a fixedB1+rmsincident and normal operating mode. For a fixedB1+rmsincident, thein vivoincident field shows a much higher uncertainty (>5.6 dB) to the RF coil diameter compared to other design parameters (e.g. <2.2 dB for coil length and topology), while the associated uncertainty reduced greatly (e.g. <1.5 dB) under normal operating mode exposure. Similar uncertainties are observed in the power deposition near the pacemaker and DBS electrode. Compared to the normal operating mode, applying a fixedB1+rmsfield to the untested implant will lead to a large variation in the induced incident and power deposition of the implant, as a result, a larger safe margin when different coil designs (e.g. coil diameter) are considered.


Asunto(s)
Calefacción , Calor , Imagen por Resonancia Magnética , Prótesis e Implantes , Ondas de Radio , Fantasmas de Imagen
16.
Biomed Phys Eng Express ; 9(6)2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37844574

RESUMEN

Purpose. The goal of this study was to develop and validate a computational model that can accurately predict the influence of flow on the temperature rise near a peripheral vascular stent during magnetic resonance imaging (MRI).Methods. Computational modeling and simulation of radio frequency (RF) induced heating of a vascular stent during MRI at 3.0 T was developed and validated with flow phantom experiments. The maximum temperature rise of the stent was measured as a function of physiologically relevant flow rates.Results. A significant difference was not identified between the experiment and simulation (P > 0.05). The temperature rise of the stent during MRI was over 10 °C without flow, and was reduced by 5 °C with a flow rate of only 58 ml min-1, corresponding to a reduction of CEM43from 45 min to less than 1 min.Conclusion. The computer model developed in this study was validated with experimental measurements, and accurately predicted the influence of flow on the RF-induced temperature rise of a vascular stent during MRI. Furthermore, the results of this study demonstrate that relatively low flow rates significantly reduce the temperature rise of a stent and the surrounding medium during RF-induced heating under typical scanning power and physiologically relevant conditions.


Asunto(s)
Calefacción , Calor , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Stents
17.
Front Hum Neurosci ; 14: 53, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231526

RESUMEN

PURPOSE: Deep brain stimulation (DBS) has proved to be effective in the treatment of movement disorders. However, the direct contact between the metal contacts of the DBS electrode and the brain can cause RF heating in magnetic resonance imaging (MRI) scanning, due to an increase of local specific absorption rate (SAR). Recently, micro coils (µMS) have demonstrated excitation of neuronal tissue through the electromagnetic induction both in vitro and in vivo experiments. In contrast to electrical stimulation, in µMS, there is no direct contact between the metal and the biological tissue. METHODS: We compared the heating of a µMS coil with a control case of a metal wire. The heating was induced by RF fields in a 1.5 T MRI head birdcage coil (often used for imaging patients with implants) at 64 MHz, and normalized results to 3.2 W/kg whole head average SAR. RESULTS: The µMS coil or wire implants were placed inside an anatomically accurate head saline-gel filled phantom inserted in the RF coil, and we observed approximately 1°C initial temperature rise at the µMS coil, while the wire exhibited a 10°C temperature rise in the proximity of the exposed end. The numerical simulations showed a 32-times increase of local SAR induced at the tips of the metal wire compared to the µMS. CONCLUSION: In this work, we show with measurements and electromagnetic numerical simulations that the RF-induced increase in local SAR and induced heating during MRI scanning can be greatly reduced by using magnetic stimulation with the proposed µMS technology.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda