Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Res Commun ; 573: 125-131, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34403809

RESUMEN

Being sessile, plants must deploy highly exquisite systems to respond to various internal and external signals for modulating growth and development throughout their lifespan. Many studies on Arabidopsis have shown that leucine-rich repeat-containing receptor-like kinases, including BRI1-associated receptor kinase 1 (BAK1) and receptor-like protein kinase 1 (RPK1), are suitable for such pleiotropic demands of plants. Previously, BAK1 and RPK1 were independently proven to be involved in the regulation of premature cell death. BAK1 inhibits spontaneous cell death and promotes defense-induced cell death. Meanwhile, RPK1 mediates reactive oxygen species (ROS) production through complexation with CaM4 and RbohF in an age-dependent manner. In the present study, RPK1-induced cell death and growth retardation were abolished both with respect to the phenotype and ROS production in bak1 mutants. Moreover, BAK1 interacts with RPK1 and mediates its unidirectional phosphorylation in plants. Further, BAK1-mediated RPK1 phosphorylation is indispensable for RPK1-CaM4 interaction, which is vital for ROS production, resulting in cell death. The presence of BAK1 enhanced the expression of cell death- and senescence-related genes, such as ORE1, PR1, SAG12, and SIRK in RPK1-mediated signaling cascades. Overall, in Arabidopsis, in addition to independent cell death regulation by BAK1 and RPK1, multiple-layers control cell death and premature senescence via the coordinated action of BAK1 and RPK1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Muerte Celular , Fosforilación
3.
Int J Mol Sci ; 13(7): 9343-9362, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22942769

RESUMEN

Many of the plant leucine rich repeat receptor-like kinases (LRR-RLKs) have been found to regulate signaling during plant defense processes. In this study, we selected and sequenced an LRR-RLK gene, designated as Oryza rufipogon receptor-like protein kinase 1 (OrufRPK1), located within yield QTL yld1.1 from the wild rice Oryza rufipogon (accession IRGC105491). A 2055 bp coding region and two exons were identified. Southern blotting determined OrufRPK1 to be a single copy gene. Sequence comparison with cultivated rice orthologs (OsI219RPK1, OsI9311RPK1 and OsJNipponRPK1, respectively derived from O. sativa ssp. indica cv. MR219, O. sativa ssp. indica cv. 9311 and O. sativa ssp. japonica cv. Nipponbare) revealed the presence of 12 single nucleotide polymorphisms (SNPs) with five non-synonymous substitutions, and 23 insertion/deletion sites. The biological role of the OrufRPK1 as a defense related LRR-RLK is proposed on the basis of cDNA sequence characterization, domain subfamily classification, structural prediction of extra cellular domains, cluster analysis and comparative gene expression.


Asunto(s)
Exones/fisiología , Genes de Plantas/fisiología , Oryza/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Proteínas Quinasas/genética , Secuencia de Bases , Datos de Secuencia Molecular
4.
Front Genet ; 13: 912251, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860467

RESUMEN

Receptor-like protein kinase 1 (RPK1) genes play crucial roles in plant growth and development processes, root architecture, and abiotic stress regulation. A comprehensive study of the RPK1 gene family has not been reported in bread wheat (Triticum aestivum). Here, we reported the genome-wide identification, characterization, and expression patterns of the RPK1 gene family in wheat. Results confirmed 15 TaRPK1 genes, classified mainly into three sub-clades based on a phylogenetic tree. The TaRPK1 genes were mapped on chromosomes 1-3 in the respective A, B, and D genomes. Gene structure, motif conservation, collinearity prediction, and synteny analysis were carried out systematically. A Gene ontology study revealed that TaRPK1 genes play a vital role during molecular and biological processes. We also identified 18 putative miRNAs targeting TaRPK1 genes, suggesting their roles in growth, development, and stress responses. Cis-Regulatory elements interpreted the presence of light-related elements, hormone responsiveness, and abiotic stress-related motifs in the promoter regions. The SWISS_MODEL predicted the successful models of TaRPK1 proteins with at least 30% identity to the template, a widely accepted threshold for successful modeling. In silico expression analysis in different tissues and stages suggested that TaRPK1 genes exhibited the highest expression in root tissues. Moreover, qRT-PCR further validated the higher expression of TaRPK1 genes in roots of drought-tolerant varieties compared to the drought-susceptible variety. Collectively, the present study renders valuable information on the functioning of TaRPK1 genes in wheat that will be useful in further functional validation of these genes in future studies.

5.
Front Plant Sci ; 9: 803, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013580

RESUMEN

Cellular calcium acts as a second messenger and regulates diverse developmental events and stress responses. Cytosolic calcium has long been considered as an important regulator of senescence, however, the role of Ca2+ in plant senescence has remained elusive. Here we show that the Calmodulin 1 (CaM1) gene, which encodes Ca2+-binding protein calmodulin 1, positively regulates leaf senescence in Arabidopsis. Yellowing of leaves, accumulation of reactive oxygen species (ROS), and expression of the senescence-associated gene 12 (SAG12) were significantly enhanced in CaM1 overexpression plants. In contrast, abscisic acid (ABA)-triggered ROS production and stomatal closure were reduced in amiRNA-CaM1 plants. We found a positive-feedback regulation loop among three signaling components, CaM1, RPK1, and RbohF, which physically associate with each other. RPK1 positively regulates the expression of the CaM1 gene, and the CaM1 protein, in turn, up-regulates RbohF gene expression. Interestingly, the expression of CaM1 was down-regulated in rbohD, rbohF, and rbohD/F mutants. We show that CaM1 positively regulates ROS production, leaf senescence, and ABA response in Arabidopsis.

6.
Plant Sci ; 217-218: 63-70, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24467897

RESUMEN

AtRPK1 (AT1G69270) is a leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene in Arabidopsis thaliana. The rice gene Os07g0602700 (OsRPK1) is the homolog of AtRPK1. AtRPK1 and OsRPK1 were overexpressed and the expression of AtRPK1 was inhibited by RNAi in A. thaliana. The functional results showed that the degrees of salt tolerance of the 35S:RPK1 A. thaliana plants were significantly lower than that of the control plants. The AtRPK1-RNAi A. thaliana plants exhibited higher salt tolerance than the wild-type plants (Col). The subcellular localisation results showed that the RPK1 proteins were mainly distributed on the cell membrane and that the overexpressed AtRPK1 proteins exhibited a significantly clustered distribution. The physiological analyses revealed that the overexpression of the RPK1 genes increased the membrane permeability in the transgenic A. thaliana plants. In response to salt stress, these plants exhibited an increased Na(+) flux into the cell, which caused greater damage to the cell. The real-time quantitative PCR analysis showed that the expression of the P5CS1 gene was inhibited and the SOS signalling pathway was blocked in the 35S:AtRPK1 A. thaliana plants. These effects at least partially contribute to the salt-sensitive phenotype of the 35S:RPK1 plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Oryza/enzimología , Oryza/genética , Proteínas Quinasas/genética , Tolerancia a la Sal , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas Quinasas/biosíntesis , Interferencia de ARN , Plantas Tolerantes a la Sal/enzimología , Plantas Tolerantes a la Sal/genética , Sodio/metabolismo
7.
Biol Open ; 2(11): 1093-102, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244845

RESUMEN

Plant seedlings have either one or two cotyledons. The mechanisms that regulate this organ number are poorly understood. Mutations in the RECEPTOR-LIKE PROTEIN KINASE1 (RPK1) gene of the dicot Arabidopsis have only one cotyledon, with low penetrance due to complex genetic redundancy. An analysis of patterning genes required for cotyledon initiation showed that these have normal expression patterns, defining the cotyledon anlagen, in rpk1. This was also true for key genes, which organize the shoot apical meristem (SAM). By contrast, epidermal cell shape and polarity were compromised in rpk1 embryos, as evidenced by disturbed polarity of the auxin efflux carrier PIN1. PIN1 is required for the establishment of auxin maxima, which induce and maintain organ primordia. The effects in rpk1 mutants manifest in a spatially and timely stochastic fashion probably due to redundancy of RPK1-like functions. Consistently, auxin maxima showed a stochastic distribution in rpk1 embryos, being at times entirely absent and at other times supernumerary. This variability may explain how monocotyledonous seedlings and cotyledon shape variants can developmentally arise in Arabidopsis and possibly in other plants.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda