Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(32): e2402206121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39088390

RESUMEN

Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.


Asunto(s)
Cilios , Neuronas Dopaminérgicas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Neuroprotección , Enfermedad de Parkinson , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Cilios/metabolismo , Animales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Humanos , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuroprotección/genética , Mutación , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Masculino
2.
Proc Natl Acad Sci U S A ; 120(44): e2315171120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37889931

RESUMEN

PPM1H phosphatase reverses Parkinson's disease-associated, Leucine Rich Repeat Kinase 2-mediated Rab GTPase phosphorylation. We show here that PPM1H relies on an N-terminal amphipathic helix for Golgi localization. The amphipathic helix enables PPM1H to bind to liposomes in vitro, and small, highly curved liposomes stimulate PPM1H activity. We artificially anchored PPM1H to the Golgi, mitochondria, or mother centriole. Our data show that regulation of Rab10 GTPase phosphorylation requires PPM1H access to Rab10 at or near the mother centriole. Moreover, poor colocalization of Rab12 explains in part why it is a poor substrate for PPM1H in cells but not in vitro. These data support a model in which localization drives PPM1H substrate selection and centriolar PPM1H is critical for regulation of Rab GTPase-regulated ciliogenesis. Moreover, Golgi localized PPM1H may maintain active Rab GTPases on the Golgi to carry out their nonciliogenesis-related functions in membrane trafficking.


Asunto(s)
Enfermedad de Parkinson , Monoéster Fosfórico Hidrolasas , Humanos , Fosforilación , Monoéster Fosfórico Hidrolasas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Liposomas , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Fosfoproteínas Fosfatasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(22): e2301725120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216550

RESUMEN

Understanding of the evolution of metazoans from their unicellular ancestors is a fundamental question in biology. In contrast to fungi which utilize the Mon1-Ccz1 dimeric complex to activate the small GTPase RAB7A, metazoans rely on the Mon1-Ccz1-RMC1 trimeric complex. Here, we report a near-atomic resolution cryogenic-electron microscopy structure of the Drosophila Mon1-Ccz1-RMC1 complex. RMC1 acts as a scaffolding subunit and binds to both Mon1 and Ccz1 on the surface opposite to the RAB7A-binding site, with many of the RMC1-contacting residues from Mon1 and Ccz1 unique to metazoans, explaining the binding specificity. Significantly, the assembly of RMC1 with Mon1-Ccz1 is required for cellular RAB7A activation, autophagic functions and organismal development in zebrafish. Our studies offer a molecular explanation for the different degree of subunit conservation across species, and provide an excellent example of how metazoan-specific proteins take over existing functions in unicellular organisms.


Asunto(s)
Proteínas de Drosophila , Proteínas de Unión al GTP rab , Animales , Microscopía por Crioelectrón , Proteínas de Unión al GTP rab/metabolismo , Pez Cebra/metabolismo , Drosophila , Proteínas de Drosophila/ultraestructura
4.
Traffic ; 24(9): 397-412, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37340959

RESUMEN

Endosomal cargo recycling lies at the heart of subcellular trafficking processes under the management of several Ras-related GTP-binding proteins (Rabs) which are coordinated by their upstream regulators and require their downstream effectors to display their functions. In this regard, several Rabs have been well-reviewed except Rab22a. Rab22a is a crucial regulator of vesicle trafficking, early endosome and recycling endosome formation. Notably, recent studies demonstrated the immunological roles of Rab22a, which are closely associated with cancers, infection and autoimmune disorders. This review provides an overview of the regulators and effectors of Rab22a. Also, we highlight the current knowledge of the role of Rab22a in endosomal cargo recycling, including the biogenesis of recycling tubules with the help of a complex with Rab22a at its core, and how different internalized cargo chooses different recycling routes thanks to the cooperation of Rab22a, its effectors and its regulators. Of note, contradictions and speculation related to endosomal cargo recycling that Rab22a brings impacts on are also discussed. Finally, this review endeavors to briefly introduce the various events impacted by Rab22a, particularly focusing on the commandeered Rab22a-associated endosomal maturation and endosomal cargo recycling, in addition to the extensively investigated oncogenic role of Rab22a.


Asunto(s)
Endosomas , Proteínas de Unión al GTP rab , Transporte de Proteínas , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Comunicación Celular
5.
Plant J ; 119(1): 332-347, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700955

RESUMEN

The target of rapamycin (TOR) kinase serves as a central regulator that integrates nutrient and energy signals to orchestrate cellular and organismal physiology in both animals and plants. Despite significant advancements having been made in understanding the molecular and cellular functions of plant TOR kinases, the upstream regulators that modulate TOR activity are not yet fully elucidated. In animals, the translationally controlled tumor protein (TCTP) is recognized as a key player in TOR signaling. This study reveals that two TCTP isoforms from Cucumis sativus, when introduced into Arabidopsis, are instrumental in balancing growth and defense mechanisms against the fungal pathogen Golovinomyces cichoracearum. We hypothesize that plant TCTPs act as upstream regulators of TOR in response to powdery mildew caused by Podosphaera xanthii in Cucumis. Our research further uncovers a stable interaction between CsTCTP and a small GTPase, CsRab11A. Transient transformation assays indicate that CsRab11A is involved in the defense against P. xanthii and promotes the activation of TOR signaling through CsTCTP. Moreover, our findings demonstrate that the critical role of TOR in plant disease resistance is contingent upon its regulated activity; pretreatment with a TOR inhibitor (AZD-8055) enhances cucumber plant resistance to P. xanthii, while pretreatment with a TOR activator (MHY-1485) increases susceptibility. These results suggest a sophisticated adaptive response mechanism in which upstream regulators, CsTCTP and CsRab11A, coordinate to modulate TOR function in response to P. xanthii, highlighting a novel aspect of plant-pathogen interactions.


Asunto(s)
Ascomicetos , Cucumis sativus , Enfermedades de las Plantas , Proteínas de Plantas , Cucumis sativus/microbiología , Cucumis sativus/genética , Cucumis sativus/metabolismo , Ascomicetos/patogenicidad , Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteína Tumoral Controlada Traslacionalmente 1 , Transducción de Señal , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética
6.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36876970

RESUMEN

Cargo delivery from one compartment to the next relies on the fusion of vesicles with different cellular organelles in a process that requires the concerted action of tethering factors. Although all tethers act to bridge vesicle membranes to mediate fusion, they form very diverse groups as they differ in composition, and in their overall architecture and size, as well as their protein interactome. However, their conserved function relies on a common design. Recent data on class C Vps complexes indicates that tethers play a significant role in membrane fusion beyond vesicle capturing. Furthermore, these studies provide additional mechanistic insights into membrane fusion events and reveal that tethers should be considered as key players of the fusion machinery. Moreover, the discovery of the novel tether FERARI complex has changed our understanding of cargo transport in the endosomal system as it has been shown to mediate 'kiss-and-run' vesicle-target membrane interactions. In this Cell Science at a Glance and the accompanying poster, we compare the structure of the coiled-coil and the multisubunit CATCHR and class C Vps tether families on the basis of their functional analogy. We discuss the mechanism of membrane fusion, and summarize how tethers capture vesicles, mediate membrane fusion at different cellular compartments and regulate cargo traffic.


Asunto(s)
Endosomas , Fusión de Membrana , Humanos , Membranas , Dominios Proteicos , Grupo Social
7.
J Neurochem ; 168(2): 100-114, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38102893

RESUMEN

The aquaporin-4 (AQP4) water channel is abundantly expressed in the glial cells of the central nervous system and facilitates brain swelling following diverse insults, such as traumatic injury or stroke. Lack of specific and therapeutic AQP4 inhibitors highlights the need to explore alternative routes to control the water permeability of glial cell membranes. The cell surface abundance of AQP4 in mammalian cells fluctuates rapidly in response to changes in oxygen levels and tonicity, suggesting a role for vesicular trafficking in its translocation to and from the cell surface. However, the molecular mechanisms of AQP4 trafficking are not fully elucidated. In this work, early and recycling endosomes were investigated as likely candidates of rapid AQP4 translocation together with changes in cytoskeletal dynamics. In transiently transfected HEK293 cells a significant amount of AQP-eGFP colocalised with mCherry-Rab5-positive early endosomes and mCherry-Rab11-positive recycling endosomes. When exposed to hypotonic conditions, AQP4-eGFP rapidly translocated from intracellular vesicles to the cell surface. Co-expression of dominant negative forms of the mCherry-Rab5 and -Rab11 with AQP4-eGFP prevented hypotonicity-induced AQP4-eGFP trafficking and led to concentration at the cell surface or intracellular vesicles respectively. Use of endocytosis inhibiting drugs indicated that AQP4 internalisation was dynamin-dependent. Cytoskeleton dynamics-modifying drugs also affected AQP4 translocation to and from the cell surface. AQP4 trafficking mechanisms were validated in primary human astrocytes, which express high levels of endogenous AQP4. The results highlight the role of early and recycling endosomes and cytoskeletal dynamics in AQP4 translocation in response to hypotonic and hypoxic stress and suggest continuous cycling of AQP4 between intracellular vesicles and the cell surface under physiological conditions.


Asunto(s)
Endocitosis , Endosomas , Animales , Humanos , Células HEK293 , Transporte de Proteínas , Endosomas/metabolismo , Astrocitos/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo , Mamíferos/metabolismo
8.
Inflamm Res ; 73(1): 99-110, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38066108

RESUMEN

INTRODUCTION: Oncogenic Ras-related GTP-binding proteins, referred to as Rabs, are characterized by their intricate interactions with upstream, downstream molecules, and notably, extracellular vesicles (EVs). While the expansive family of Rabs and their associated signaling pathways have been exhaustively dissected, Rab22a emerges as an entity of outstanding interest, owing to its potent influence in many biological processes and its conspicuous correlation with cancer metastasis and migration. A burgeoning interest in the interactions between Rab22a and EVs in the field of oncology underscores the necessity for more in-depth reviews and scholarly discourses. METHODS: We performed a review based on published original and review articles related to Rab22a, tumor, microRNA, exosome, microvesicles, EVs, CD147, lysosome, degradation, endosomal recycling, etc. from PubMed, Web of Science and Google Scholar databases. RESULTS AND CONCLUSIONS: We summarize the regulatory processes governing the expression of Rab22a and the mutants of Rab22a. Notably, the present understanding of complex interactions between Rab22a and EVs are highlighted, encompassing both the impact of Rab22a on the genesis of EVs and the role of EVs that are affected by Rab22a mutants in propelling tumor advancement. The dynamic interaction between Rab22a and EVs plays a significant role in the progression of tumors, and it can provide novel insights into the pathogenesis of cancers and the development of new therapeutic targets.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias , Humanos , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , MicroARNs/genética , Endosomas/metabolismo , Neoplasias/metabolismo , Vesículas Extracelulares/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33653948

RESUMEN

Mutations that activate LRRK2 protein kinase cause Parkinson's disease. We showed previously that Rab10 phosphorylation by LRRK2 enhances its binding to RILPL1, and together, these proteins block cilia formation in a variety of cell types, including patient derived iPS cells. We have used live-cell fluorescence microscopy to identify, more precisely, the effect of LRRK2 kinase activity on both the formation of cilia triggered by serum starvation and the loss of cilia seen upon serum readdition. LRRK2 activity decreases the overall probability of ciliation without changing the rates of cilia formation in R1441C LRRK2 MEF cells. Cilia loss in these cells is accompanied by ciliary decapitation, and kinase activity does not change the timing or frequency of decapitation or the rate of cilia loss but increases the percent of cilia that are lost upon serum addition. LRRK2 activity, or overexpression of RILPL1 protein, blocks release of CP110 from the mother centriole, a step normally required for early ciliogenesis; LRRK2 blockade of CP110 uncapping requires Rab10 and RILPL1 proteins and is due to failure to recruit TTBK2, a kinase needed for CP110 release. In contrast, deciliation probability does not change in cells lacking Rab10 or RILPL1 and relies on a distinct LRRK2 pathway. These experiments provide critical detail to our understanding of the cellular consequences of pathogenic LRRK2 mutation and indicate that LRRK2 blocks ciliogenesis upstream of TTBK2 and enhances the deciliation process in response to serum addition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cilios/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Sustitución de Aminoácidos , Animales , Cilios/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones Transgénicos , Mutación Missense , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al GTP rab/genética
10.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879613

RESUMEN

In eukaryotes, secretory proteins traffic from the endoplasmic reticulum (ER) to the Golgi apparatus via coat protein complex II (COPII) vesicles. Intriguingly, during nutrient starvation, the COPII machinery acts constructively as a membrane source for autophagosomes during autophagy to maintain cellular homeostasis by recycling intermediate metabolites. In higher plants, essential roles of autophagy have been implicated in plant development and stress responses. Nonetheless, the membrane sources of autophagosomes, especially the participation of the COPII machinery in the autophagic pathway and autophagosome biogenesis, remains elusive in plants. Here, we provided evidence in support of a novel role of a specific Sar1 homolog AtSar1d in plant autophagy in concert with a unique Rab1/Ypt1 homolog AtRabD2a. First, proteomic analysis of the plant ATG (autophagy-related gene) interactome uncovered the mechanistic connections between ATG machinery and specific COPII components including AtSar1d and Sec23s, while a dominant negative mutant of AtSar1d exhibited distinct inhibition on YFP-ATG8 vacuolar degradation upon autophagic induction. Second, a transfer DNA insertion mutant of AtSar1d displayed starvation-related phenotypes. Third, AtSar1d regulated autophagosome progression through specific recognition of ATG8e by a noncanonical motif. Fourth, we demonstrated that a plant-unique Rab1/Ypt1 homolog AtRabD2a coordinates with AtSar1d to function as the molecular switch in mediating the COPII functions in the autophagy pathway. AtRabD2a appears to be essential for bridging the specific AtSar1d-positive COPII vesicles to the autophagy initiation complex and therefore contributes to autophagosome formation in plants. Taken together, we identified a plant-specific nexus of AtSar1d-AtRabD2a in regulating autophagosome biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Autofagosomas/metabolismo , Autofagia/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fagosomas/metabolismo , Transporte de Proteínas/fisiología , Proteómica/métodos , Proteínas R-SNARE/fisiología , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/fisiología
11.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673776

RESUMEN

Salmonella enterica is a leading cause of bacterial food-borne illness in humans and is responsible for millions of cases annually. A critical strategy for the survival of this pathogen is the translocation of bacterial virulence factors termed effectors into host cells, which primarily function via protein-protein interactions with host proteins. The Salmonella genome encodes several paralogous effectors believed to have arisen from duplication events throughout the course of evolution. These paralogs can share structural similarities and enzymatic activities but have also demonstrated divergence in host cell targets or interaction partners and contributions to the intracellular lifecycle of Salmonella. The paralog effectors SopD and SopD2 share 63% amino acid sequence similarity and extensive structural homology yet have demonstrated divergence in secretion kinetics, intracellular localization, host targets, and roles in infection. SopD and SopD2 target host Rab GTPases, which represent critical regulators of intracellular trafficking that mediate diverse cellular functions. While SopD and SopD2 both manipulate Rab function, these paralogs display differences in Rab specificity, and the effectors have also evolved multiple mechanisms of action for GTPase manipulation. Here, we highlight this intriguing pair of paralog effectors in the context of host-pathogen interactions and discuss how this research has presented valuable insights into effector evolution.


Asunto(s)
Proteínas Bacterianas , Interacciones Huésped-Patógeno , Infecciones por Salmonella , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Interacciones Huésped-Patógeno/genética , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Salmonella enterica/metabolismo , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Animales , Evolución Molecular
12.
Dev Biol ; 481: 75-94, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597675

RESUMEN

While the epithelial cell cortex displays profound asymmetries in protein distribution and morphology along the apico-basal axis, the extent to which the cytoplasm is similarly polarized within epithelial cells remains relatively unexplored. We show that cytoplasmic organelles within C. elegans embryonic intestinal cells develop extensive apico-basal polarity at the time they establish cortical asymmetry. Nuclei and conventional endosomes, including early endosomes, late endosomes, and lysosomes, become polarized apically. Lysosome-related gut granules, yolk platelets, and lipid droplets become basally enriched. Removal of par-3 activity does not disrupt organelle positioning, indicating that cytoplasmic apico-basal asymmetry is independent of the PAR polarity pathway. Blocking the apical migration of nuclei leads to the apical positioning of gut granules and yolk platelets, whereas the asymmetric localization of conventional endosomes and lipid droplets is unaltered. This suggests that nuclear positioning organizes some, but not all, cytoplasmic asymmetries in this cell type. We show that gut granules become apically enriched when WHT-2 and WHT-7 function is disrupted, identifying a novel role for ABCG transporters in gut granule positioning during epithelial polarization. Analysis of WHT-2 and WHT-7 ATPase mutants is consistent with a WHT-2/WHT-7 heterodimer acting as a transporter in gut granule positioning. In wht-2(-) mutants, the polarized distribution of other organelles is not altered and gut granules do not take on characteristics of conventional endosomes that could have explained their apical mispositioning. During epithelial polarization wht-2(-) gut granules exhibit a loss of the Rab32/38 family member GLO-1 and ectopic expression of GLO-1 is sufficient to rescue the basal positioning of wht-2(-) and wht-7(-) gut granules. Furthermore, depletion of GLO-1 causes the mislocalization of the endolysosomal RAB-7 to gut granules and RAB-7 drives the apical mispositioning of gut granules when GLO-1, WHT-2, or WHT-7 function is disrupted. We suggest that ABC transporters residing on gut granules can regulate Rab dynamics to control organelle positioning during epithelial polarization.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Polaridad Celular , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Orgánulos/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Orgánulos/genética
13.
J Physiol ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818949

RESUMEN

A variety of ion channels regulate membrane potential and calcium influx in arterial smooth muscle and endothelial cells to modify vascular functions, including contractility. The current (I) generated by a population of ion channels is equally dependent upon their number (N), open probability (Po) and single channel current (i), such that I = N.PO .i. A conventional view had been that ion channels traffic to the plasma membrane in a passive manner, resulting in a static surface population. It was also considered that channels assemble with auxiliary subunits prior to anterograde trafficking of the multimeric complex to the plasma membrane. Recent studies have demonstrated that physiological stimuli can regulate the surface abundance (N) of several different ion channels in arterial smooth muscle and endothelial cells to control arterial contractility. Physiological stimuli can also regulate the number of auxiliary subunits present in the plasma membrane to modify the biophysical properties, regulatory mechanisms and physiological functions of some ion channels. Furthermore, ion channel trafficking becomes dysfunctional in the vasculature during hypertension, which negatively impacts the regulation of contractility. The temporal kinetics of ion channel and auxiliary subunit trafficking can also vary depending on the signalling mechanisms and proteins involved. This review will summarize recent work that has uncovered the mechanisms, functions and pathological modifications of ion channel trafficking in arterial smooth muscle and endothelial cells.

14.
J Cell Physiol ; 238(10): 2253-2266, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37565627

RESUMEN

The skeletal muscle is a tissue that shows remarkable plasticity to adapt to various stimuli. The development and regeneration of skeletal muscles are regulated by numerous molecules. Among these, we focused on Rab44, a large Rab GTPase, that has been recently identified in immune cells and osteoclasts. Recently, bioinformatics data has revealed that Rab44 is upregulated during the myogenic differentiation of myoblasts into myotubes in C2C12 cells. Thus, Rab44 may be involved in myogenesis. Here, we have investigated the effects of Rab44 deficiency on the development and regeneration of skeletal muscle in Rab44 knockout (KO) mice. Although KO mice exhibited body and muscle weights similar to those of wild-type (WT) mice, the histochemical analysis showed that the myofiber cross-sectional area (CSA) of KO mice was significantly smaller than that of WT mice. Importantly, the results of muscle regeneration experiments using cardiotoxin revealed that the CSA of KO mice was significantly larger than that of WT mice, suggesting that Rab44 deficiency promotes muscle regeneration. Consistent with the in vivo results, in vitro experiments indicated that satellite cells derived from KO mice displayed enhanced proliferation and differentiation. Mechanistically, KO satellite cells exhibited an increased mechanistic target of rapamycin complex 1 (mTORC1) signaling compared to WT cells. Additionally, enhanced cell surface transport of myomaker and myomixer, which are essential membrane proteins for myoblast fusion, was observed in KO satellite cells compared to WT cells. Therefore, Rab44 deficiency enhances muscle regeneration by modulating the mTORC1 signaling pathway and transport of fusogenic regulators.

15.
J Cell Biochem ; 124(10): 1486-1502, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37566644

RESUMEN

Skeletal muscle is composed of multinucleated myotubes formed by the fusion of mononucleated myoblasts. Skeletal muscle differentiation, termed as myogenesis, have been investigated using the mouse skeletal myoblast cell line C2C12. It has been reported that several "small" Rab proteins, major membrane-trafficking regulators, possibly regulate membrane protein transport in C2C12 cells; however, the role of Rab proteins in myogenesis remains unexplored. Rab44, a member of "large" Rab GTPases, has recently been identified as a negative regulator of osteoclast differentiation. In this study, using C2C12 cells, we found that Rab44 expression was upregulated during myoblast differentiation into myotubes. Knockdown of Rab44 enhanced myoblast differentiation and myotube formation. Consistent with these results, Rab44 knockdown in myoblasts increased expression levels of several myogenic marker genes. Rab44 knockdown increased the surface accumulation of myomaker and myomixer, two fusogenic proteins required for multinucleation, implying enhanced cell fusion. Conversely, Rab44 overexpression inhibited myoblast differentiation and tube formation, accompanied by decreased expression of some myogenic markers. Furthermore, Rab44 was found to be predominantly localized in lysosomes, and Rab44 overexpression altered the number and size of lysosomes. Considering the underlying molecular mechanism, Rab44 overexpression impaired the signaling pathway of the mechanistic target of rapamycin complex1 (mTORC1) in C2C12 cells. Namely, phosphorylation levels of mTORC1 and downstream mTORC1 substrates, such as S6 and P70-S6K, were notably lower in Rab44 overexpressing cells than those in control cells. These results indicate that Rab44 negatively regulates myoblast differentiation into myotubes by controlling fusogenic protein transport and mTORC1 signaling.

16.
EMBO J ; 38(16): e99266, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31271236

RESUMEN

During MHC-I-restricted antigen processing, peptides generated by cytosolic proteasomes are translocated by the transporter associated with antigen processing (TAP) into the endoplasmic reticulum, where they bind to newly synthesized MHC-I molecules. Dendritic cells and other cell types can also generate MHC-I complexes with peptides derived from internalized proteins, a process called cross-presentation. Here, we show that active proteasomes within cross-presenting cell phagosomes can generate these peptides. Active proteasomes are detectable within endocytic compartments in mouse bone marrow-derived dendritic cells. In TAP-deficient mouse dendritic cells, cross-presentation is enhanced by the introduction of human ß2 -microglobulin, which increases surface expression of MHC-I and suggests a role for recycling MHC-I molecules. In addition, surface MHC-I can be reduced by proteasome inhibition and stabilized by MHC-I-restricted peptides. This is consistent with constitutive proteasome-dependent but TAP-independent peptide loading in the endocytic pathway. Rab-GTPase mutants that restrain phagosome maturation increase proteasome recruitment and enhance TAP-independent cross-presentation. Thus, phagosomal/endosomal binding of peptides locally generated by proteasomes allows cross-presentation to generate MHC-I-peptide complexes identical to those produced by conventional antigen processing.


Asunto(s)
Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/química , Complejo de la Endopetidasa Proteasomal/inmunología , Microglobulina beta-2/metabolismo , Animales , Presentación de Antígeno , Células Cultivadas , Reactividad Cruzada , Células Dendríticas/citología , Endocitosis , Humanos , Ratones , Fagosomas/inmunología , Proteolisis , Microglobulina beta-2/genética
17.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34342349

RESUMEN

Regulated exocytosis is an essential process whereby specific cargo proteins are secreted in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi network (TGN); after budding from the TGN, granules undergo modifications, including an increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here, we leverage the Drosophila larval salivary glands as a model to characterize a novel role for Rab GTPases during granule maturation. We find that secretory granules increase in size ∼300-fold between biogenesis and release, and loss of Rab1 or Rab11 reduces granule size. Surprisingly, we find that Rab1 and Rab11 localize to secretory granule membranes. Rab11 associates with granule membranes throughout maturation, and Rab11 recruits Rab1. In turn, Rab1 associates specifically with immature granules and drives granule growth. In addition to roles in granule growth, both Rab1 and Rab11 appear to have additional functions during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new role for Rab GTPases in secretory granule maturation.


Asunto(s)
Exocitosis , Vesículas Secretoras , Animales , Gránulos Citoplasmáticos/metabolismo , Drosophila , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Red trans-Golgi/metabolismo
18.
New Phytol ; 239(4): 1384-1403, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291895

RESUMEN

Secretion is a fundamental process that plant pathogens utilize to deliver effectors into the host to downregulate immunity and promote infection. Here, we uncover a fascinating membrane trafficking and delivery route that originates from vacuolar membranes in Magnaporthe oryzae and conduits to the host interface and plasma membrane. To perform such secretory/trafficking function, MoRab7 first recruits the retromer complex to the vacuolar membrane, enabling recognition of a family of SNARE proteins, including MoSnc1. Live-cell imaging confirmed a highly dynamic vesicular trafficking of the retromer complex component(s) and MoSnc1 toward and across the host interface or plasma membrane, and subsequent fusion with target membranes. Interestingly, disruption of the MoRab7/Retromer/MoSnc1-based endolysosomal cascade affects effector secretion and fungal pathogenicity. Taken together, we discovered an unconventional protein and membrane trafficking route starting from the fungal endolysosomes to the M. oryzae-rice interaction interface and dissect the role of MoRab7/Retromer/MoSnc1 sorting machinery in effector secretion during biotrophy and invasive growth in rice blast fungus.


Asunto(s)
Magnaporthe , Oryza , Endosomas/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Oryza/metabolismo , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología
19.
EMBO Rep ; 22(11): e52675, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34580980

RESUMEN

LRRK2 serine/threonine kinase is associated with inherited Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their switch 2 motif to control their interactions with effectors. Recent work has shown that the metal-dependent protein phosphatase PPM1H counteracts LRRK2 by dephosphorylating Rabs. PPM1H is highly selective for LRRK2 phosphorylated Rabs, and closely related PPM1J exhibits no activity towards substrates such as Rab8a phosphorylated at Thr72 (pThr72). Here, we have identified the molecular determinant of PPM1H specificity for Rabs. The crystal structure of PPM1H reveals a structurally conserved phosphatase fold that strikingly has evolved a 110-residue flap domain adjacent to the active site. The flap domain distantly resembles tudor domains that interact with histones in the context of epigenetics. Cellular assays, crosslinking and 3-D modelling suggest that the flap domain encodes the docking motif for phosphorylated Rabs. Consistent with this hypothesis, a PPM1J chimaera with the PPM1H flap domain dephosphorylates pThr72 of Rab8a both in vitro and in cellular assays. Therefore, PPM1H has acquired a Rab-specific interaction domain within a conserved phosphatase fold.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteínas de Unión al GTP rab , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(29): 17003-17010, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32632011

RESUMEN

Rubicon is a potent negative regulator of autophagy and a potential target for autophagy-inducing therapeutics. Rubicon-mediated inhibition of autophagy requires the interaction of the C-terminal Rubicon homology (RH) domain of Rubicon with Rab7-GTP. Here we report the 2.8-Å crystal structure of the Rubicon RH domain in complex with Rab7-GTP. Our structure reveals a fold for the RH domain built around four zinc clusters. The switch regions of Rab7 insert into pockets on the surface of the RH domain in a mode that is distinct from those of other Rab-effector complexes. Rubicon residues at the dimer interface are required for Rubicon and Rab7 to colocalize in living cells. Mutation of Rubicon RH residues in the Rab7-binding site restores efficient autophagic flux in the presence of overexpressed Rubicon, validating the Rubicon RH domain as a promising therapeutic target.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia/fisiología , Proteínas de Unión al GTP rab , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/fisiología , Cristalografía por Rayos X , Células HeLa , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos/fisiología , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/fisiología , Proteínas de Unión a GTP rab7
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda