Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 933
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(1): e2308502120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147647

RESUMEN

Rare earth elements (REEs), one of the global key strategic resources, are widely applied in electronic information and national defense, etc. The sharply increasing demand for REEs leads to their overexploitation and environmental pollution. Recycling REEs from their second resources such as waste fluorescent lamps (WFLs) is a win-win strategy for REEs resource utilization and environmental production. Pyrometallurgy pretreatment combined with acid leaching is proven as an efficient approach to recycling REEs from WFLs. Unfortunately, due to the uncontrollable components of wastes, many trials were required to obtain the optimal parameters, leading to a high cost of recovery and new environmental risks. This study applied machine learning (ML) to build models for assisting the leaching of six REEs (Tb, Y, Eu, La, and Gd) from WFLs, only needing the measurement of particle size and composition of the waste feed. The feature importance analysis of 40 input features demonstrated that the particle size, Mg, Al, Fe, Sr, Ca, Ba, and Sb content in the waste feed, the pyrometallurgical and leaching parameters have important effects on REEs leaching. Furthermore, their influence rules on different REEs leaching were revealed. Finally, some verification experiments were also conducted to demonstrate the reliability and practicality of the model. This study can quickly get the optimal parameters and leaching efficiency for REEs without extensive optimization experiments, which significantly reduces the recovery cost and environmental risks. Our work carves a path for the intelligent recycling of strategic REEs from waste.

2.
Proc Natl Acad Sci U S A ; 121(13): e2315584121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507453

RESUMEN

The extractant-assisted transport of metal ions from aqueous to organic environments by liquid-liquid extraction has been widely used to separate and recover critical elements on an industrial scale. While current efforts focus on designing better extractants and optimizing process conditions, the mechanism that underlies ionic transport remains poorly understood. Here, we report a nonequilibrium process in the bulk aqueous phase that influences interfacial ion transport: the formation of metastable ion-extractant precipitates away from the liquid-liquid interface, separated from it by a depletion region without precipitates. Although the precipitate is soluble in the organic phase, the depletion region separates the two and ions are sequestered in a long-lived metastable state. Since precipitation removes extractants from the aqueous phase, even extractants that are sparingly soluble in water will continue to be withdrawn from the organic phase to feed the aqueous precipitation process. Solute concentrations in both phases and the aqueous pH influence the temporal evolution of the process and ionic partitioning between the precipitate and organic phase. Aqueous ion-extractant precipitation during liquid-liquid extraction provides a reaction path that can influence the extraction kinetics, which plays an important role in designing advanced processes to separate rare earths and other minerals.

3.
BMC Biol ; 22(1): 41, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369453

RESUMEN

BACKGROUND: Prior to soil formation, phosphate liberated by rock weathering is often sequestered into highly insoluble lanthanide phosphate minerals. Dissolution of these minerals releases phosphate and lanthanides to the biosphere. Currently, the microorganisms involved in phosphate mineral dissolution and the role of lanthanides in microbial metabolism are poorly understood. RESULTS: Although there have been many studies of soil microbiology, very little research has investigated microbiomes of weathered rock. Here, we sampled weathered granite and associated soil to identify the zones of lanthanide phosphate mineral solubilisation and genomically define the organisms implicated in lanthanide utilisation. We reconstructed 136 genomes from 11 bacterial phyla and found that gene clusters implicated in lanthanide-based metabolism of methanol (primarily xoxF3 and xoxF5) are surprisingly common in microbial communities in moderately weathered granite. Notably, xoxF3 systems were found in Verrucomicrobia for the first time, and in Acidobacteria, Gemmatimonadetes and Alphaproteobacteria. The xoxF-containing gene clusters are shared by diverse Acidobacteria and Gemmatimonadetes, and include conserved hypothetical proteins and transporters not associated with the few well studied xoxF systems. Given that siderophore-like molecules that strongly bind lanthanides may be required to solubilise lanthanide phosphates, it is notable that candidate metallophore biosynthesis systems were most prevalent in bacteria in moderately weathered rock, especially in Acidobacteria with lanthanide-based systems. CONCLUSIONS: Phosphate mineral dissolution, putative metallophore production and lanthanide utilisation by enzymes involved in methanol oxidation linked to carbonic acid production co-occur in the zone of moderate granite weathering. In combination, these microbial processes likely accelerate the conversion of granitic rock to soil.


Asunto(s)
Elementos de la Serie de los Lantanoides , Lantano , Dióxido de Silicio , Elementos de la Serie de los Lantanoides/metabolismo , Metanol , Suelo , Bacterias/genética , Fosfatos/metabolismo , Minerales/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38602172

RESUMEN

A polyphasic taxonomic study was carried out on strain ES2T, isolated from sediment of a wetland created to remediate acid drainage from a coal mine. The rod-shaped bacterium formed yellow/orange pigmented colonies and produced the pigment flexirubin. The 16S rRNA gene sequence results assigned the strain to Chryseobacterium, with 98.9 and 98.3 % similarity to Chryseobacterium vietnamense and Chryseobacterium cucumeris, respectively. Computation of the average nucleotide identity and digital DNA-DNA hybridization values with the closest phylogenetic neighbours of ES2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The dominant fatty acids of strain ES2T were iso-C15 : 0, iso-C17 : 1 ω9c, iso C17 : 0 3-OH, and iso-C15 : 0 2-OH. The DNA G+C content was 35.5 mol%. The major polar lipid was phosphatidylethanolamine while menaquinone-6 was the only menaquinone found. This bacterium has been previously shown to possess metallophore activity towards rare earth elements, and based on genome sequencing, possesses all required genes for siderophore production/activity, possibly identifying the source of this unique ability. On the basis of the results obtained here, this bacterium is assigned to the genus Chryseobacterium as representing a new species with the name Chryseobacterium metallicongregator sp. nov., type strain ES2T (=NRRL B-65679T=KCTC 102120T).


Asunto(s)
Chryseobacterium , Ácidos Grasos , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Vitamina K 2 , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN
5.
Environ Sci Technol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077826

RESUMEN

Transitioning to a low-carbon economy, necessary to mitigate the impacts of anthropogenic climate change, will lead to a significant increase in demand for critical minerals such as rare earth elements (REE). Meeting these raw materials requirements will be challenging, so there is increasing interest in new sources of REE including coal combustion byproducts (CCBs). Extraction of REE from CCBs can be advantageous as it involves reusing a waste product, thereby contributing to the circular economy. While a growing body of literature reports on the abundance of REE in CCBs globally, studies examining the key factors which control their recovery, including speciation and mode of occurrence, are lacking. This study employed synchrotron-based X-ray absorption spectroscopy to probe the speciation and local bonding environment of yttrium in coals and their associated CCBs. Linear Combination Fitting identified silicate and phosphate minerals as the dominant REE-bearing phases. Taken together with the results of extended X-ray absorption fine structure (EXAFS) curve fitting, we find there is minimal transformation in the REE host phase during combustion, indicating it is transferred in bulk from the coals to the CCBs. Accordingly, these findings can be incorporated into the development of an efficient, environmentally conscious recovery process.

6.
Environ Sci Technol ; 58(6): 2998-3006, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38287223

RESUMEN

Acid mine drainage (AMD) from inactive coal mines can be enriched in rare earth elements (REEs) and has gained much attention as an alternative source for these technology-critical metals. However, AMD is a relatively low-grade REE resource in which the abundance of impurities and the composition variability of the feedstock create major uncertainties for the performance of REE extraction technologies. This study sought to identify AMD feedstock variables that influence the extraction efficiency of REEs by supported liquid membranes (SLMs). SLM separation is a process involving a hydrophobic membrane embedded with an extracting solvent that facilitates the selective extraction of REE ions. The major aims were to (1) assess the effectiveness of SLM-based REE separation from several AMD samples representing a spectrum of aqueous composition, (2) determine the effects of AMD storage and holding time on extraction performance, and (3) assess the impact of AMD pretreatment (e.g., filtration and pH adjustment) on REE recovery. The results showed that relative extraction fluxes of REE correlated with AMD characteristics such as pH and major ions such as Fe, Ca, and Mn. The purity of the acid strippant product, expressed as the REE dry weight content, depended on the initial REE concentrations in the AMD source rather than the flux of individual REEs across the membrane. For AMD samples stored for 3 months prior to extraction, REE recovery by SLM separations was substantially decreased if oxidation of Fe(II) to Fe(III) was observed during sample storage. Pretreatment of AMD feedstocks by pH adjustment did not substantially improve the separation performance. Overall, this study establishes primary water quality parameters of AMD that influence the SLM separation flux and product purity. Such insights contribute to a mechanistic understanding of critical metals extractions by SLM for complex and nontraditional feedstocks such as AMD wastes.


Asunto(s)
Compuestos Férricos , Metales de Tierras Raras , Minería , Solventes , Iones
7.
Anal Bioanal Chem ; 416(6): 1517-1525, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280018

RESUMEN

The development of sensitive point-of-care (POC) assay platforms is of interest for reducing the cost and time of diagnostics. Lateral flow assays (LFAs) are the gold standard for POC systems, but their sensitivity as such is inadequate, for example, in the case of cardiac diagnostics. The performance can be improved by incorporating different steps, such as pre-incubation to prolong the interaction time between sample and reporter for immunocomplex formation, and washing steps for background reduction. However, for POC assays, manual steps by the assay conductor are not desired. In this research, upconverting nanoparticles (UCNPs) were coated with poly(acrylic acid) (PAA) and conjugated to anti-cTnI antibodies, yielding non-clustering particles with low non-specific binding. The performance of cTnI-LFA in the PAA-anti-cTnI-UCNPs was compared to the same UCNPs with a commercial carboxyl surface. A kitchen-timer mechanism was embedded in a 3D-printed housing to produce a low-cost actuator facilitating a timed pre-incubation step for reporter and sample, and a washing step, to enable a multi-step cTnI-LFA with minimized manual labour. PAA-UCNPs showed improved mobility on nitrocellulose compared to those with a commercial surface. The mechanical actuator system was shown to improve sensitivity compared to a labour-intensive multi-step dipstick method, despite pre-incubation occurring during shaking and heating in the dipstick method. The limit of detection decreased from 7.6 to 1.5 ng/L cTnI in human plasma. The presented actuator can be easily modified for sensitivity improvement in the LFA for different analytes via pre-incubation and washing steps.


Asunto(s)
Nanopartículas , Humanos , Inmunoensayo/métodos , Sistemas de Atención de Punto , Troponina I , Automatización , Impresión Tridimensional
8.
Anal Bioanal Chem ; 416(11): 2797-2807, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38141077

RESUMEN

The certified reference materials (CRMs) BCR-668 (mussel tissue), NCS ZC73034 (prawn), NIST SRM 1566a (oyster tissue) and NIST SRM 2976 (mussel tissue) were analyzed for their mass fractions of 23 elements using inductively coupled plasma tandem-mass spectrometry (ICP-MS/MS). This study focused on the quantification of selected technology-critical elements (TCEs), specifically rare earth elements (REE) and the less studied TCEs Ga, Ge, Nb, In and Ta. Microwave assisted closed vessel digestion using an acid mixture of HNO3, HCl and H2O2 was applied to varying sample masses and two different microwave systems. Recoveries of 76% (Gd, NCS ZC73034) to 129% (Lu, BCR-668) were obtained for the REE and 83% (Ge, NCS ZC73034) to 127% (Nb, NCS ZC73034) for the less studied TCEs across all analyzed CRMs (compared to certified values) using the best-performing parameters. Mass fractions for all analyzed, non-certified elements are suggested and given with a combined uncertainty U (k = 2), including mass fractions for Ga (11 µg kg-1 ± 9 µg kg-1 to 67 µg kg-1 ± 8 µg kg-1) and In (0.4 µg kg-1 ± 0.3 µg kg-1 to 0.8 µg kg-1 ± 0.7 µg kg-1). This study provides mass fractions of possible new emerging contaminants and addresses the relevant challenges in quantification of less studied TCEs, thus allowing the application of existing CRMs for method validation in studies dealing with the determination of TCEs in seafood or other biota.

9.
Environ Res ; 252(Pt 2): 118842, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583656

RESUMEN

This study investigates the distribution of rare earth elements (REEs) within the Beijing water system, specifically examining the Yongding, Chaobai, Beiyun, Jiyun, and Daqing rivers. Results indicate that the Beiyun River exhibits the highest REE concentrations, ranging from 35.95 to 59.78 µg/mL, while the Daqing River shows the lowest concentrations, ranging from 15.79 to 17.48 µg/mL. LREEs (La to Nd) predominate with a total concentration of 23.501 µg/mL, leading to a notable LREE/HREE ratio of 7.901. Positive Ce anomalies (0.70-1.11) and strong positive Eu anomalies (1.38-2.49) were observed. The study suggests that the Beijing water system's REEs may originate from geological and anthropogenic sources, such as mining and industrial activities in neighboring regions, including Inner Mongolia. These findings underscore the importance of ongoing monitoring and effective water management strategies to address REE-related environmental concerns.


Asunto(s)
Monitoreo del Ambiente , Metales de Tierras Raras , Ríos , Contaminantes Químicos del Agua , Metales de Tierras Raras/análisis , Monitoreo del Ambiente/métodos , Ríos/química , Contaminantes Químicos del Agua/análisis , Beijing , China , Fraccionamiento Químico
10.
Environ Res ; 252(Pt 3): 118939, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621629

RESUMEN

The increased usage of rare earth elements (REEs) leads to the extensive exploitation of rare earth mines, and the REEs pollution in soil caused by the legacy mine tailings has brought great harm to environment and human health. Although Phytolacca americana can remove REEs from contaminated soil to some extent, there is still an urgent problem to improve its efficiency. Hyperaccumulator extract is a new organic material with potential in metal phytoextraction, but its role in REEs phytoremediation and the related underlying processes remain unclear. In this study, hyperaccumulator extracts from P. americana root (PR), stem (PS), leaf (PL) and EDTA were used to improve the phytoremediation efficiency of REEs with P. americana. Soil zymography was applied to assess the enzyme hotspots' spatial distribution in the rhizosphere, and the hotspots' microbial communities were also identified. The results indicated that the application of hyperaccumulator extracts improved the biomass and REEs uptake of P. americana, and the highest REEs content in plant was observed in the treatment of PS, which increased 299% compared to that of the control. Hotspots area of ß-glucosidase, leucine aminopeptidase and acid phosphatase were concentrated in the pant rhizosphere along the roots and increased 2.2, 5.3 and 2.2 times after PS application compared to unamended soils. The PS application increased the relative abundance of Proteobacteria, Cyanobacteria, Bacteroidota and Firmicutes phyla in rhizosphere. Soil fungi have a higher contribution on promoting REEs activation than that of bacteria. Available P and extractable REEs were leading predictors for the plant biomass and REEs concentrations. The co-occurrence network showed that the application of PS creates a more efficient and stable microbial network compared to other treatments. In conclusion, stem-derived hyperaccumulator extract is excellent in stimulating REEs phytoremediation with P. americana by improving hotspots microbial activities and form a healthy rhizosphere microenvironment.


Asunto(s)
Biodegradación Ambiental , Metales de Tierras Raras , Phytolacca americana , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Metales de Tierras Raras/metabolismo , Contaminantes del Suelo/metabolismo , Phytolacca americana/metabolismo , Microbiota , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo
11.
Environ Res ; 252(Pt 3): 118968, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643820

RESUMEN

The widespread application of rare earth elements (REEs) in contemporary industries and agriculture, has caused emerging contaminant accumulation in aquatic environments. However, there is a limited scope of risk assessments, particularly in relation to human health associated with REEs. This study investigated the provenance, and contamination levels of REEs, further evaluating their environmental and human health risks in river sediments from an agricultural basin. The concentrations of REEs ranged from 30.5 to 347.7 mg/kg, with showing an upward trend from headwater to downstream. The positive matrix factorization (PMF) model identified natural and anthropogenic input, especially from agricultural activities, as the primary source of REEs in Mun River sediments. The contamination assessment by the geoaccumulation index (I-geo) and pollution load index (PLI) confirmed that almost individual REEs in the samples were slightly to moderately polluted. The potential ecological risk index (PERI) showed mild to moderate risks in Mun River sediment. Regular fertilization poses pollution and ecological risks to agricultural areas, manifesting as an enrichment of light REEs in river sediments. Nevertheless, Monte Carlo simulations estimated the average daily doses of total REEs from sediments to be 0.24 µg/kg/day for adults and 0.95 µg/kg/day for children, comfortably below established human health thresholds. However, the risk of REE exposure appears to be higher in children, and sensitivity analyses suggested that REE concentration contributed more to health risks, whether the adults or children. Thus, concerns regarding REE contamination and risks should be raised considering the wide distribution of agricultural regions, and further attention is warranted to assess the health risks associated with other routes of REE exposure.


Asunto(s)
Sedimentos Geológicos , Metales de Tierras Raras , Ríos , Contaminantes Químicos del Agua , Metales de Tierras Raras/análisis , Ríos/química , Tailandia , Humanos , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Medición de Riesgo , Monitoreo del Ambiente , Exposición a Riesgos Ambientales/análisis
12.
Environ Res ; 257: 119165, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759774

RESUMEN

Rare earth elements (REEs) exposure during pregnancy may increase the risk of unexplained spontaneous abortion. However, the association between REEs intrauterine exposure and unexplained spontaneous abortion had yet to be studied. In order to conduct this large case-control study, we thus collected chorionic villus from 641 unexplained spontaneous abortion and 299 control pregnant women and detected the concentrations of 15 REEs by inductively coupled plasma mass spectrometer (ICP-MS). Because the detection rates of 10 REEs were less than 80%, the remaining 5 REEs, which were lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd) and yttrium (Y), underwent to further analysis. The association between 5 REEs and unexplained spontaneous abortion was assessed by using the logistic regression, bayesian kernel regression (BKMR) and weighted quantile sum regression (WQS) models. In the adjusted logistic regression model, Pr, Nd and Y enhanced the incidence of unexplained spontaneous abortion in a dose-dependent way and Ce increased the risk only at high concentration group. The result of BKMR model demonstrated that the risk of unexplained spontaneous abortion increased as the percentile of five mixed REEs increased. Y and Nd were both significantly associated with an increased incidence of unexplained spontaneous abortion, but La was correlated with a decrease in the risk of unexplained spontaneous abortion. Pr was substantially associated with an increase in the risk of unexplained spontaneous abortion when other REEs concentrations were fixed at the 25th and 50th percentiles. According to WQS regression analysis, the WQS index was significantly associated with unexplained spontaneous abortion (OR = 3.75, 95% CI:2.40-5.86). Y had the highest weight, followed by Nd and Pr, which was consistent with the analysis results of our other two models. In short, intrauterine exposure to REEs was associated with an increased risk of unexplained spontaneous abortion, with Y, Nd and Pr perhaps playing an essential role.


Asunto(s)
Aborto Espontáneo , Metales de Tierras Raras , Aborto Espontáneo/epidemiología , Aborto Espontáneo/inducido químicamente , Femenino , Humanos , Embarazo , Metales de Tierras Raras/análisis , Estudios de Casos y Controles , Adulto , Vellosidades Coriónicas , Adulto Joven , Modelos Logísticos
13.
Appl Microbiol Biotechnol ; 108(1): 262, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483568

RESUMEN

The increasing demand for rare earth elements (REEs) has spurred interest in the development of recovery methods from aqueous waste streams. Acidophilic microalgae have gained attention for REE biosorption as they can withstand high concentrations of transition metals and do not require added organic carbon to grow, potentially allowing simultaneous sorption and self-replication of the sorbent. Here, we assessed the potential of Galdieria sulphuraria for REE biosorption under acidic, nutrient-replete conditions from solutions containing ≤ 15 ppm REEs. Sorption at pH 1.5-2.5 (the growth optimum of G. sulphuraria) was poor but improved up to 24-fold at pH 5.0 in phosphate-free conditions. Metabolic activity had a negative impact on REE sorption, additionally challenging the feasibility of REE biosorption under ideal growth conditions for acidophiles. We further examined the possibility of REE biosorption in the presence of phosphate for biomass growth at elevated pH (pH ≥ 2.5) by assessing aqueous La concentrations in various culture media. Three days after adding La into the media, dissolved La concentrations were up to three orders of magnitude higher than solubility predictions due to supersaturation, though LaPO4 precipitation occurred under all conditions when seed was added. We concluded that biosorption should occur separately from biomass growth to avoid REE phosphate precipitation. Furthermore, we demonstrated the importance of proper control experiments in biosorption studies to assess potential interactions between REEs and matrix ions such as phosphates. KEY POINTS: • REE biosorption with G. sulphuraria increases significantly when raising pH to 5 • Phosphate for biosorbent growth has to be supplied separately from biosorption • Biosorption studies have to assess potential matrix effects on REE behavior.


Asunto(s)
Metales de Tierras Raras , Microalgas , Microalgas/metabolismo , Fosfatos , Metales de Tierras Raras/metabolismo , Medios de Cultivo , Concentración de Iones de Hidrógeno
14.
Ecotoxicol Environ Saf ; 278: 116442, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728946

RESUMEN

Gadolinium (Gd) is among the rare earth elements extensively utilized in both industrial and medical applications. The latter application appears to contribute to the rise in Gd levels in aquatic ecosystems, as it is excreted via urine from patients undergoing MRI scans and often not captured by wastewater treatment systems. The potential environmental and biological hazards posed by gadolinium exposure are still under investigation. This study aimed to assess the teratogenic risk posed by a gadolinium chelate on the freshwater cnidarian Hydra vulgaris. The experimental design evaluated the impact of pure Gadodiamide (25 µg/l, 50 µg/l, 100 µg/l, 500 µg/l) and its commercial counterpart compound (Omniscan®; 100 µg/l, 500 µg/l, 782.7 mg/l) at varying concentrations using the Teratogenic Risk Index (TRI). Here we showed a moderate risk (Class III of TRI) following exposure to both tested formulations at concentrations ≥ 100 µg/l. Given the potential for similar concentrations in aquatic environments, particularly near wastewater discharge points, a teratogenic risk assessment using the Hydra regeneration assay was conducted on environmental samples collected from three rivers (Tiber, Almone, and Sacco) in Central Italy. Additionally, chemical analysis of field samples was performed using ICP-MS. Analysis of freshwater samples revealed low Gd concentrations (≤ 0.1 µg/l), despite localized increases near domestic and/or industrial wastewater discharge sites. Although teratogenic risk in environmental samples ranged from high (Class IV of TRI) to negligible (Class I of TRI), the low Gd concentrations, particularly when compared to higher levels of other contaminants like arsenic and heavy metals, preclude establishing a direct cause-effect relationship between Gd and observed teratogenic risks in environmental samples. Nevertheless, the teratogenic risks observed in laboratory tests warrant further investigation.


Asunto(s)
Agua Dulce , Hydra , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Animales , Medición de Riesgo , Hydra/efectos de los fármacos , Agua Dulce/química , Gadolinio/toxicidad , Gadolinio/análisis , Italia , Teratógenos/toxicidad , Gadolinio DTPA/toxicidad , Monitoreo del Ambiente/métodos , Ríos/química
15.
Luminescence ; 39(1): e4591, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37675627

RESUMEN

Cerium has been widely used as a dopant in luminescent materials due to its unique electronic configurations. It is generally anticipated that the luminescence properties of rare-earth-doped materials are closely related to the local environment of activators, especially for Ce3+ . In addition, it is convenient to modulate its emission wavelength by adjusting the composition and structure. In this study, we systematically analyzed the microstructure of the Ce-doped CaYAlO4 system at atomic resolution. The quantitive results indicated that the structure distortion greatly influenced the valence state of the Ce dopant, which is critical to its luminescence efficiency. In addition, valence variations also exist from surface to inner structure due to the big distortion area around the surface. Our results unravel the interplay of local structure and valence transitions in Ce-doped aluminate phosphors, which has the potential to be applied in other luminescent materials.


Asunto(s)
Cerio , Sustancias Luminiscentes , Metales de Tierras Raras , Luminiscencia , Sustancias Luminiscentes/química , Metales de Tierras Raras/química , Cerio/química
16.
J Environ Manage ; 351: 119998, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169266

RESUMEN

Due to their use in a number of advanced electronic technologies, Rare earth elements (REEs) have recently emerged as a key strategic resource for many nations worldwide. The significant increase in demand for REEs has thus greatly increased the mining of these substances, but this industrial-scale expansion of mining activities also poses potential risks to the surrounding environment, flora, fauna, and humans. Hence efficient REE remediation is one potential remediation process involving in situ clean-up of contaminated soil which has gained much attention in recent years, due to its low cost and lack of secondary pollution. However, some crucial aspects of phytoremediation, such as the precise-mechanisms of absorption, transport, and tolerance of REEs by hyperaccumulators -are poorly understood. This review briefly discusses the environmental risks associated with excess REEs, the efficacy of phytoremediation technologies coupled with, appropriate hyperaccumulator species to migrate REEs exposure. While REEs hyperaccumulator species should ideally be large-biomass trees and shrubs suitable for cropping in subtropical regions areas, such species have not yet been found. Specifically, this review focuses on the factors affecting the bioavailability of REEs in plants, where organic acids are critical ligands promoting efficient transport and uptake. Thus the uptake, transport, and binding forms of REEs in the above-ground parts of hyperaccumulators, especially the transporters isolated from the heavy metal transporter families, are discussed in detail. Finally, having summarized the current state of research in this area, this review proceeds to discuss current knowledge gaps and research directions. With a focus on hyperaccumulators, this review serves as a basis for future phytoremediation strategies of rare earth mining-impacted environments and addresses ecosystem/environmental degradation issues resulting from such mining activity.


Asunto(s)
Metales Pesados , Metales de Tierras Raras , Contaminantes del Suelo , Humanos , Ecosistema , Metales de Tierras Raras/análisis , Plantas/química , Biodegradación Ambiental , Suelo/química , Contaminantes del Suelo/análisis
17.
J Environ Manage ; 363: 121350, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850901

RESUMEN

Conventional methods of metal recovery involving solvents have raised environmental concerns. To address these concerns and promote sustainable resource recovery, we explored the use of deep eutectic solvents (DES) and chelating agents (CA) as more environmentally friendly alternatives. Goethite and blast oxide slag dust (BOS-D) from heap piles at their respective sites and characterised via ICP-MS. The greatest extraction of critical metals was from goethite, removing 38% of all metals compared to 21% from the blast oxide slag. Among the tested CA, nitrilotriacetic acid (NTA) was the most effective, while for DES, choline chloride ethylene glycol (ChCl-EG) demonstrated superior performance in extracting metals from both blast oxide slag dust and goethite. The study further highlighted the selectivity for transition metals and metalloids was influenced by the carboxyl groups of DES. Alkaline metals and rare earth lanthanides extractions were favoured with DES due to improved mass transfer and increased denticity, respectively. In comparison to ethylenediaminetetraacetic acid (EDTA), typically used for metal extraction, CA and DES showed comparable extraction efficiency for Fe, Cu, Pb, Li, Al, Mn, and Ni. Using these greener chelators and solvents for metal extraction show significant promise in enhancing the sustainability of solvometallurgy. Additional conditions e.g., temperature and agitation combined with a cascading leaching process could further enhance metal extraction potential.


Asunto(s)
Quelantes , Ácido Edético , Metales , Quelantes/química , Ácido Edético/química , Metales/química , Disolventes Eutécticos Profundos/química , Solventes/química
18.
J Environ Manage ; 356: 120751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531131

RESUMEN

Cost-effective treatment or even valorization of the bauxite residue (red mud) from the alumina industry is in demand to improve their environmental and economic liabilities. This study proposes a strategy that provides a near-complete conversion of bauxite residue to valuable products. The first step involves dilute acid leaching, which allowed the fractionation of raw residues into (1) an aqueous fraction rich in silica and aluminium and (2) a solid residue rich in iron, titanium and rare earth elements. For the proposed process, 91% of the original silicon, 67% of the aluminium, 78% of the scandium and 69% of the cerium were recovered. The initial cost evaluation suggested that this approach is profitable with a gross margin of 167 $US per tonne. This "Residue2Product" approach should be considered for large-scale practices as one of the most economical and sustainable solutions to this environmental and economic liability for the alumina industry.


Asunto(s)
Óxido de Aluminio , Aluminio , Óxido de Aluminio/química , Hierro , Titanio , Agua
19.
J Environ Manage ; 365: 121578, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944956

RESUMEN

Recent decades have witnessed an unprecedented transformation in the global energy landscape, driven by environmental concerns and the quest for sustainable economic growth. As the world grapples with the urgent need for decarbonization, the utilization of renewable energy technologies with the instrumental role of rare earth elements (REEs) has come to the forefront. However, empirical investigations into their synergistic pathways for product and economic complexities concerning achieving a low-carbon future remain scarce. Therefore, we forecast synergistic pathways between the REE supply, renewable energy, economic and product complexities, and GDP growth using a panel dataset of 11 REE-producing countries from 1990 to 2023. We used Common Correlated Effects and Temporal Causal Models as primary methods to estimate panel long-run elasticities and subsequently forecast mutual causal synergies between the variables. The results indicated that REE supply led to renewable energy and economic growth that further elevated the countries' product and economic complexities rankings. GDP growth increased REE production, economic complexity, and renewable energy directly, and consequently, product complexity and REE production through them. This underscores the positive role of REE production coupled with renewable energy technologies in achieving a low-carbon future based on economic diversification, enhanced industrial capabilities, and technological sophistication.


Asunto(s)
Predicción , Metales de Tierras Raras , Energía Renovable , Carbono , Desarrollo Económico
20.
Molecules ; 29(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542902

RESUMEN

The extraction of rare earth elements (REEs) from phosphogypsum (PG) is of great significance for the effective utilization of rare earth resources and enhancing the resource value of PG waste residues. This study used Aspergillus niger (A. niger) fungal culture filtrate as a leaching agent to investigate the behavior of extracting REEs from PG through direct and indirect contact methods. According to the ICP-MS results, direct leaching at a temperature of 30 °C, shaking speed of 150 rpm, and a solid-liquid ratio of 2:1, achieved an extraction rate of 74% for REEs, with the main elements being yttrium (Y), lanthanum (La), cerium (Ce), and neodymium (Nd). Under the same conditions, the extraction rate of REEs from phosphogypsum using an A. niger culture filtrate was 63.3% higher than that using the simulated organic acid-mixed solution prepared with the main organic acid components in the A. niger leachate. Moreover, the morphological changes observed in A. niger before and after leaching further suggest the direct involvement of A. niger's metabolic process in the extraction of REEs. When compared to using organic acids, A. niger culture filtrate exhibits higher leaching efficiency for extracting REEs from PG. Additionally, using A. niger culture filtrate is a more environmentally friendly method with the potential for industrial-scale applications than using inorganic acids for the leaching of REEs from PG.


Asunto(s)
Aspergillus niger , Metales de Tierras Raras , Fósforo , Lantano , Sulfato de Calcio
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda