Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Reprod Biomed Online ; 47(4): 103238, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37573751

RESUMEN

RESEARCH QUESTION: Is early embryo development in mice influenced by RNA binding protein with multiple splicing 2 (RBPMS2), a maternal factor that accumulates and is stored in the cytoplasm of mature oocytes? DESIGN: The expression patterns of RBPMS2 in mouse were analysed using quantitative real-time PCR (qRT PCR) and immunofluorescence staining. The effect of knockdown of RBPMS2 on embryo development was evaluated through a microinjection of specific morpholino or small interfering RNA. RNA sequencing was performed for mechanistic analysis. The interaction between RBPMS2 and the bone morphogenetic protein (BMP) pathway was studied using BMP inhibitor and activator. The effect on the localization of E-cadherin was determined by immunofluorescence staining. RESULTS: Maternal protein RBPMS2 is highly expressed in mouse oocytes, and knockdown of RBPMS2 inhibits embryo development from the morula to the blastocyst stage. Mechanistically, RNA sequencing showed that the differentially expressed genes were enriched in the transforming growth factor-ß (TGF-ß) signalling pathway. BMPs are members of the TGF-ß superfamily of growth factors. It was found that the addition of BMP inhibitor to the culture medium led to a morula-stage arrest, similar to that seen in RBPMS2 knockdown embryos. This morula-stage arrest defect caused by RBPMS2 knockdown was partially rescued by BMP activator. Furthermore, the localization of E-cadherin to the membrane was impaired in response to a knockdown of RBPMS2 or inhibition of the BMP pathway. CONCLUSION: This study suggests that RBPMS2 activates the BMP pathway and thus influences the localization of E-cadherin, which is important for early mouse embryo development during blastocyst formation.


Asunto(s)
Proteínas Morfogenéticas Óseas , Desarrollo Embrionario , Animales , Ratones , Blastocisto/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Desarrollo Embrionario/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
BMC Cancer ; 21(1): 558, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001012

RESUMEN

BACKGROUND: Noggin and RNA-binding protein for multiple splicing 2 (RBPMS2) are known to regulate the expression of smooth muscle cells, endothelial cells, and osteoblasts. However, the prognostic role of combined Noggin and RBPMS2 expression in resected gastric cancer (GC) is unclear. METHODS: A total of 163 patients with GC who underwent gastrectomy were included in this study. The expression of Noggin and RBPMS2 proteins in tumor cells at the tumor center and invasive front of resected GC was evaluated by immunohistochemistry, and in conjunction with clinicopathological parameters the patient survival was analyzed. RESULTS: RBPMS2 protein expression was high at the tumor center (n = 86, 52.8%) and low at the invasive front (n = 69, 42.3%), while Noggin protein expression was high in both tumor center (n = 91, 55.8%) and the invasive front (n = 90, 55.2%). Noggin expression at the invasive front and tumor center was significantly decreased in advanced T stage, non-intestinal-type (invasive front, P = 0.008 and P <  0.001; tumor center lesion, P = 0.013 and P = 0.001). RBPMS2 expression at the invasive front was significantly decreased in non-intestinal-type and positive lymphatic invasion (P <  0.001 and P = 0.013). Multivariate analysis revealed that high Noggin protein expression of the invasive front was an independent prognostic factor for overall survival (hazard ratio [HR], 0.58; 95% confidence interval [CI]; 0.35-0.97, P <  0.036), but not at the tumor center (HR, 1.35; 95% CI; 0.81-2.26, P = 0.251). CONCLUSIONS: Our study indicates that high Noggin expression is a crucial prognostic factor for favorable outcomes in patients with resected GC.


Asunto(s)
Proteínas Portadoras/metabolismo , Gastrectomía , Recurrencia Local de Neoplasia/epidemiología , Proteínas de Unión al ARN/metabolismo , Neoplasias Gástricas/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/análisis , Supervivencia sin Enfermedad , Mucosa Gástrica/patología , Mucosa Gástrica/cirugía , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Factores Protectores , Proteínas de Unión al ARN/análisis , Estudios Retrospectivos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Tasa de Supervivencia , Análisis de Matrices Tisulares
3.
Pediatr Cardiol ; 40(7): 1410-1418, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31399780

RESUMEN

Numerous RNA-binding proteins (RBPs) are expressed in the heart, and mutations in several RBPs have been implicated in cardiovascular disease through genetic associations, animal modeling, and mechanistic studies. However, the functions of many more cardiac RBPs, and their relevance to disease states, remain to be elucidated. Recently, we have initiated studies to characterize the functions of the RBPs RBPMS and RBPMS2 in regulating myocardial biology in zebrafish and higher vertebrate species. These studies began when we learned, using an unbiased gene discovery approach, that rbpms2a and rbpms2b in zebrafish are robust markers of embryonic myocardium. This observation, which is consistent with published data, suggests that the encoded proteins are likely to be performing critical functions in regulating one or more aspects of cardiomyocyte differentiation, proliferation, survival, and/or contractility. This notion is supported by recent reports demonstrating that zebrafish embryos with disrupted Rbpms2 function exhibit gross signs of cardiac distress. Interestingly, a 20-year-old study determined that myocardial tissue from the frog, chick, and mouse also express high levels of Rbpms and/or Rbpms2, which is suggestive of evolutionary conservation of function. In this review, we will provide a historical account of how RBPMS and RBPMS2 genes were discovered, attempt to clarify some potentially confusing nomenclature, and summarize published observations that inform our ongoing studies.


Asunto(s)
Miocardio/citología , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular , Humanos , Ratones , Proteínas de Unión al ARN/genética , Pez Cebra
4.
Development ; 141(4): 842-54, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24496621

RESUMEN

In vertebrates, the first asymmetries are established along the animal-vegetal axis during oogenesis, but the underlying molecular mechanisms are poorly understood. Bucky ball (Buc) was identified in zebrafish as a novel vertebrate-specific regulator of oocyte polarity, acting through unknown molecular interactions. Here we show that endogenous Buc protein localizes to the Balbiani body, a conserved, asymmetric structure in oocytes that requires Buc for its formation. Asymmetric distribution of Buc in oocytes precedes Balbiani body formation, defining Buc as the earliest marker of oocyte polarity in zebrafish. Through a transgenic strategy, we determined that excess Buc disrupts polarity and results in supernumerary Balbiani bodies in a 3'UTR-dependent manner, and we identified roles for the buc introns in regulating Buc activity. Analyses of mosaic ovaries indicate that oocyte pattern determines the number of animal pole-specific micropylar cells that are associated with an egg via a close-range signal or direct cell contact. We demonstrate interactions between Buc protein and buc mRNA with two conserved RNA-binding proteins (RNAbps) that are localized to the Balbiani body: RNA binding protein with multiple splice isoforms 2 (Rbpms2) and Deleted in azoospermia-like (Dazl). Buc protein and buc mRNA interact with Rbpms2; buc and dazl mRNAs interact with Dazl protein. Cumulatively, these studies indicate that oocyte polarization depends on tight regulation of buc: Buc establishes oocyte polarity through interactions with RNAbps, initiating a feedback amplification mechanism in which Buc protein recruits RNAbps that in turn recruit buc and other RNAs to the Balbiani body.


Asunto(s)
Polaridad Celular/fisiología , Estructuras Citoplasmáticas/fisiología , Retroalimentación Fisiológica/fisiología , Oocitos/fisiología , Oogénesis/fisiología , ARN Mensajero/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Estructuras Citoplasmáticas/metabolismo , Técnicas de Genotipaje , Inmunoprecipitación , Hibridación in Situ , Plásmidos/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas del Sistema de Dos Híbridos , Pez Cebra
5.
Bioengineered ; 13(2): 4347-4360, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35137653

RESUMEN

Higher methylation levels of RNA-binding protein for multiple splicing 2 (RBPMS2) was reported to be related with unfavorable outcome in gastric cancer (GC). However, molecular function and diagnostic significance of DNA methylation of RBPMS2 remains indistinct. Here we aimed to whether DNA methylation of RBPMS2 acts as a diagnosis biomarker in GC pathogenesis and its potential clinical significance. Western blot and immunochemistry assays were carried out to explore the level of RBPMS2. GC malignancy behaviors were determined by cell counting kit-8, Transwell, flow cytometry analysis and terminal-deoxynucleoitidyl transferase mediated nick end labeling staining. The inflammatory cell infiltration in xenograft model was observed by hematoxylin and eosin staining. CpG Islands was predicted by MethPrimer and the DNA methylation of RBPMS2 was evaluated by methylation-specific polymerase chain reaction. The results showed that RBPMS2 was downregulated in GC specimens. Poor survival rates were associated with low RBPMS2 expression. Overexpression of RBPMS2 inhibited GC growth while facilitated apoptosis in GC cells. In addition, level of DNA methylation of RBPMS2 in GC tissues was increased and DNA methylation of RBPMS2 was strongly associated with tumor invasion, Borrmann classification and TNM stage. We also observed that DNA methylation inhibitors counteracted the role of RBPMS2 in restraining GC development and tumorigenesis. To sum, our data demonstrated that DNA methylation of RBPMS2 was responsible for its downregulation in GC and promoted tumor progression, indicating DNA methylation of RBPMS2 might serve as a valuable potential parameter in GC pathogenesis.


Asunto(s)
Metilación de ADN/genética , Proteínas de Unión al ARN , Neoplasias Gástricas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Estómago/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda