Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 294(3): 852-860, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30482842

RESUMEN

DNA template damage can potentially block DNA replication. Cells have therefore developed different strategies to repair template lesions. Activation of the bacterial lesion bypass DNA polymerase V (Pol V) requires both the cleavage of the UmuD subunit to UmuD' and the acquisition of a monomer of activated RecA recombinase, forming Pol V Mut. Both of these events are mediated by the generation of RecA* via the formation of a RecA-ssDNA filament during the SOS response. Formation of RecA* is itself modulated by competition with the ssDNA-binding protein (SSB) for binding to ssDNA. Previous observations have demonstrated that RecA filament formation on SSB-coated DNA can be favored in the presence of the recombination mediator proteins RecF, RecO, and RecR. We show here using purified proteins that in the presence of SSB and RecA, a stable RecA-ssDNA filament is not formed, although sufficient RecA* is generated to support some activation of Pol V. The presence of RecFOR increased RecA* generation and allowed Pol V to synthesize longer DNA products and to elongate from an unpaired primer terminus opposite template damage, also without the generation of a stable RecA-ssDNA filament.


Asunto(s)
Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Rec A Recombinasas/química , ADN Bacteriano/biosíntesis , ADN Bacteriano/química , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Rec A Recombinasas/metabolismo
2.
Biology (Basel) ; 10(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916151

RESUMEN

The recombination mediator proteins (RMPs) are ubiquitous and play a crucial role in genome stability. RMPs facilitate the loading of recombinases like RecA onto single-stranded (ss) DNA coated by single-strand binding proteins like SSB. Despite sharing a common function, RMPs are the products of a convergent evolution and differ in (1) structure, (2) interaction partners and (3) molecular mechanisms. The RMP function is usually realized by a single protein in bacteriophages and eukaryotes, respectively UvsY or Orf, and RAD52 or BRCA2, while in bacteria three proteins RecF, RecO and RecR act cooperatively to displace SSB and load RecA onto a ssDNA region. Proteins working alongside to the RMPs in homologous recombination and DNA repair notably belongs to the RAD52 epistasis group in eukaryote and the RecF epistasis group in bacteria. Although RMPs have been studied for several decades, molecular mechanisms at the single-cell level are still not fully understood. Here, we summarize the current knowledge acquired on RMPs and review the crucial role of biophysical tools to investigate molecular mechanisms at the single-cell level in the physiological context.

3.
Genes (Basel) ; 12(12)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34946951

RESUMEN

The tumor suppressor protein partner and localizer of BRCA2 (PALB2) orchestrates the interactions between breast cancer susceptibility proteins 1 and 2 (BRCA1, -2) that are critical for genome stability, homologous recombination (HR) and DNA repair. PALB2 mutations predispose patients to a spectrum of cancers, including breast and ovarian cancers. PALB2 localizes HR machinery to chromatin and links it with transcription through multiple DNA and protein interactions. This includes its interaction with MRG15 (Morf-related gene on chromosome 15), which is part of many transcription complexes, including the HAT-associated and the HDAC-associated complexes. This interaction is critical for PALB2 localization in actively transcribed genes, where transcription/replication conflicts lead to frequent replication stress and DNA breaks. We solved the crystal structure of the MRG15 MRG domain bound to the PALB2 peptide and investigated the effect of several PALB2 mutations, including patient-derived variants. PALB2 interacts with an extended surface of the MRG that is known to interact with other proteins. This, together with a nanomolar affinity, suggests that the binding of MRG15 partners, including PALB2, to this region is mutually exclusive. Breast cancer-related mutations of PALB2 cause only minor attenuation of the binding affinity. New data reveal the mechanism of PALB2-MRG15 binding, advancing our understanding of PALB2 function in chromosome maintenance and tumorigenesis.


Asunto(s)
Proteína del Grupo de Complementación N de la Anemia de Fanconi/metabolismo , Factores de Transcripción/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Cromatina , ADN/metabolismo , Daño del ADN , Reparación del ADN , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación N de la Anemia de Fanconi/ultraestructura , Inestabilidad Genómica , Humanos , Unión Proteica/genética , Factores de Transcripción/genética , Factores de Transcripción/ultraestructura
4.
DNA Repair (Amst) ; 55: 7-16, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28501701

RESUMEN

Homologous recombination plays a central role in the repair of double-strand DNA breaks, the restart of stalled replication forks and the generation of genetic diversity. Regulation of recombination is essential since defects can lead to genome instability and chromosomal rearrangements. Strand exchange is a key step of recombination - it is catalysed by RecA in bacteria, Rad51/Dmc1 in eukaryotes and RadA in archaea. RadB, a paralogue of RadA, is present in many archaeal species. RadB has previously been proposed to function as a recombination mediator, assisting in RadA-mediated strand exchange. In this study, we use the archaeon Haloferax volcanii to provide evidence to support this hypothesis. We show that RadB is required for efficient recombination and survival following treatment with DNA-damaging agents, and we identify two point mutations in radA that suppress the ΔradB phenotype. Analysis of these point mutations leads us to propose that the role of RadB is to act as a recombination mediator, which it does by inducing a conformational change in RadA and thereby promoting its polymerisation on DNA.


Asunto(s)
Proteínas Arqueales/metabolismo , Roturas del ADN de Doble Cadena , Haloferax volcanii/enzimología , Rec A Recombinasas/metabolismo , Reparación del ADN por Recombinación , Secuencia de Aminoácidos , Proteínas Arqueales/química , ADN de Archaea/metabolismo , Haloferax volcanii/genética , Rec A Recombinasas/química , Alineación de Secuencia
5.
Biophys Chem ; 225: 27-37, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27974172

RESUMEN

Recombination mediator proteins (RMPs) are critical for genome integrity in all organisms. They include phage UvsY, prokaryotic RecF, -O, -R (RecFOR) and eukaryotic Rad52, Breast Cancer susceptibility 2 (BRCA2) and Partner and localizer of BRCA2 (PALB2) proteins. BRCA2 and PALB2 are tumor suppressors implicated in cancer. RMPs regulate binding of RecA-like recombinases to sites of DNA damage to initiate the most efficient non-mutagenic repair of broken chromosome and other deleterious DNA lesions. Mechanistically, RMPs stimulate a single-stranded DNA (ssDNA) hand-off from ssDNA binding proteins (ssbs) such as gp32, SSB and RPA, to recombinases, activating DNA repair only at the time and site of the damage event. This review summarizes structural studies of RMPs and their implications for understanding mechanism and function. Comparative analysis of RMPs is complicated due to their convergent evolution. In contrast to the evolutionary conserved ssbs and recombinases, RMPs are extremely diverse in sequence and structure. Structural studies are particularly important in such cases to reveal common features of the entire family and specific features of regulatory mechanisms for each member. All RMPs are characterized by specific DNA-binding domains and include variable protein interaction motifs. The complexity of such RMPs corresponds to the ever-growing number of DNA metabolism events they participate in under normal and pathological conditions and requires additional comprehensive structure-functional studies.


Asunto(s)
Reparación del ADN , Recombinasas/química , Secuencias de Aminoácidos , Daño del ADN , Unión Proteica , Recombinación Genética
6.
J Mol Biol ; 425(23): 4733-44, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23643490

RESUMEN

Homologous recombination (HR) is an evolutionary-conserved mechanism involved in a subtle balance between genome stability and diversity. HR is a faithful DNA repair pathway and has been largely characterized in the context of double-strand break (DSB) repair. Recently, multiple functions for the HR machinery have been identified at arrested forks. These are evident across different organisms and include replication fork-stabilization and fork-restart functions. Interestingly, a DSB appears not to be a prerequisite for HR-mediated replication maintenance. HR has the ability to rebuild a replisome at inactivated forks, but perhaps surprisingly, the resulting replisome is liable to intrastrand and interstrand switches leading to replication errors. Here, we review our current understanding of the replication maintenance function of HR. The error proneness of these pathways leads us to suggest that the origin of replication-associated genome instability should be re-evaluated.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Recombinación Homóloga , Eucariontes/enzimología , Eucariontes/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda