Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Chemistry ; : e202402352, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963681

RESUMEN

Nucleophilic vinylic substitution (SNV) by carbon nucleophiles allows the formation of vinylic C-C bonds without transition metal catalysts. In this paper, we show that tethering two alkenes together through a urea linkage can lead to the formation of a diene by an intramolecular SNV reaction. The starting materials are fully substituted N,N'-diallyl ureas; the reaction proceeds in the presence of base, and entails a cascade of deprotonations, reprotonations, and an SNV reaction of an allylic carbanion on a rare electrophile: a vinylic urea. As a result, two allylic substituents couple to form a diene, despite the fact that neither is activated towards electrophilic attack. The reaction is tolerant of significant steric bulk, and exhibits regioselectivity with unsymmetrical diallyl ureas: ß-substituted allyl groups invariably behave as nucleophiles, while electrophilic behavior may be enforced by the use of an E-vinylic urea substituent that cannot be deprotonated under the reaction conditions.

2.
Chemistry ; 30(11): e202303421, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38010239

RESUMEN

Multifunctional groups diarylamines, an innovative product, efficiently produced from arylamines and p-nitrosoanisole derivatives by intermolecular SN Ar under weak acid conditions. This SN Ar proceeds under mild reaction conditions, and more significantly, the substrates involved do not necessarily require strong electron-withdrawing groups. Moreover, this SN Ar is characterized by resistance to space crowding, tolerance to halogen and nitroso functional groups, and high regioselectivity. Mechanistic observations suggest that the SN Ar is the result of the transfer of the positive charge center of the protonated nitroso group to the p-methoxy group.

3.
Chemistry ; 30(10): e202303545, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38055212

RESUMEN

We describe the direct synthesis of γ-fluoro enals from the corresponding silyl dienol ethers. This simple process operates under mild conditions and is compatible with a wide range of functionalities. The high γ regioselectivity of this protocol was rationalized by means of theoretical calculations.

4.
Chemistry ; 30(11): e202303599, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38055226

RESUMEN

Trifluoromethyl group relishes a privileged position in the realm of medicinal chemistry because its incorporation into organic molecules often enhances the bioactivity by altering pharmacological profile of molecule. Trifluoromethyl-ß-dicarbonyls have emerged as pivotal building blocks in synthetic organic chemistry due to their facile accessibility, stability and remarkable versatility. Owing to presence of nucleophilic and electrophilic sites, they offer multifunctional sites for the reaction. This review covers a meticulous exploration of their multifaceted role, encompassing an in-depth analysis of mechanism, extensive scope, limitations and wide-ranging applications in diverse organic synthesis, covering the literature from the 21st century. This comprehensive review encapsulates the applications of trifluoromethyl-ß-dicarbonyls and their synthetic equivalents as precursors of complex and diverse heterocyclic scaffolds, fused heterocycles and spirocyclic compounds having medicinal and material importance. Their potent synthetic utility in cyclocondensation reactions with binucleophiles, cycloaddition reactions, C-C bond formations, asymmetric multicomponent reactions using classical/solvent-free/catalytic synthesis have been presented. Influence of unsymmetrical trifluoromethyl-ß-diketones on regioselectivity of transformation is also reviewed. This review will benefit the synthetic and pharmaceutical communities to explore trifluoromethyl-ß-dicarbonyls as trifluoromethyl building blocks for fabrication of heterocyclic scaffolds having implementation into drug discovery programs in the imminent future.

5.
Chemistry ; 30(17): e202400102, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38214926

RESUMEN

The introduction of added '3-dimensionality' through late-stage functionalisation of extended (hetero)aromatic systems is a powerful synthetic approach. The abundance of starting materials and cross-coupling methodologies to access the precursors allows for highly diverse products. Subsequent selective partial reduction can alter the core structure in a manner of interest to medicinal chemists. Herein, we describe the precise, partial reduction of multicyclic heteroaromatic systems using a simple heterogeneous catalyst. The approach can be extended to introduce deuterium (again at late-stage). Excellent yields can be obtained using simple reaction conditions.

6.
Chemistry ; 30(35): e202401153, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38584124

RESUMEN

There are many indole alkaloids that contain diverse functional groups attached to the benzene ring on the indole core. Promising biological activities of these alkaloids have been reported. Herein, we report the indole C5-selective bromination of indolo[2,3-a]quinolizidine alkaloids by adding nearly equimolar amounts of Br3 ⋅ PyH and HCl in MeOH. The resulting reaction plausibly proceeds through an indoline intermediate by the nucleophilic addition of MeOH to the C3-brominated indolenine intermediate. Data support the intermediacy of a C3-, C5-dibrominated indolenine intermediate as a brominating agent. These conditions demonstrate excellent selectivity for indole C5 bromination of natural products and their derivatives. Thus, these simple, mild, and metal-free conditions allow for selective, late-stage bromination followed by further chemical modifications. The utility of the brominated product prepared from naturally occurring yohimbine was demonstrated through various derivatizations, including a bioinspired heterodimerization reaction.

7.
Chemistry ; 30(24): e202400194, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38372413

RESUMEN

A direct route to a doubly ferrocene bridged tetracyclic tetraphosphane 1 was developed via reductive coupling of Fe(CpPCl2)2 (2 a), where a chlorine terminated linear P4-compound 3 could be identified as an intermediate. Selective P-P bond activation was further achieved by reacting 1 with elemental selenium or [Cp*Al]4, where regioselective insertion of Se or Al atoms resulted in ferrocenylene bridged [P4Se] (4) or [P4Al] (7) moieties. Compound 7 can be transformed to a hydrogen terminated linear P4 species, 8, with protic solvents. Methylation of compound 1 with MeOTf, proceeds via intermediate formation of monomethylated species 5, which gradually produced Me2-terminated dicationic 6, again containing a linear P4-unit. Besides spectroscopic characterization, the structural details of compounds 1, 4, 6, and 8 could be determined by SC-XRD. Moreover, DFT calculations were used to rationalize the reactivity of 1, derived compounds and intermediates. As a key feature, 1 undergoes ring opening polymerization to a linear polyphosphane 9.

8.
Chemistry ; : e202401480, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727792

RESUMEN

A mechanochemistry approach is developed for regioselective synthesis of functionalized dihydropyrido[2,3-d]pyrimidines by milling propargylic alcohols and 6-aminouracils with HFIP/p-TsOH. In the case of tert-propargyl alcohols, this [3+3] cascade annulation proceeded through allenylation of uracil followed by a 6-endo trig cyclization. With sec-propargyl alcohols, the reaction furnished the propargylation of uracil. This atom economy ball milling reaction allows access to a broad range of dihydropyrido[2,3-d]pyrimidine derivatives in excellent yields. We demonstrated the gram scale synthesis of 3 g and post-synthetic modifications to effect the cyclization of 5 to 6.

9.
Chemistry ; 30(23): e202304239, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38317443

RESUMEN

The advancement of sustainable chemistry and changes in the economy are strongly intertwined. Reaction time, cost savings, moderate temperatures, and generation of the fewest byproducts are frequently achieved by using catalytic processes. Herein, we report the C-H olefination of imidazo[1,2a] pyridine carboxamides with various acrylates in the presence of Pd (OAc)2 with O2 as the oxidant in aqueous ethanol rather than using non-ecofriendly solvents. The C-H activation features most user-friendly reaction conditions, excellent yield as well as plenty substrate scope and applicable for C-H deuteriation of the corresponding heteroarenes with D2O. Experimental mechanistic studies indicate that C-H activation step succeeded after formation of tetra coordinated square planer Pd-substrate adduct.

10.
Macromol Rapid Commun ; 45(13): e2300698, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38563886

RESUMEN

Regioselective modifications of cellulose using activated cellulose derivatives such as 6-halo-6-deoxycelluloses provide a convenient approach for developing sustainable products with properties tailored to specific applications. However, maintaining precise regiochemical control of substituent distribution in 6-halo-6-deoxycelluloses is challenging due to their insolubility in most common solvents and the resulting difficulties in precise structure elucidation by modern instrumental analytical techniques. Herein, an accessible NMR-based approach toward detailed characterization of 6-halo-6-deoxycelluloses, including the determination of the degrees of substitution at carbon 6 (DS6), is presented. It is shown that the direct-dissolution cellulose solvent, tetrabutylphosphonium acetate:DMSO-d6, converts 6-halo-6-deoxycelluloses to 6-monoacetylcellulose, enabling in situ solution-state NMR measurements. A range of 1D and 2D NMR experiments is used to demonstrate the quantitivity of the conversion and provide optimum dissolution conditions. In comparison with other NMR-based derivatization protocols for elucidating the structure of 6-halo-6-deoxycelluloses, the presented approach offers major advantages in terms of accuracy, speed, and simplicity of analysis, and minimal requirements for reagents or NMR instrumentation.


Asunto(s)
Celulosa , Espectroscopía de Resonancia Magnética , Celulosa/química , Estructura Molecular , Soluciones , Solubilidad , Solventes/química
11.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673908

RESUMEN

A library of regioisomeric monoterpene-based aminodiols was synthesised and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde. The synthesis of the first type of aminodiols was achieved starting from (-)-8,9-dihydroperillaldehyde via reductive amination, followed by Boc protection and dihydroxylation with the OsO4/NMO system. Separation of formed stereoisomers resulted in a library of aminodiol diastereoisomers. The library of regioisomeric analogues was obtained starting from (-)-8,9-dihydroperillic alcohol, which was transformed into a mixture of allylic trichloroacetamides via Overman rearrangement. Changing the protecting group to a Boc function, the protected enamines were subjected to dihydroxylation with the OsO4/NMO system, leading to a 71:16:13 mixture of diastereoisomers, which were separated, affording the three isomers in isolated form. The obtained primary aminodiols were transformed into secondary derivatives. The regioselectivity of the ring closure of the N-benzyl-substituted aminodiols with formaldehyde was also investigated, resulting in 1,3-oxazines in an exclusive manner. To explain the stability difference between diastereoisomeric 1,3-oxazines, a series of comparative theoretical modelling studies was carried out. The obtained potential catalysts were applied in the reaction of aromatic aldehydes and diethylzinc with moderate to good enantioselectivities (up to 94% ee), whereas the opposite chiral selectivity was observed between secondary aminodiols and their ring-closed 1,3-oxazine analogues.


Asunto(s)
Monoterpenos , Compuestos Organometálicos , Estereoisomerismo , Catálisis , Monoterpenos/química , Benzaldehídos/química , Amino Alcoholes/química , Amino Alcoholes/síntesis química , Estructura Molecular , Aldehídos/química
12.
Molecules ; 29(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38930779

RESUMEN

7-Bromo-4-chloro-1H-indazol-3-amine is a heterocyclic fragment used in the synthesis of Lenacapavir, a potent capsid inhibitor for the treatment of HIV-1 infections. In this manuscript, we describe a new approach to synthesizing 7-bromo-4-chloro-1H-indazol-3-amine from inexpensive 2,6-dichlorobenzonitrile. This synthetic method utilizes a two-step sequence including regioselective bromination and heterocycle formation with hydrazine to give the desired product in an overall isolated yield of 38-45%. The new protocol has been successfully demonstrated on hundred-gram scales without the need for column chromatography purification. This new synthesis provides a potential economical route to the large-scale production of this heterocyclic fragment of Lenacapavir.

13.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999179

RESUMEN

Heterocyclic aryl selenides have recently attracted considerable research interest owing to their applications in biological and pharmaceutical fields. Herein, we describe a simple and general synthesis of 3-selanylindoles via a novel regioselective C-H selenation of indoles using a bismuth reagent as a catalyst. The reactions of indoles with diselenides in the presence of 10 mol% BiI3 at 100 °C in DMF afforded the corresponding 3-selanylindoles in moderate-to-excellent yields. The reaction proceeded efficiently under aerobic conditions by adding only a catalytic amount of BiI3, which was non-hygroscopic and less toxic, and both selanyl groups of the diselenide were transferred to the desired products.

14.
Angew Chem Int Ed Engl ; 63(1): e202313336, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37983653

RESUMEN

The precise control of the regioselectivity in the transition metal-catalyzed migratory hydrofunctionalization of alkenes remains a big challenge. With a transient ketimine directing group, the nickel-catalyzed migratory ß-selective hydroarylation and hydroalkenylation of alkenyl ketones has been realized with aryl boronic acids using alkyl halide as the mild hydride source for the first time. The key to this success is the use of a diphosphine ligand, which is capable of the generation of a Ni(II)-H species in the presence of alkyl bromide, and enabling the efficient migratory insertion of alkene into Ni(II)-H species and the sequent rapid chain walking process. The present approach diminishes organosilanes reductant, tolerates a wide array of complex functionalities with excellent regioselective control. Moreover, this catalytic system could also be applied to the migratory hydroarylation of alkenyl azahetereoarenes, thus providing a general approach for the preparation of 1,2-aryl heteroaryl motifs with wide potential applications in pharmaceutical discovery.

15.
Angew Chem Int Ed Engl ; 63(13): e202315674, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38327006

RESUMEN

Sesquiterpene synthases (STPSs) catalyze carbocation-driven cyclization reactions that can generate structurally diverse hydrocarbons. The deprotonation-reprotonation process is widely used in STPSs to promote structural diversity, largely attributable to the distinct regio/stereoselective reprotonations. However, the molecular basis for reprotonation regioselectivity remains largely understudied. Herein, we analyzed two highly paralogous STPSs, Artabotrys hexapetalus (-)-cyperene synthase (AhCS) and ishwarane synthase (AhIS), which catalyze reactions that are distinct from the regioselective protonation of germacrene A (GA), resulting in distinct skeletons of 5/5/6 tricyclic (-)-cyperene and 6/6/5/3 tetracyclic ishwarane, respectively. Isotopic labeling experiments demonstrated that these protonations occur at C3 and C6 of GA in AhCS and AhIS, respectively. The cryo-electron microscopy-derived AhCS complex structure provided the structural basis for identifying different key active site residues that may govern their functional disparity. The structure-guided mutagenesis of these residues resulted in successful functional interconversion between AhCS and AhIS, thus targeting the three active site residues [L311-S419-C458]/[M311-V419-A458] that may act as a C3/C6 reprotonation switch for GA. These findings facilitate the rational design or directed evolution of STPSs with structurally diverse skeletons.


Asunto(s)
Transferasas Alquil y Aril , Sesquiterpenos , Microscopía por Crioelectrón , Sesquiterpenos/química , Catálisis , Dominio Catalítico , Transferasas Alquil y Aril/genética
16.
Angew Chem Int Ed Engl ; 63(12): e202319773, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38279666

RESUMEN

We report herein the development of palladium-catalyzed deacylative deuteration of arylketone oxime ethers. This protocol features excellent functional group tolerance, heterocyclic compatibility, and high deuterium incorporation levels. Regioselective deuteration of some biologically important drugs and natural products are showcased via Friedel-Crafts acylation and subsequent deacylative deuteration. Vicinal meta-C-H bond functionalization (including fluorination, arylation, and alkylation) and para-C-H bond deuteration of electro-rich arenes are realized by using the ketone as both directing group and leaving group, which is distinct from aryl halide in conventional dehalogenative deuteration.

17.
Angew Chem Int Ed Engl ; 63(17): e202402231, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38407456

RESUMEN

The development of new methods for regio- and stereoselective activation of C-O bonds in ethers holds significant promise for synthetic chemistry, offering advantages in terms of environmental sustainability and economic efficiency. Moreover, the C-N atropisomers represent a fascinating and crucial chiral system, extensively found in natural products, pharmaceutical leads, and the frameworks of advanced materials. In this work, we have introduced a nickel-catalyzed regio- and enantioselective carbon-oxygen arylation reaction for atroposelective synthesis of N-arylisoquinoline-1,3(2H,4H)-diones. The high regioselectivity of C-O cleavage benefits from the high stability of the in situ formed (amido)ethenolate via oxidative addition. Additionally, the self-activation of the aryl C-O bond facilitates the reaction under mild conditions, leading to outstanding enantioselectivities. The diverse post-functionalizations of the axially chiral isoquinoline-1,3(2H,4H)-diones further highlighted the utility of this protocol in preparing valuable C-N atropisomers, including the chiral phosphine ligands.

18.
Angew Chem Int Ed Engl ; 63(32): e202406060, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-38789390

RESUMEN

The hydroxylation of remote C(sp3)-H bonds in aliphatic amino acids yields crucial precursors for the synthesis of high-value compounds. However, accurate regulation of the regioselectivity of remote C(sp3)-H bonds hydroxylation in aliphatic amino acids continues to be a common challenge in chemosynthesis and biosynthesis. In this study, the Fe(II)/α-ketoglutarate-dependent dioxygenase from Bacillus subtilis (BlAH) was mined and found to catalyze hydroxylation at the γ and δ sites of aliphatic amino acids. Crystal structure analysis, molecular dynamics simulations, and quantum chemical calculations revealed that regioselectivity was regulated by the spatial effect of BlAH. Based on these results, the spatial effect of BlAH was reconstructed to stabilize the transition state at the δ site of aliphatic amino acids, thereby successfully reversing the γ site regioselectivity to the δ site. For example, the regioselectivity of L-Homoleucine (5 a) was reversed from the γ site (1 : 12) to the δ site (>99 : 1). The present study not only expands the toolbox of biocatalysts for the regioselective functionalization of remote C(sp3)-H bonds, but also provides a theoretical guidance for the precision-driven modification of similarly remote C(sp3)-H bonds in complex molecules.


Asunto(s)
Aminoácidos , Bacillus subtilis , Dioxigenasas , Ácidos Cetoglutáricos , Hidroxilación , Bacillus subtilis/enzimología , Dioxigenasas/metabolismo , Dioxigenasas/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/química , Aminoácidos/química , Aminoácidos/metabolismo , Estereoisomerismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Simulación de Dinámica Molecular
19.
Beilstein J Org Chem ; 20: 173-180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318459

RESUMEN

The synthesis of gram quantities of the TF antigen (ß-ᴅ-Gal-(1→3)-α-ᴅ-GalNAc) and its 3'-sulfated analogue with a TEG-N3 spacer attached is described. The synthesis of the TF antigen comprises seven steps, from a known N-Troc-protected galactosamine donor, with an overall yield of 31%. Both the spacer (85%) and the galactose moiety (79%) were introduced using thioglycoside donors in NIS/AgOTf-promoted glycosylation reactions. The 3'-sulfate was finally introduced through tin activation in benzene/DMF followed by treatment with a sulfur trioxide-trimethylamine complex in a 66% yield.

20.
J Am Chem Soc ; 145(10): 5872-5879, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36872583

RESUMEN

Passivating defects using organic halide salts, especially chlorides, is an effective method to improve power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) arising from the stronger Pb-Cl bonding than Pb-I and Pb-Br bonding. However, Cl- anions with a small radius are prone to incorporation into the perovskite lattice that distorts the lead halide octahedron, degrading the photovoltaic performance. Here, we substitute atomic-Cl-containing organic molecules for widely used ionic-Cl salts, which not only retain the efficient passivation by Cl but also prevent the incorporation of Cl into the bulk lattice, benefiting from the strong covalent bonding between Cl atoms and organic frameworks. We find that only when the distance of Cl atoms in single molecules matches well with the distance of halide ions in perovskites can such a configuration maximize the defect passivation. We thereby optimize the molecular configuration to enable multiple Cl atoms in an optimal spatial position to maximize their binding with surface defects. The resulting PSCs achieve a certified PCE of 25.02%, among the highest PCEs for PSCs, and retain 90% of their initial PCE after 500 h of continuous operation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda