Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.365
Filtrar
Más filtros

Publication year range
1.
Immunity ; 55(6): 1082-1095.e5, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35588739

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) enzymes and are ubiquitously used for their anti-inflammatory properties. However, COX inhibition alone fails to explain numerous clinical outcomes of NSAID usage. Screening commonly used NSAIDs in primary human and murine myeloid cells demonstrated that NSAIDs could be differentiated by their ability to induce growth/differentiation factor 15 (GDF15), independent of COX specificity. Using genetic and pharmacologic approaches, NSAID-mediated GDF15 induction was dependent on the activation of nuclear factor erythroid 2-related factor 2 (NRF2) in myeloid cells. Sensing by Cysteine 151 of the NRF2 chaperone, Kelch-like ECH-associated protein 1 (KEAP1) was required for NSAID activation of NRF2 and subsequent anti-inflammatory effects both in vitro and in vivo. Myeloid-specific deletion of NRF2 abolished NSAID-mediated tissue protection in murine models of gout and endotoxemia. This highlights a noncanonical NRF2-dependent mechanism of action for the anti-inflammatory activity of a subset of commonly used NSAIDs.


Asunto(s)
Antiinflamatorios no Esteroideos , Factor 2 Relacionado con NF-E2 , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Prescripciones , Prostaglandina-Endoperóxido Sintasas
2.
Proc Natl Acad Sci U S A ; 120(2): e2218345120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595680

RESUMEN

CD4+ memory T cells are central to long-lasting protective immunity and are involved in shaping the pathophysiology of chronic inflammation. While metabolic reprogramming is critical for the generation of memory T cells, the mechanisms controlling the redox metabolism in memory T cell formation remain unclear. We found that reactive oxygen species (ROS) metabolism changed dramatically in T helper-2 (Th2) cells during the contraction phase in the process of memory T cell formation. Thioredoxin-interacting protein (Txnip), a regulator of oxidoreductase, regulated apoptosis by scavenging ROS via the nuclear factor erythroid 2-related factor 2 (Nrf2)-biliverdin reductase B (Blvrb) pathway. Txnip regulated the pathology of chronic airway inflammation in the lung by controlling the generation of allergen-specific pathogenic memory Th2 cells in vivo. Thus, the Txnip-Nrf2-Blvrb axis directs ROS metabolic reprogramming in Th2 cells and is a potential therapeutic target for intractable chronic inflammatory diseases.


Asunto(s)
Células T de Memoria , Factor 2 Relacionado con NF-E2 , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Inflamación , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
3.
FASEB J ; 38(13): e23707, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38995239

RESUMEN

Abdominal aortic aneurysm (AAA) is a life-threatening disease characterized by extensive membrane destruction in the vascular wall that is closely associated with vascular smooth muscle cell (VSMC) phenotypic switching. A thorough understanding of the changes in regulatory factors during VSMC phenotypic switching is essential for managing AAA therapy. In this study, we revealed the impact of NRF2 on the modulation of VSMC phenotype and the development of AAA based on single-cell RNA sequencing analysis. By utilizing a murine model of VSMC-specific knockout of nuclear factor E2-related factor 2 (NRF2), we observed that the absence of NRF2 in VSMCs exacerbated AAA formation in an angiotensin II-induced AAA model. The downregulation of NRF2 promoted VSMC phenotypic switching, leading to an enhanced inflammatory response. Through genome-wide transcriptome analysis and loss- or gain-of-function experiments, we discovered that NRF2 upregulated the expression of VSMC contractile phenotype-specific genes by facilitating microRNA-145 (miR-145) expression. Our data identified NRF2 as a novel regulator involved in maintaining the VSMC contractile phenotype while also influencing AAA formation through an miR-145-dependent regulatory mechanism.


Asunto(s)
Aneurisma de la Aorta Abdominal , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , Factor 2 Relacionado con NF-E2 , Fenotipo , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Noqueados , Análisis de la Célula Individual , Ratones Endogámicos C57BL , Angiotensina II/farmacología , Análisis de Secuencia de ARN , Modelos Animales de Enfermedad
4.
Circ Res ; 133(1): 25-44, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37264926

RESUMEN

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/metabolismo , Inflamación , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
5.
Exp Cell Res ; 438(2): 114053, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663476

RESUMEN

Bladder cancer is a common tumor that impacts the urinary system and marked by a significant fatality rate and an unfavorable prognosis. Promising antineoplastic properties are exhibited by brusatol, which is obtained from the dried ripe fruit of Brucea javanica. The present study aimed to evaluate the influence of brusatol on the progression of bladder cancer and uncover the molecular mechanism involved. We used Cell Counting Kit-8, colony formation and EdU assays to detect cell numbers, viability and proliferation. We used transwell migration assay to detect cell migration ability. The mechanism of brusatol inhibition of bladder cancer proliferation was studied by flow cytometry and western blotting. It was revealed that brusatol could reduce the viability and proliferation of T24 and 5637 cells. The transwell migration assay revealed that brusatol was able to attenuate the migration of T24 and 5637 cells. We found that treatment with brusatol increased the levels of reactive oxygen species, malondialdehyde and Fe2+, thereby further promoting ferroptosis in T24 and 5637 cells. In addition, treatment with RSL3 (an agonistor of ferroptosis) ferrostatin-1 (a selective inhibitor of ferroptosis) enhanced or reversed the brusatol-induced inhibition. In vivo, treatment with brusatol significantly suppressed the tumor growth in nude mice. Mechanistically, brusatol induced ferroptosis by upregulating the expression of ChaC glutathione-specific gamma-glutamylcyclotransferase (Chac1) and decreasing the expression of SLC7A11 and Nrf2 in T24 and 5637 cells. To summarize, the findings of this research demonstrated that brusatol hindered the growth of bladder cancer and triggered ferroptosis via the Chac1/Nrf2/SLC7A11 pathway.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Movimiento Celular , Proliferación Celular , Factor 2 Relacionado con NF-E2 , Cuassinas , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Cuassinas/farmacología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Especies Reactivas de Oxígeno/metabolismo , Progresión de la Enfermedad , Ratones Endogámicos BALB C , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
6.
Nano Lett ; 24(7): 2131-2141, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38227823

RESUMEN

Ischemia/reperfusion (IR)-induced acute lung injury (ALI) has a high mortality rate. Reactive oxygen species (ROS) play a crucial role in causing cellular damage and death in IR-induced ALI. In this work, we developed a biomimetic lung-targeting nanoparticle (PC@MB) as an antioxidative lung protector for treating IR-induced ALI. PC@MBs showed excellent ROS scavenging and Nrf2 activation properties, along with a lung-targeting function through autologous cell membrane coating. The PC@MBs exhibited an impressive antioxidative and pulmonary protective role via redox homeostasis recovery through Nrf2 and heme oxygenase-1 activation. PC@MBs could maintain cell viability by effectively scavenging the intracellular ROS and restoring the redox equilibrium in the lesion. In the IR mouse model, the PC@MBs preferentially accumulated in the lung and distinctly repaired the pneumonic damage. Our strategy has the potential to offer a promising therapeutic paradigm for treating IR-induced ALI through the incorporation of different therapeutic mechanisms.


Asunto(s)
Lesión Pulmonar Aguda , Daño por Reperfusión , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Factor 2 Relacionado con NF-E2/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Biomimética , Lesión Pulmonar Aguda/tratamiento farmacológico , Pulmón/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Isquemia , Reperfusión/efectos adversos , Estrés Oxidativo
7.
J Biol Chem ; 299(1): 102798, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528059

RESUMEN

Chemotherapy resistance is the dominant challenge in the treatment of acute myeloid leukemia (AML). Nuclear factor E2-related factor 2 (Nrf2) exerts a vital function in drug resistance of many tumors. Nevertheless, the potential molecular mechanism of Nrf2 regulating the base excision repair pathway that mediates AML chemotherapy resistance remains unclear. Here, in clinical samples, we found that the high expression of Nrf2 and base excision repair pathway gene encoding 8-hydroxyguanine DNA glycosidase (OGG1) was associated with AML disease progression. In vitro, Nrf2 and OGG1 were highly expressed in drug-resistant leukemia cells. Upregulation of Nrf2 in leukemia cells by lentivirus transfection could decrease the sensitivity of leukemia cells to cytarabine, whereas downregulation of Nrf2 in drug-resistant cells could enhance leukemia cell chemosensitivity. Meanwhile, we found that Nrf2 could positively regulate OGG1 expression in leukemia cells. Our chromatin immunoprecipitation assay revealed that Nrf2 could bind to the promoter of OGG1. Furthermore, the use of OGG1 inhibitor TH5487 could partially reverse the inhibitory effect of upregulated Nrf2 on leukemia cell apoptosis. In vivo, downregulation of Nrf2 could increase the sensitivity of leukemia cell to cytarabine and decrease OGG1 expression. Mechanistically, Nrf2-OGG1 axis-mediated AML resistance might be achieved by activating the AKT signaling pathway to regulate downstream apoptotic proteins. Thus, this study reveals a novel mechanism of Nrf2-promoting drug resistance in leukemia, which may provide a potential therapeutic target for the treatment of drug-resistant/refractory leukemia.


Asunto(s)
Citarabina , ADN Glicosilasas , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Apoptosis , Núcleo Celular/metabolismo , Citarabina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ADN Glicosilasas/metabolismo
8.
Kidney Int ; 105(6): 1291-1305, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537677

RESUMEN

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease pathologically characterized by vascular necrosis with inflammation. During AAV development, activated neutrophils produce reactive oxygen species (ROS), leading to the aberrant formation of neutrophil extracellular traps (NETs) via NETosis and subsequent fibrinoid vascular necrosis. Nuclear factor-erythroid 2-related factor 2 (Nrf2) functions as an intracellular defense system to counteract oxidative stress by providing antioxidant properties. Herein, we explored the role of Nrf2 in the pathogenesis of AAV. The role and mechanism of Nrf2 in ANCA-stimulated neutrophils and subsequent endothelial injury were evaluated in vitro using Nrf2 genetic deletion and Nrf2 activator treatment. In corresponding in vivo studies, the role of Nrf2 in ANCA-transfer AAV and spontaneous AAV murine models was examined. Pharmacological activation of Nrf2 in vitro suppressed ANCA-induced NET formation via the inhibition of ROS. In contrast, NET formation was enhanced in Nrf2-deficient neutrophils. Furthermore, Nrf2 activation protected endothelial cells from ANC-induced NETs-mediated injury. In vivo, Nrf2 activation ameliorated glomerulonephritis in two AAV models by upregulating antioxidants and inhibiting ROS-mediated NETs. Furthermore, Nrf2 activation restrained the expansion of splenic immune cells, including T lymphocytes and limited the infiltration of Th17 cells into the kidney. In contrast, Nrf2 genetic deficiency exacerbated vasculitis in a spontaneous AAV model. Thus, the pathophysiological process in AAV may be downregulated by Nrf2 activation, potentially leading to a new therapeutic strategy by regulating NETosis.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Modelos Animales de Enfermedad , Trampas Extracelulares , Ratones Noqueados , Factor 2 Relacionado con NF-E2 , Neutrófilos , Peroxidasa , Especies Reactivas de Oxígeno , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/inmunología , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/patología , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/genética , Neutrófilos/inmunología , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peroxidasa/metabolismo , Peroxidasa/genética , Ratones , Humanos , Estrés Oxidativo/inmunología , Ratones Endogámicos C57BL , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Glomerulonefritis/genética , Glomerulonefritis/metabolismo , Glomerulonefritis/etiología , Anticuerpos Anticitoplasma de Neutrófilos/inmunología , Masculino , Riñón/patología , Riñón/inmunología , Transducción de Señal/inmunología
9.
Mol Med ; 30(1): 27, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378457

RESUMEN

BACKGROUND: Isoorientin (ISO) is a glycosylated flavonoid with antitumor, anti-inflammatory, and antioxidant properties. However, its effects on bone metabolism remain largely unknown. METHODS: In this study, we aimed to investigate the effects of ISO on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in vitro and bone loss in post-ovariectomy (OVX) rats, as well as to elucidate the underlying mechanism. First, network pharmacology analysis indicated that MAPK1 and AKT1 may be potential therapeutic targets of ISO and that ISO has potential regulatory effects on the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways, as well as oxidative stress. ISO was added to RAW264.7 cells stimulated by RANKL, and its effects on osteoclast differentiation were evaluated using tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity measurement, and F-actin ring analysis. Reactive oxygen species (ROS) production in osteoclasts was detected using a ROS assay kit. The effects of ISO on RANKL-triggered molecular cascade response were further investigated by Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining. In addition, the therapeutic effects of ISO were evaluated in vivo. RESULTS: ISO inhibited osteoclastogenesis in a time- and concentration-dependent manner. Mechanistically, ISO downregulated the expression of the main transcription factor for osteoclast differentiation by inhibiting MAPK and PI3K/AKT1 signaling pathways. Moreover, ISO exhibited protective effects in OVX-induced bone loss rats. This was consistent with the results derived from network pharmacology. CONCLUSION: Our findings suggest a potential therapeutic utility of ISO in the management of osteoclast-associated bone diseases, including osteoporosis.


Asunto(s)
Resorción Ósea , Luteolina , Osteoporosis , Femenino , Ratas , Animales , Resorción Ósea/patología , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas , Farmacología en Red , Diferenciación Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Osteoporosis/tratamiento farmacológico , Factores de Transcripción NFATC/metabolismo
10.
Biochem Biophys Res Commun ; 721: 149972, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772213

RESUMEN

Endoplasmic reticulum stress (ERS) plays a crucial role in the pathogenesis of diabetic nephropathy (DN), and it is often accompanied by an increase in reactive oxygen species (ROS) production. However, the precise relationship between NFE2-related factor-2 (Nrf2), a key regulator of ROS balance, and ERS in DN remains elusive. This study aimed to investigate the impact of Nrf2 on ERS and its therapeutic potential in DN. Herein, ERS-related changes, including increased activating transcription factor-6 (ATF6), glucose-regulated protein 78 (GRP78), and transcription factor C/EBP homologous protein (CHOP) expression, were observed in the renal tissues of streptozotocin-induced DN mice and high glucose cultured human renal proximal tubular (HK-2) cells. Nrf2 knockdown increased the sensitivity of HK-2 cells to ERS under high glucose conditions, underscoring the regulatory role of Nrf2 in ERS modulation. Notably, upregulating Nrf2 in ezetimibe-treated diabetic mice restored ERS markers and ameliorated albuminuria, glomerular hypertrophy, mesangial expansion, and tubulointerstitial fibrosis. Furthermore, the inhibition of ERS in HK-2 cells by the ROS scavenger, N-acetylcysteine, highlights the interplay between ROS and ERS. This study, for the first time, elucidates that the upregulation of Nrf2 may alleviate the negative influence of ROS-mediated ERS, presenting a promising therapeutic avenue for delaying the progression of DN. These findings suggest a potential strategy for targeting Nrf2 and ERS in developing novel therapeutic interventions for DN.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Regulación hacia Arriba , Animales , Humanos , Masculino , Ratones , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/tratamiento farmacológico , Chaperón BiP del Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
11.
J Membr Biol ; 257(1-2): 3-16, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38356054

RESUMEN

Cancer is one of the main causes of death among humans, second only to cardiovascular diseases. In recent years, numerous studies have been conducted on the pathophysiology of cancer, and it has been established that this disease is developed by a group of stem cells known as cancer stem cells (CSCs). Thus, cancer is considered a stem cell disease; however, there is no comprehensive consensus about the characteristics of these cells. Several different signaling pathways including Notch, Hedgehog, transforming growth factor-ß (TGF-ß), and WNT/ß-catenin pathways cause the self-renewal of CSCs. CSCs change their metabolic pathways in order to access easy energy. Therefore, one of the key objectives of researchers in cancer treatment is to destroy CSCs. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the protection of CSCs from reactive oxygen species (ROS) and chemotherapeutic agents by regulating antioxidants and detoxification enzymes. Human epidermal growth factor receptor 2 (HER2) is a member of the tyrosine kinase receptor family, which contributes to the protection of cancer cells against treatment and implicated in the invasion, epithelial-mesenchymal transition (EMT), and tumorigenesis. Aldehyde dehydrogenases (ALDHs) are highly active in CSCs and protect the cells against damage caused by active aldehydes through the regulation of aldehyde metabolism. On the other hand, ALDHs promote the formation and maintenance of tumor cells and lead to drug resistance in tumors through the activation of various signaling pathways, such as the ALDH1A1/HIF-1α/VEGF axis and Wnt/ß-catenin, as well as changing the intracellular pH value. Given the growing body of information in this field, in the present narrative review, we attempted to shed light on the function of Nrf2, HER2, and ALDH in CSCs.


Asunto(s)
Aldehído Deshidrogenasa , Factor 2 Relacionado con NF-E2 , Células Madre Neoplásicas , Receptor ErbB-2 , beta Catenina , Humanos , Aldehído Deshidrogenasa/metabolismo , Aldehídos/metabolismo , beta Catenina/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptor ErbB-2/metabolismo
12.
IUBMB Life ; 76(4): 212-222, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38054509

RESUMEN

Thioredoxin-interacting protein (TXNIP) is sensitive to oxidative stress and is involved in the pathogenesis of various metabolic, cardiovascular, and neurodegenerative disorders. Therefore, several studies have suggested that TXNIP is a promising therapeutic target for several diseases, particularly cancer and diabetes. However, the regulation of TXNIP expression under amino acid (AA)-restricted conditions is not well understood. In the present study, we demonstrated that TXNIP expression was promoted by the deprivation of AAs, especially arginine, glutamine, lysine, and methionine, in non-small cell lung cancer (NSCLC) cells. Interestingly, we determined that increased TXNIP expression induced by AA deprivation was associated with nuclear factor erythroid 2-related factor 2 (NRF2) downregulation, but not with activating transcription factor 4 (ATF4) activation. Furthermore, N-acetyl-l-cysteine (NAC), a scavenger of reactive oxygen species (ROS), suppressed TXNIP expression in NSCLC cells deprived of AA. Collectively, the induction of TXNIP expression by AA deprivation was mediated by ROS production, potentially through NRF2 downregulation. Our findings suggest that TXNIP expression may be associated with the redox homeostasis of AA metabolism and provide a possible rationale for a therapeutic strategy to treat cancer with AA restriction.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Aminoácidos/metabolismo , Regulación hacia Abajo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo
13.
Ann Surg Oncol ; 31(7): 4822-4829, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38461192

RESUMEN

BACKGROUND: Glutathione peroxidase 2 (GPX2) is an antioxidant enzyme with an important role in tumor progression in various cancers. However, the clinical significance of GPX2 in lung adenocarcinoma has not been clarified. METHODS: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyze GPX2 mRNA expression. Then, we conducted immunohistochemistry (IHC) to assess GPX2 expression in specimens acquired from 351 patients with lung adenocarcinoma who underwent surgery at Kyushu University from 2003 to 2012. We investigated the association between GPX2 expression and clinicopathological characteristics and further analyzed the prognostic relevance. RESULTS: qRT-PCR revealed that GPX2 mRNA expression was notably higher in tumor cells than in normal tissues. IHC revealed that high GPX2 expression (n = 175, 49.9%) was significantly correlated with male sex, smoking, advanced pathological stage, and the presence of pleural, lymphatic, and vascular invasion. Patients with high GPX2 expression exhibited significantly shorter recurrence-free survival (RFS) and overall survival. Multivariate analysis identified high GPX2 expression as an independent prognostic factor of RFS. CONCLUSIONS: GPX2 expression was significantly associated with pathological malignancy. It is conceivable that high GPX2 expression reflects tumor malignancy. Therefore, high GPX2 expression is a significant prognostic factor of poor prognosis for completely resected lung adenocarcinoma.


Asunto(s)
Adenocarcinoma , Biomarcadores de Tumor , Glutatión Peroxidasa , Neoplasias Pulmonares , Humanos , Masculino , Femenino , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/metabolismo , Glutatión Peroxidasa/metabolismo , Adenocarcinoma/patología , Adenocarcinoma/cirugía , Adenocarcinoma/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Pronóstico , Tasa de Supervivencia , Anciano , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estudios de Seguimiento , Invasividad Neoplásica , Metástasis Linfática , Estadificación de Neoplasias , Adulto , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/cirugía , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Ann Hematol ; 103(7): 2405-2417, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38538975

RESUMEN

Multiple myeloma (MM) is a common malignant hematologic neoplasm, and the involvement of epigenetic modifications in its development and drug resistance has received widespread attention. Ferroptosis, a new ferroptosis-dependent programmed death mode, is closely associated with the development of MM. The novel methyltransferase inhibitor DCG066 has higher cell activity, but its mechanism of action in MM has not been clarified. Here, we found that DCG066 (5µM) inhibited the proliferation and induced ferroptosis in MM cells; the intracellular levels of ROS, iron, and MDA were significantly elevated, and the level of GSH was reduced after the treatment of DCG066; The protein expression levels of SLC7A11, GPX4, Nrf2 and HO-1 were significantly reduced, and these phenomena could be reversed by ferroptosis inhibitor Ferrostatin-1 (Fer-1) and Nrf2 activator Tert-butyl hydroquinone (TBHQ). Meanwhile, the protein expression levels of Keap1 was increased, and heat shock proteins (HSP70, HSP90 and HSPB1) were reduced after DCG066 treatment. In conclusion, this study confirmed that DCG066 inhibits MM proliferation and induces ferroptosis via the Nrf2/HO-1 pathway.


Asunto(s)
Ferroptosis , Hemo-Oxigenasa 1 , Mieloma Múltiple , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Ferroptosis/efectos de los fármacos , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Antígenos de Histocompatibilidad
15.
Nitric Oxide ; 149: 75-84, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879114

RESUMEN

Obesity is commonly linked with white adipose tissue (WAT) dysfunction, setting off inflammation and oxidative stress, both key contributors to the cardiometabolic complications associated with obesity. To improve metabolic and cardiovascular health, countering these inflammatory and oxidative signaling processes is crucial. Offering potential in this context, the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by nitro-fatty acids (NO2-FA) promote diverse anti-inflammatory signaling and counteract oxidative stress. Additionally, we previously highlighted that nitro-oleic acid (NO2-OA) preferentially accumulates in WAT and provides protection against already established high fat diet (HFD)-mediated impaired glucose tolerance. The precise mechanism accounting for these protective effects remained largely unexplored until now. Herein, we reveal that protective effects of improved glucose tolerance by NO2-OA is absent when Nrf2 is specifically ablated in adipocytes (ANKO mice). NO2-OA treatment did not alter body weight between ANKO and littermate controls (Nrf2fl/fl) mice on both the HFD and low-fat diet (LFD). As expected, at day 76 (before NO2-OA treatment) and notably at day 125 (daily treatment of 15 mg/kg NO2-OA for 48 days), both HFD-fed Nrf2fl/fl and ANKO mice exhibited increased fat mass and reduced lean mass compared to LFD controls. However, throughout the NO2-OA treatment, no distinction was observed between Nrf2fl/fl and ANKO in the HFD-fed mice as well as in the Nrf2fl/fl mice fed a LFD. Glucose tolerance tests revealed impaired glucose tolerance in HFD-fed Nrf2fl/fl and ANKO compared to LFD-fed Nrf2fl/fl mice. Notably, NO2-OA treatment improved glucose tolerance in HFD-fed Nrf2fl/fl but did not yield the same improvement in ANKO mice at days 15, 30, and 55 of treatment. Unraveling the pathways linked to NO2-OA's protective effects in obesity-mediated impairment in glucose tolerance is pivotal within the realm of precision medicine, crucially propelling future applications and refining novel drug-based strategies.


Asunto(s)
Adipocitos , Dieta Alta en Grasa , Factor 2 Relacionado con NF-E2 , Obesidad , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Ratones , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Intolerancia a la Glucosa/metabolismo , Ácidos Oléicos/farmacología , Ratones Noqueados
16.
Mol Cell Biochem ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668809

RESUMEN

Ferroptosis is a type of cell death that is caused by the oxidation of lipids and is dependent on the presence of iron. It was first characterized by Brent R. Stockwell in 2012, and since then, research in the field of ferroptosis has rapidly expanded. The process of ferroptosis-induced cell death is genetically, biochemically, and morphologically distinct from other forms of cellular death, such as apoptosis, necroptosis, and non-programmed cell death. Extensive research has been devoted to comprehending the intricate process of ferroptosis and the various factors that contribute to it. While the majority of these studies have focused on examining the effects of lipid metabolism and mitochondria on ferroptosis, recent findings have highlighted the significant involvement of signaling pathways and associated proteins, including Nrf2, P53, and YAP/TAZ, in this process. This review provides a concise summary of the crucial signaling pathways associated with ferroptosis based on relevant studies. It also elaborates on the drugs that have been employed in recent years to treat ferroptosis-related diseases by targeting the relevant signaling pathways. The established and potential therapeutic targets for ferroptosis-related diseases, such as cancer and ischemic heart disease, are systematically addressed.

17.
Mol Cell Biochem ; 479(2): 431-444, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37084167

RESUMEN

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the mucosa of the colon, resulting in severe inflammation and ulcers. Genistein is a polyphenolic isoflavone present in several vegetables, such as soybeans and fava beans. Therefore, we conducted the following study to determine the therapeutic effects of genistein on UC in rats by influencing antioxidant activity and mitochondrial biogenesis and the subsequent effects on the apoptotic pathway. UC was induced in rats by single intracolonic administration of 2 ml of 4% acetic acid. Then, UC rats were treated with 25-mg/kg genistein. Colon samples were obtained to assess the gene and protein expression of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), caspase-3, caspase-8, and caspase-9. In addition, colon sections were stained with hematoxylin/eosin to investigate the cell structure. The microimages of UC rats revealed inflammatory cell infiltration, hemorrhage, and the destruction of intestinal glands, and these effects were improved by treatment with genistein. Finally, treatment with genistein significantly increased the expression of PGC-1, TFAM, Nrf2, HO-1, and BCL2 and reduced the expression of BAX, caspase-3, caspase-8, and caspase-9. In conclusion, genistein exerted therapeutic effects against UC in rats. This therapeutic activity involved enhancing antioxidant activity and increasing mitochondrial biogenesis, which reduced cell apoptosis.


Asunto(s)
Colitis Ulcerosa , Genisteína , Animales , Ratas , Genisteína/farmacología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Caspasa 3 , Caspasa 9 , Caspasa 8 , Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2 , Biogénesis de Organelos , Proteína X Asociada a bcl-2
18.
Cell Biol Int ; 48(4): 431-439, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180302

RESUMEN

Emerging evidence has suggested that N6 -methyladenosine (m6 A) regulates the pathology of Parkinson's disease (PD). Nevertheless, the function of demethylase fat mass and obesity (FTO) associated pathogenesis is still not fully elucidated. Here, this research findings revealed that m6 A-modification was decreased in PD models, meanwhile, the FTO level upregulated in the PD models. Functionally, in N-methyl-4-phenylpyridinium (MPP+) treated SH-SY5Y cells, the ferroptosis significantly upregulated and FTO silencing mitigated the ferroptosis phenotype. Moreover, in silico assays indicated that nuclear factor erythroid 2-related factor-2 (NRF2) acted as the target of FTO, and FTO demethylated the m6 A modification from NRF2 mRNA. Furthermore, FTO impaired the NRF2 mRNA stability via m6 A-dependent pathway. Thus, our findings illustrated an important role of FTO on PD through m6 A-NRF2-ferroptosis manner. Taken together, the study revealed the potential function of FTO on PD nervous system diseases.


Asunto(s)
Adenina/análogos & derivados , Ferroptosis , Neuroblastoma , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Factor 2 Relacionado con NF-E2/genética , Obesidad/genética , 1-Metil-4-fenilpiridinio , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
19.
Neuropsychobiology ; 83(2): 101-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38744261

RESUMEN

INTRODUCTION: The brain-derived neurotrophic factor (BDNF) and transcription nuclear factor erythroid 2-related factor-2 (NRF-2) play an important role in Alzheimer's disease (AD). However, the interactive involvement of BDNF and NRF-2 in respect to antioxidant mechanisms in different parts of the AD brain is still unclear. Considering the above condition, used S-nitrosoglutathione (GSNO) to examine whether it modulates the BDNF and NRF-2 levels to activate signaling pathway to promote antioxidant levels in AD brains. METHOD: AD was induced by intracerebroventricular infusion of streptozotocin (ICV-STZ, 3 mg/kg) in Wistar rats. The effect of GSNO was analyzed by evaluating the retention of memory in months 1, 2, and 3. After the behavior study, rats were sacrificed and accessed the amyloid beta (Aß)-40, Aß42, glutathione (GSH), BDNF, and NRF-2 levels in the hippocampus, cortex, and amygdala tissue. RESULTS: Pretreatment with GSNO (50 µg/kg/intraperitoneal/day) restored the BDNF, and NRF-2 levels toward normalcy as compared with ICV-STZ + saline-treated animals. Also, GSNO treatment reversed the oxidative stress and increased the GSH levels toward normal levels. Further, reduced Aß levels and neuronal loss in different brain regions. As a result, GSNO treatment improved the cognitive deficits in ICV-STZ-treated rats. CONCLUSION: The results showed that endogenous nitric oxide donor GSNO improved the cognitive deficits and ICV-STZ-induced AD pathological conditions, possibly via attenuating the oxidative stress. Hence, the above finding supported that GSNO treatment may activate BDNF and NRF-2 antioxidant signaling pathways in the AD brain to normalize oxidative stress, which is the main causative factor for ICV-STZ-induced AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Modelos Animales de Enfermedad , Trastornos de la Memoria , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Ratas Wistar , S-Nitrosoglutatión , Transducción de Señal , Estreptozocina , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Estrés Oxidativo/efectos de los fármacos , S-Nitrosoglutatión/farmacología , S-Nitrosoglutatión/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Masculino , Estreptozocina/farmacología , Estreptozocina/administración & dosificación , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/administración & dosificación
20.
J Biochem Mol Toxicol ; 38(1): e23605, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38069809

RESUMEN

COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Factor 2 Relacionado con NF-E2 , Inflamación , Pulmón
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda