Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Environ Manage ; 356: 120535, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479287

RESUMEN

Ecological restoration projects (ERPs) are implemented worldwide to restore degraded ecosystems and promote ecosystem sustainability. In recent years, a series of ERPs have been implemented to enhance vegetation cover in the unique alpine ecosystems of the Qinghai-Tibet Plateau (QTP). However, the current assessment of the ecological benefits of ERPs is relatively single, and the scale and extent of future ecological restoration project implementation cannot be determined. We quantified trends in normalized vegetation index (NDVI) since the implementation of ERPs. Changes in four major ecosystem services were assessed before and after ERPs implementation, including wind erosion protection, soil retention, water yield, and net primary productivity (NPP). The relationship between NDVI and ecosystem services was further explored using a constraint line approach to identify NDVI as a threshold reference for ERPs implementation. The results showed that: (1) since the implementation of ERPs, 21.80% of the regional NDVI of the QTP has increased significantly. (2) After the implementation of ERPs, the average total ecosystem services index (TES) increased from 0.269 in 2000 to 0.285 in 2020. The average soil retention and water yield increased but the NPP and sandstorm prevention decreased slightly. (3) NDVI had no significant constraint effect on soil retention and NPP, but there was a significant constraint effect on wind erosion prevention and water yield. (4) The constraint line of NDVI on TES was S-shaped. After the implementation of ERPs, the TES gradually reached a threshold value when NDVI was 0.65-0.75. Our findings identify significant contributions of ERPs and thresholds for the constraining effects of vegetation cover on ecosystem services, which can inform sustainable ERPs for governments.


Asunto(s)
Cambio Climático , Ecosistema , Tibet , Suelo , Agua , China
2.
J Environ Manage ; 356: 120701, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531134

RESUMEN

In the context of the "United Nations Decade on Ecosystem Restoration", optimizing spatiotemporal arrangements for ecological restoration is an important approach to enhancing overall socioecological benefits for sustainable development. However, against the background of ecological degradation caused by the human use of most natural resources at levels that have approached or exceeded the safe and sustainable boundaries of ecosystems, it is key to explain how to optimize ecological restoration by classified management and optimal total benefits. In response to these issues, we combined spatial heterogeneity and temporal dynamics at the national scale in China to construct five ecological performance regimes defined by indicators that use planetary boundaries and ecological pressures which served as the basis for prioritizing ecological restoration areas and implementing zoning control. By integrating habitat conservation, biodiversity, water supply, and restoration cost constraints, seven ecological restoration scenarios were simulated to optimize the spatial layout of ecological restoration projects (ERPs). The results indicated that the provinces with unsustainable freshwater use, climate change, and land use accounted for more than 25%, 66.7%, and 25%, respectively, of the total area. Only 30% of the provinces experienced a decrease in environmental pressure. Based on the ecological performance regimes, ERP sites spanning the past 20 years were identified, and more than 50% of the priority areas were clustered in regime areas with increased ecological stress. As the restoration area targets doubled (40%) from the baseline (20%), a multi-objective scenario presents a trade-off between expanded ERPs in areas with highly beneficial effects and minimal restoration costs. In conclusion, a reasonable classification and management regime is the basis for targeted restoration. Coordinating multiple objectives and costs in ecological restoration is the key to maximizing socio-ecological benefits. Our study offered new perspectives on systematic and sustainable planning for ecological restoration.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Biodiversidad , China , Abastecimiento de Agua
3.
J Environ Manage ; 358: 120921, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38652992

RESUMEN

Ecological vulnerability and poverty are interrelated and must be addressed together. The resolution of this issue will help us to meet the challenges during the process of implementing concrete actions for realizing the 2030 UN sustainable development goals (SDGs). Ecological restoration projects (ERPs) can enhance ecosystem services (ESs) while providing policy support for improving people's livelihoods. However, processes and mechanisms of ERPs on the ecological environment and socioeconomic development in poverty-stricken and ecologically fragile areas have rarely been studied. To address these issues, we conducted a comparative analysis on the changes of land use and land cover (LULC), ecosystem services (ESs), and socioeconomic development in Bijie City, a karst rocky desertification area in southwest China, before and after the implementation of ERPs in 2000, as well as the complex relationship between these factors. ERPs have affected LULCs, ESs, socioeconomics, and poverty reduction significantly since 2000. Specifically, the total ecosystem service value (ESV) in the study area has increased by more than 3 times in the past 30 years, with the ESV of tourism services and carbon storage increasing the most, from CNY 0.001 and 337.07 billion in 1990 to CNY 11.07 and 108.97 billion in 2019, respectively. The correlation between ESs is mainly synergistic, while the tradeoff between carbon storage and water yield is in a fluctuating upward trend. LULC conversion of cropland to green, and cropland to water, wetland and shrubs has positive effects on carbon storage and water yield, respectively. During study period, GDP, urbanization increased by over 70 times, 5 times, respectively, whereas poverty population, poverty incidence, and employment rate of various sectors (i.e., agriculture, forest, animal, and fishery, or AFAF) decreased by 96.4%, 97.7%, and 18.24%, respectively. Our findings emphasized that ERPs can effectively help poor and ecologically fragile areas to get out of the poverty trap and achieve the "win-win" goals of ecological and socio-economic sustainable development. These results have profound environmental management references to China and other developing countries around the world in realizing ecological restoration, poverty reduction, and the SDGs.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Pobreza , China , Desarrollo Sostenible , Ecología , Humanos
4.
Environ Manage ; 73(3): 493-508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37853251

RESUMEN

Ecological restoration projects aim to comprehensively intervene in damaged or deteriorating ecosystems, restore them, improve the provision of ecosystem services, and achieve harmonious coexistence between humans and nature. Implementing ecological restoration projects leads to continuous changes in land use/land cover. Studying the long-term changes in land use/land cover and their impacts on ecosystem services, as well as the trade-off and synergy between these services, helps evaluate the long-term effectiveness of ecological restoration projects in restoring ecosystems. Therefore, this study analyzes the land use/land cover, and ecosystem services of the Hainan Tropical Forest Park in China to address this. Since 2000, the area has undergone multiple ecological restoration projects, divided roughly into two stages: 2003-2013 and 2013-2021. The InVEST model is used to quantify three essential ecosystem services in mountainous regions (water yield, carbon storage, and soil conservation), and redundancy analysis identifies the primary driving factors influencing their changes. We conducted spatial autocorrelation analysis to examine the interplay among ecosystem services under long-term land use/land cover change. The results indicate a decrease in the total supply of water yield (-5.14%) and carbon storage (-3.21%) in the first phase. However, the second phase shows an improvement in ecosystem services, with an increase in the total supply of water yield (11.45%), carbon storage (27.58%), and soil conservation (21.95%). The redundancy analysis results reveal that land use/land cover are the primary driving factors influencing the changes in ecosystem services. Furthermore, there is a shift in the trade-off and synergy between ecosystem services at different stages, with significant differences in spatial distribution. The findings of this study provide more spatially targeted suggestions for the restoration and management of tropical montane rainforests in the future.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Conservación de los Recursos Naturales/métodos , Bosques , Suelo , Carbono , Agua
5.
Glob Chang Biol ; 29(18): 5304-5320, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376714

RESUMEN

Ecological restoration projects (ERPs) are an indispensable component of natural climate solutions and have proven to be very important for reversing environmental degradation in vulnerable regions and enhancing ecosystem services. However, the level of enhancement would be inevitably influenced by global drought and rising CO2 , which remain less investigated. In this study, we took the Beijing-Tianjin sand source region (which has experienced long-term ERPs), China, as an example and combined the process-based Biome-BGCMuSo model to set multiple scenarios to address this issue. We found ERP-induced carbon sequestration (CS), water retention (WR), soil retention (SR), and sandstorm prevention (SP) increased by 22.21%, 2.87%, 2.35%, and 28.77%, respectively. Moreover, the ecosystem services promotion from afforestation was greater than that from grassland planting. Approximately 91.41%, 98.13%, and 64.51% of the increased CS, SR, and SP were contributed by afforestation. However, afforestation also caused the WR to decline. Although rising CO2 amplified ecosystem services contributed by ERPs, it was almost totally offset by drought. The contribution of ERPs to CS, WR, SR, and SP was reduced by 5.74%, 32.62%, 11.74%, and 14.86%, respectively, under combined drought and rising CO2 . Our results confirmed the importance of ERPs in strengthening ecosystem services provision. Furthermore, we provide a quantitative way to understand the influence rate of drought and rising CO2 on ERP-induced ecosystem service dynamics. In addition, the considerable negative climate change impact implied that restoration strategies should be optimized to improve ecosystem resilience to better combat negative climate change impacts.


Asunto(s)
Dióxido de Carbono , Ecosistema , Sequías , China , Beijing , Suelo , Cambio Climático
6.
J Environ Manage ; 345: 118723, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536129

RESUMEN

Evapotranspiration (ET) is a key variable in the water cycle and reflects the ecosystem's feedback into the climate system. However, quantitative studies on the response of ET to large-scale vegetation restoration projects and climate change are still lacking, especially in drylands. To address this deficiency, this research examined the variation in ET since the implementation of restoration projects in the drylands of China in 2000-2018, and utilized quantitative analysis methods to investigate the effects of six environmental factors, including temperature (TEM), precipitation (PRE), solar radiation (RAD), vapour pressure deficit (VPD), soil moisture (SM), and leaf area index (LAI) on ET. Furthermore, a new method was proposed to detect the ET change caused by land use and land cover change (LUCC). The results indicated that ET showed a significant increasing trend (3.54 mm yr-1) during 2000-2018, and PRE was identified as a main influential factor with an ET contribution rate of more than 50%, especially in areas with insignificant vegetation greening. Additionally, the LAI had a major positive impact on ET in the areas of significant vegetation greening, and the contribution rate was nearly 40%. Furthermore, large-scale vegetation restoration expanded the area of high-transpiration vegetation types, and the ΔET (net variable quantity of ET caused by LUCC) increased obviously especially for the changes from cropland and grassland to forest, and barren land to grassland. These findings provide a new perspective for future assessments and further decision making regarding vegetation restoration projects in drylands.


Asunto(s)
Ecosistema , Suelo , Bosques , China , Cambio Climático , Políticas
7.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408124

RESUMEN

Vegetation in Northeast China (NEC) has faced dual challenges posed by climate change and human activities. However, the factors dominating vegetation development and their contribution remain unclear. In this study, we conducted a comprehensive evaluation of the response of vegetation in different land cover types, climate regions, and time scales to water availability from 1990 to 2018 based on the relationship between normalized difference vegetation index (NDVI) and the standardized precipitation evapotranspiration index (SPEI). The effects of human activities and climate change on vegetation development were quantitatively evaluated using the residual analysis method. We found that the area percentage with positive correlation between NDVI and SPEI increased with time scales. NDVI of grass, sparse vegetation, rain-fed crop, and built-up land as well as sub-humid and semi-arid areas (drylands) correlated positively with SPEI, and the correlations increased with time scales. The negatively correlated area was concentrated in humid areas or areas covered by forests and shrubs. Vegetation water surplus in humid areas weakens with warming, and vegetation water constraints in drylands enhance. Moreover, potential evapotranspiration had an overall negative effect on vegetation, and precipitation was a controlling factor for vegetation development in semi-arid areas. A total of 53% of the total area in NEC showed a trend of improvement, which is mainly attributed to human activities (93%), especially through the implementation of ecological restoration projects in NEC. The relative role of human activities and climate change in vegetation degradation areas were 56% and 44%, respectively. Our findings highlight that the government should more explicitly consider the spatiotemporal heterogeneity of the influence of human activities and water availability on vegetation under changing climate and improve the resilience of regional water resources. The relative proportions and roles map of climate change and human activities in vegetation change areas provide a basis for government to formulate local-based management policies.


Asunto(s)
Cambio Climático , Ecosistema , China , Actividades Humanas , Humanos , Temperatura , Agua
8.
J Environ Manage ; 324: 116406, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36352714

RESUMEN

Improving ecosystem quality is the ultimate goal of ecological restoration projects and sustainable ecosystem management. However, previous results of ecosystem quality lack comparability among different regions when assessing the effectiveness of ecological restoration projects on the regional or national scales, due to the influence of geographical and climatic background conditions. Here we proposed a new index, ecosystem quality ratio (EQR), by integrating the status of landscape structure, ecosystem services, ecosystem stability, and human disturbance relative to their reference conditions, and assessed the EQR changes in China's counties and National Key Ecological Function Zones (NKEFZs) from 1990 to 2015. The results showed that the average ecosystem quality of China's counties deviated from the reference condition by 28%. EQR decreased by 1.2% during 1990-2000 but increased by 3.7% during 2000-2015. Those counties with increasing EQR in 2000-2015 occupy 64.7%, with obviously increasing counties mainly located in the water conservation, biodiversity maintenance, and water and soil conservation types of NKEFZs. The EQR increase in counties within NKEFZs was 3.65 times that outside of NKEFZs. Remarkable improvement of ecosystem quality occurred in the forest region in Changbai Mountain, biodiversity and soil conservation region in Wuling Mountains, and hilly and gully region of Loess Plateau, where EQR increases mainly resulted from the conversion of farmland to forest or grassland and consequent increases in ecosystem services and stability. The magnitude of EQR enhancement showed a positive relationship with the increase in forest and grassland coverage in NKEFZs. Our results highlight the important role of ecological restoration projects in improving ecosystem quality in China, and demonstrate the feasibility of the new index (EQR) for the assessment of ecosystem quality in terms of ecosystem management and restoration.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Conservación de los Recursos Naturales/métodos , Biodiversidad , Suelo/química , China
9.
J Environ Manage ; 301: 113813, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607133

RESUMEN

There is a growing interest in including blue carbon ecosystems (i.e., mangroves, tidal marshes and seagrasses) in climate mitigation programs in national and sub-national policies, with restoration and conservation of these ecosystems identified as potential activities to increase carbon accumulation through time. However, there is still a gap on the spatial scales needed to produce carbon offsets comparable with terrestrial or agricultural ecosystems. Here, we used the Coastal Blue Carbon InVEST 3.7.0 model to estimate future net carbon sequestration in blue carbon ecosystems along Australia's Great Barrier Reef (hereafter GBR) catchments, considering different management scenarios (i.e., reintroduction of tidal exchange through the removal of barriers, sea level rise, restoring low lying land) at three different spatial scales: whole GBR coastline, regional (14,000-16,300 ha), and local (335-370 ha) scales. The focus of the restoration (i.e., tidal marshes and/or mangroves) was dependent on data availability for each scenario. Furthermore, we also estimated the monetary value of carbon sequestration under each management scenario and spatial scale assessed in the study. We found that large scale restoration of tidal marshes could potentially sequester an additional ∼800,000 tonnes of CO2e by 2045 (potentially generating AU$12 million based on the average Australia carbon price), with greater opportunities when sea level rise is accounted for in the modelling. Also, we found that regional and local projects would generate up to 23 tonnes CO2e ha-1 by the end of the crediting period. Our results can guide future decisions in the blue carbon market and financing schemes, however, the return on investment is dependent on the carbon price and funding scheme available for project implementation.


Asunto(s)
Carbono , Ecosistema , Agricultura , Secuestro de Carbono , Humedales
10.
Environ Sci Pollut Res Int ; 30(17): 49097-49107, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764991

RESUMEN

Compared with the aquatic ecosystem destruction caused by rapid urban development, substantial ecological restoration usually requires long periods and is a challenging process. Although river ecological restoration has been successful in different regions, the relationship between biodiversity, water quality, and effective measures applicable to developing countries remains poorly understood. This study was conducted in the Dasha River in Shenzhen city, one of the fastest-growing cities in China. The rehabilitation measures were sorted out in four phases to study the impact on water quality and biodiversity. In response, three campaigns were carried out to take phytoplankton, zooplankton, and benthos samples within the last three engineering stages, in 2007, 2012, and 2021. Synchronized investigations of water quality were conducted monthly from 2006 to 2021. Our analysis showed that the biodiversity of benthos has improved in recent years, which marks a turnaround for the aquatic ecological environment. According to the Hilsenhoff family biotic index (FBI), the water quality level in the 2021 campaign was promoted to "Good" in the downstream and "Fair" in the upper and middle streams. By analyzing Pearson's correlations between response ratios of water quality parameters and the Shannon-Wiener index of phytoplankton, zooplankton, and benthos, we concluded that biodiversity is significantly related to water quality. Specifically, the biodiversity of zooplankton is associated with ammonia nitrogen (NH3-N) (R2 = - 0.77, P < 0.05), and benthos diversity is strongly negatively correlated with NH3-N, total nitrogen, chemical oxygen demand, and biochemical oxygen demand (R2 ≥ -0.82, P < 0.01). Despite the temporary negative impact of along-river interception on aquatic organisms in the campaign of 2012, the measures quickly and effectively improved water quality, which is the foundation for biodiversity improvement in 2021. This study provides insights into relationships among biodiversity, water quality, and regulation projects and can offer a reference for selecting aquatic ecosystem restoration measures in developing areas.


Asunto(s)
Ecosistema , Zooplancton , Animales , Hong Kong , Macao , Ciudades , China , Fitoplancton , Nitrógeno/análisis
11.
Front Plant Sci ; 14: 1239417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900732

RESUMEN

The Three River Headwater Region (TRHR) is an important river source area providing important ecological functions. Decades ago, climate change and human activities severely degraded the ecosystem in the TRHR. To restore vegetation, a series of ecological projects have been implemented since 1989. Using net primary productivity (NPP) data from 1988 to 2012, a sequential Mann-Kendall trend test (SQ-MK) method was applied to identify the turning point of vegetation NPP. This approach was able to represent the critical response time of the vegetation to important disturbances. A 3-year time window was set after the implementation of one ecological project to detect and analyze its short-term effects. The ecological projects included the Yangtze River Basin Shelterbelt System Construction Project (YRCP), the TRHR Nature Reserve Construction Project (TNR), the Returning Grazing Land to Grassland Project (RGLGP), and the first phase of the Ecological Conservation and Restoration Project of the TRHR (ECRP). Our results showed that the vegetation in the TRHR responded positively to restoration: 89% of pixels showed an increasing trend and 54% of pixels underwent an abrupt change. The accelerated growth type accounted for the highest proportion among all types of detected turning points. In the ECRP's window, the positive turns rose rapidly, from 41% in 2005 to 86% in 2008, and it showed the most balanced restoration effects across grasslands. The alpine meadow and montane meadow restoration was largely influenced by the ECRP and the RGLGP (both >40%). The alpine steppe restoration was mainly attributed to the ECRP (68%). On the county scale, the positive turns in Yushu at the source of the Yangtze River mainly benefited from the RGLGP (56%), while the positive turns in Maduo at the source of the Yellow River benefited from the ECRP (77%). Nangqian, Tanggula and Zaduo County were still in need of intervention for restoration (< 3%). The results of the study can enhance our understanding of the spatio-temporal distribution of the short-term ecological benefits of different ecological projects, thus provide a scientific and timely reference for future planning and adjustment of the conservation and restoration projects.

12.
Sci Total Environ ; 825: 153938, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183635

RESUMEN

China is prone to broad land degradation and thus has been implementing ecological restoration projects (ERPs) since the reform and opening up. The extent of ERPs, as well as the varied planting efforts including tree gain projects (TGPs), grass gain projects (GGPs), and shrub gain projects (SGPs), have remained largely unknown. In addition, the mixed success of ERPs on preventing soil erosion and improving biodiversity is not well known. Based on a land use and land cover (LULC) product and a trajectory-based change detection approach, we successfully generated the first national map of ERPs associated with land use and land cover change (LUCC) and its three associated subcategories. Then, we applied the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to evaluate the dynamics of sediment retention and habitat quality. In addition, we explored the heterogeneous patterns for the ecological impacts of ERPs. Our results suggested that during the past 40 years, a total ERP area of 9.54 × 106 hm2 was observed nationwide, mainly in the northwestern provinces of China. Of the three ERP subcategories, TGPs accounted for the largest area (48.55%), followed by GGPs (47.50%) and SGPs (3.96%). The national average sediment retention experienced a significant increase, whereas the national average habitat quality experienced a significant decline. ERP-driven increases in habitat quality were offset partly by the LUCCs induced by economic development policies in some regions, especially in northeast China. The simultaneous effect of construction land expansion and ERP implementation on sediment retention made the synchronization between ERP implementation and sediment retention improvement insignificant. We also suggested the optimal direction for ERP implementation.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , China
13.
Front Plant Sci ; 13: 1062691, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518500

RESUMEN

Vegetation is an essential component of the earth's surface system and its dynamics is a clear indicator of global climate change. However, the vegetation trends of most studies were based on time-unvarying methods, cannot accurately detect the long-term nonlinear characteristics of vegetation changes. Here, the ensemble empirical mode decomposition and the Breaks for Additive Seasonal and Trend algorithm were applied to reconstruct the the normalized difference vegetation index (NDVI) data and diagnose spatiotemporal evolution and abrupt changes of long-term vegetation trends in China during 1982-2018. Residual analysis was used to separate the influence of climate and human activities on NDVI variations, and the effect of specific human drivers on vegetation growth was obtained. The results suggest that based on the time-varying analysis, high vegetation browning was masked by overall vegetation greening. Vegetation growth in China experienced an abrupt change in the 1990s and 2000s, accounting for 50% and 33.6% of the whole China respectively. Of the area before the breakpoint, 45.4% showed a trend of vegetation decrease, which was concentrated mainly in east China, while 43% of the area after the breakpoint also showed vegetation degradation, mainly in northwest China. Climate was an important driving force for vegetation change in China. It played a positive role in south China, but had a negative effect in northwest China. The impact of human activities on vegetation growthchanged from an initial negative influence to a positive one. In terms of human activities, an inverted-U-shaped relation was detected between CO2 emissions and vegetation growth; that is, the fertilization effect of CO2 had a certain threshold. Once that threshold was exceeded, it would hinder vegetation growth. Population density had a slight constraint on vegetation growth, and the implementation of ecological restoration projects (e.g., the Grain for Green Program) can promote vegetation growth to a certain extent.

14.
Environ Sci Pollut Res Int ; 28(15): 19034-19045, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33394422

RESUMEN

In order to increase the knowledge about crop tolerance to air pollutants in the different agroclimatic zones of the world, so that they can be efficiently considered for improving peri-urban agriculture, increasing the success of restoration projects, or enhancing air quality in polluted sites, the suitability of four economical valuable tree crops of the Mediterranean agriculture were studied under field conditions: date palm tree (Phoenix dactylifera L.), pomegranate (Punica granatum L.), fig tree (Ficus carica L.), and olive tree (Olea europaea L.). The measurement of biochemical markers such as ascorbic acid content, leaf relative water content, leaf total chlorophyll and leaf extract pH, at two contrasted air quality sites, a polluted site located around Gabes (Tunisia) industrial area and a control site, allowed the assessment of the air pollution tolerance index (APTI) and anticipated performance index (API) for the assayed species. Results showed obvious differences between the evergreen and the caducifolious tree crops assayed. Phoenix dactylifera tree (API = 6) was classified as an excellent performer for growing under poor air quality, followed by Olea europaea tree (API = 2) which was classified as a moderate performer. Both of trees can be recommended for successful results in peri-urban agriculture and restoration projects of polluted areas in the Mediterranean climate; on the contrary, the suitability of the Punica granatum (API = 1) was very poor, but still potentially interesting as a biological indicator of air pollution. Regarding the Ficus carica tree (API = 0), this species is not suitable for growing in air-polluted areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Agricultura , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Hojas de la Planta/química , Árboles , Túnez
15.
Sci Total Environ ; 718: 134871, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31839307

RESUMEN

The vegetation in the agro-pastoral transitional zone of northern China (APTZNC) was significantly restored, and both climate change and ecological restoration projects contributed to vegetation activities with varied proportion. Since few decades ago, APTZNC has undergone significant land degradation and climate change, threatening regional sustainable development, and in response to such ecological crises, multiple ecological restoration projects were implemented, which have caused a profound impact on the terrestrial ecosystem. Taking agro-pastural transitional zone of northern China (APTZNC) as the study area, this study used 16-year (2000-2015) net primary productivity (NPP) as an important indicator of the arid and semi-arid ecosystem's productivity, combing meteorological data in same period to (1) monitor the vegetation dynamics affected by both climate and ecological restoration projects; (2) detect climate changing trend, including annual precipitation, air temperature, and sunlight hours; (3) explicitly distinguish driving forces of climate change and ecological restoration projects on vegetation dynamics based on correlation analysis. The results demonstrated that (1) the annual NPP indicated overall greening (48.77% significant restoration) and partial degradation (0.39% significant degradation) in APTZNC; (2) the annual precipitation was the main factor that widely influences vegetation growth, and the area with significant influence accounted for 55.53%; however, the area with significant temperature influence only accounted for 1%, and the area affected significantly by sunshine hours accounted for 14.33%; (3) In the area of significant greening with proportion of 48.77%, of 26.93% was related to climate change, of 19.80% was related to ecological conservation programs, and of 2.05% was related to multiple factors. In the significantly degraded area with proportion of 0.39%, of 0.1% is related to climate change and of 0.29% is abnormally degraded. Our study is expected to accelerate the understanding of vegetation dynamics and its driving mechanisms, and provide support for scientifically formulating and adjusting ecological restoration projects in APTZNC.


Asunto(s)
Cambio Climático , Ecosistema , China , Actividades Humanas , Humanos , Temperatura
16.
MethodsX ; 6: 1753-1773, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31413948

RESUMEN

The real emission mitigation by the ecological restoration projects depends upon the integrated effect of all greenhouse gas (GHG) budgets rather than the carbon sequestration alone. However, a comprehensive and robust methodology for estimating the relevant GHG budgets and net mitigation of China's ecological restoration projects is still urgently to await development. Based on the methods from IPCC and statistical data of the management practices under the projects, we constructed a methodology for carbon accounting and determining net mitigation for ecological restoration projects in China (CANM-EP). GHG emissions generated from different processes and practices of the projects were included in the CANM-EP, and by this methodology, carbon sequestration, GHG balance changes induced by ecological response, on-site and off-site GHG emissions could be estimated. Therefore, the CANM-EP provides comprehensive methods to estimate the whole GHG budgets as well as the net mitigation of China's ecological restoration projects. •The CANM-EP provides accounting methods for comprehensive processes and management practices under respective ecological restoration projects in China.•The CANM-EP could simultaneously estimate carbon sequestration and GHG emissions of the projects.•The CANM-EP indicates net carbon sequestration and net contribution of China's ecological restoration projects to climate change mitigation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda