Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.225
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(26): e2315425121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38889148

RESUMEN

Central North America is the global hotspot for tornadoes, fueled by elevated terrain of the Rockies to the west and a source of warm, moist air from equatorward oceans. This conventional wisdom argues that central South America, with the Andes to the west and Amazon basin to the north, should have a "tornado alley" at least as active as central North America. Central South America has frequent severe thunderstorms yet relatively few tornadoes. Here, we show that conventional wisdom is missing an important ingredient specific to tornadoes: a smooth, flat ocean-like upstream surface. Using global climate model experiments, we show that central South American tornado potential substantially increases if its equatorward land surface is smoothed and flattened to be ocean-like. Similarly, we show that central North American tornado potential substantially decreases if its equatorward ocean surface is roughened to values comparable to forested land. A rough upstream surface suppresses the formation of tornadic environments principally by weakening the poleward low-level winds, characterized by a weakened low-level jet east of the mountain range. Results are shown to be robust for any midlatitude landmass using idealized experiments with a simplified continent and mountain range. Our findings indicate that large-scale upstream surface roughness is likely a first-order driver of the strong contrast in tornado potential between North and South America.

2.
Proc Natl Acad Sci U S A ; 121(13): e2320216121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507446

RESUMEN

The structure and intensity of turbulence in the atmospheric boundary layer (ABL) drive fluxes of sediment, contaminants, heat, moisture, and CO[Formula: see text] at the Earth's surface. Where ABL flows encounter changes in roughness-such as cities, wind farms, forest canopies, and landforms-a new mesoscopic flow scale is introduced: the internal boundary layer (IBL), which represents a near-bed region of transient flow adjustment that develops over kilometers. Measurement of this new mesoscopic scale lies outside present observational capabilities of ABL flows, and simplified models fail to capture the sensitive dependence of turbulence on roughness geometry. Here, we use large-eddy simulations, run over high-resolution topographic data and validated against field observations, to examine the structure of the ABL across a natural roughness transition: the emergent sand dunes at White Sands National Park. We observe that development of the IBL is triggered by the abrupt transition from smooth playa surface to dunes; however, continuous changes in the size and spacing of dunes over several kilometers influence the downwind patterns of boundary stress and near-bed turbulence. Coherent flow structures grow and merge over the entire [Formula: see text]10 km distance of the dune field and modulate the influence of large-scale atmospheric turbulence on the bed. Simulated boundary stresses in the developing IBL counter existing expectations and explain the observed downwind decrease in dune migration, demonstrating a mesoscale coupling between flow and form that governs landscape dynamics. More broadly, our findings demonstrate the importance of resolving both turbulence and realistic roughness for understanding fluid-boundary interactions in environmental flows.

3.
Proc Natl Acad Sci U S A ; 121(3): e2310039121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38215182

RESUMEN

Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induced seismicity remains elusive. Here, we investigate the effects of fault geometry and stress heterogeneity on fluid-induced fault slip and associated seismicity characteristics using laboratory experiments and numerical modeling. We perform fluid injection experiments on quartz-rich sandstone samples containing either a smooth or a rough fault. We find that geometrical roughness slows down injection-induced fault slip and reduces macroscopic slip velocities and fault slip-weakening rates. Stress heterogeneity and roughness control hypocenter distribution, frequency-magnitude characteristics, and source mechanisms of injection-induced acoustic emissions (AEs) (analogous to natural seismicity). In contrast to smooth faults where injection-induced AEs are uniformly distributed, slip on rough faults produces spatially localized AEs with pronounced non-double-couple source mechanisms. We demonstrate that these clustered AEs occur around highly stressed asperities where induced local slip rates are higher, accompanied by lower Gutenberg-Richter b-values. Our findings suggest that real-time monitoring of induced microseismicity during fluid injection may allow identifying progressive localization of seismic activity and improve forecasting of runaway events.

4.
Proc Natl Acad Sci U S A ; 120(3): e2212105120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623184

RESUMEN

Windthrow, or the uprooting of trees by extreme wind gusts, is a natural forest disturbance that creates microhabitats, turns over soil, alters hydrology, and removes carbon from the above-ground carbon stock. Long recurrence intervals between extreme wind events, however, make direct observations of windthrow rare, challenging our understanding of this important disturbance process. To overcome this difficulty, we present an approach that uses the geomorphic record of hillslope topographic roughness as a proxy for the occurrence of windthrow. The approach produces a probability function of the number of annual windthrow events for a maximum wind speed, allowing us to explore how windthrow or tree strengths may change due to shifting wind climates. Slight changes to extreme wind speeds may drive comparatively large changes in windthrow production rates or force trees to respond and change the distribution. We also highlight that topographic roughness has the potential to serve as an important archive of extreme wind speeds.


Asunto(s)
Bosques , Viento , Clima , Carbono
5.
Proc Natl Acad Sci U S A ; 120(22): e2303515120, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216501

RESUMEN

Immiscible fluid-fluid displacement in confined geometries is a fundamental process occurring in many natural phenomena and technological applications, from geological CO2 sequestration to microfluidics. Due to the interactions between the fluids and the solid walls, fluid invasion undergoes a wetting transition from complete displacement at low displacement rates to leaving a film of the defending fluid on the confining surfaces at high displacement rates. While most real surfaces are rough, fundamental questions remain about the type of fluid-fluid displacement that can emerge in a confined, rough geometry. Here, we study immiscible displacement in a microfluidic device with a precisely controlled structured surface as an analogue for a rough fracture. We analyze the influence of the degree of surface roughness on the wetting transition and the formation of thin films of the defending liquid. We show experimentally, and rationalize theoretically, that roughness affects both the stability and dewetting dynamics of thin films, leading to distinct late-time morphologies of the undisplaced (trapped) fluid. Finally, we discuss the implications of our observations for geologic and technological applications.

6.
Proc Natl Acad Sci U S A ; 119(31): e2121302119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35905323

RESUMEN

Some dividing cells sense their shape by becoming polarized along their long axis. Cell polarity is controlled in part by polarity proteins, like Rho GTPases, cycling between active membrane-bound forms and inactive cytosolic forms, modeled as a "wave-pinning" reaction-diffusion process. Does shape sensing emerge from wave pinning? We show that wave pinning senses the cell's long axis. Simulating wave pinning on a curved surface, we find that high-activity domains migrate to peaks and troughs of the surface. For smooth surfaces, a simple rule of minimizing the domain perimeter while keeping its area fixed predicts the final position of the domain and its shape. However, when we introduce roughness to our surfaces, shape sensing can be disrupted, and high-activity domains can become localized to locations other than the global peaks and valleys of the surface. On rough surfaces, the domains of the wave-pinning model are more robust in finding the peaks and troughs than the minimization rule, although both can become trapped in steady states away from the peaks and valleys. We can control the robustness of shape sensing by altering the Rho GTPase diffusivity and the domain size. We also find that the shape-sensing properties of cell polarity models can explain how domains localize to curved regions of deformed cells. Our results help to understand the factors that allow cells to sense their shape-and the limits that membrane roughness can place on this process.


Asunto(s)
Polaridad Celular , Forma de la Célula , Difusión , Modelos Biológicos , Proteínas de Unión al GTP rho/química
7.
Nano Lett ; 24(2): 688-695, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38180811

RESUMEN

The effects of surface roughness on the performance of the Zn metal anode in aqueous electrolytes are investigated by experiments and computational simulations. Smooth surfaces can homogenize the nucleation and growth of Zn, which helps to form a flat Zn anode under high current density. In spite of these advantages, the whole surface of the smooth electrode serves as the reactive contact area for parasitic reactions, generating severe hydrogen evolution, corrosion, and byproduct formation, which seriously hinder the long-term cycle stability of the Zn anode. To trade off this double-sided effect, we identify a medium degree of surface roughness that could stabilize the Zn anode for 1000 h cycling at 1.0 mAh cm-2. The electrode also enabled stable cycling for 800 h at a high current density of 5.0 mAh cm-2. This naked Zn metal anode with optimized surface roughness holds great promise for direct use in aqueous zinc ion batteries.

8.
Small ; : e2402297, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837678

RESUMEN

Hydrophobic polymer plates with smooth and rough surfaces are used as a stabilizer for cubic liquid marbles (LMs) to study the effect of surface roughness on their formation. The smooth and rough polymer plates can stabilize LMs using liquids with surface tensions of 72.8-26.6 and 72.8-22.9 mN m-1, respectively. It is clarified that the higher the surface roughness, the lower the surface tension of the liquids are stabilized to form the LMs. These results indicated that the introduction of surface roughness improves the hydrophobicity of the polymer plates and the rough polymer plates can stabilize LMs using liquids with a wider surface tension range. Electron microscopy studies and numerical analyses confirmed that the LMs can be formed, when the Cassie-Baxter wetting state, where θY>90° (θY: the contact angle on smooth surfaces) and θR>90° (θR: the contact angle on rough surfaces), and the metastable Cassie-Baxter wetting state, where θY<90° and θR>90°, are realized. Finally, the synthesis of cubic polymer particles are succeeded by free radical polymerization of the cubic LMs containing a hydrophobic vinyl monomer (dodecyl acrylate) in a solvent-free manner.

9.
Small ; 20(11): e2303880, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37661596

RESUMEN

Domain walls separating differently oriented polarization regions of ferroelectric materials are known to greatly impact nanoscale materials and device functionalities. Though the understanding of size effects in ferroelectric nanostructures has progressed, the effect of thickness downsizing on domain wall scaling behavior has remained unexplored. Using piezoresponse force microscopy, epitaxial BaTiO3 film thickness size (2-90 nm) effects on the critical scaling universality of the domain wall dynamical creep and static roughness exponents including dimensionality is demonstrated. Independently estimated static roughness exponents ranging between 0.34 and 0.28 and dynamical creep exponents transition from 0.54 to 0.22 elucidate the domain wall dimensionality transition from two- to quasi-one-dimension in the thickness range of 10-25 nm, which is later validated by evaluating effective dimensionality within the paradigm of random-bond universality. The observed interdimensional transition is further credenced to the compressive strain and long-range strain-dipolar interactions, as revealed by the structural analyses and additional measurements with modified substrate-induced strain. These results provide new insights into the understanding of size effects in nanoscale ferroelectricity, paving the way toward future nanodevices.

10.
Chemphyschem ; 25(3): e202300388, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991234

RESUMEN

A simple two-step spray method is used to prepare superhydrophobic and bacteriostatic surfaces, involving dual-coating with polydimethylsiloxane-normal-fluorine (PDMS-NF) or branched-fluorine (PDMS-BF) in combination with fluorinated silica nanoparticles (FSiO2 -NPs) using a spray technique. This approach has the potential to create surfaces with both water-repellent and antimicrobial properties, which could be useful in a variety of applications. It is noteworthy that the dual-coating on cotton fabric exhibited an impressive dual-scale roughness and achieved superhydrophobicity with a water contact angle of 158° and a hysteresis of less than 3°. Additionally, the coating was subjected to an ultra-high concentration of bacteria (109 CFU/mL) and was still able to inhibit more than 80 % of attachment, demonstrating its effectiveness as a bacteriostatic surface.

11.
J Microsc ; 294(2): 128-136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38108514

RESUMEN

Sample preparation is of utmost importance for any microscopy and microstructural analysis. Correct preparation will allow accurate interpretation of microstructural features. A well-polished section is essential when scanning electron microscopy (SEM) is used in backscattering electron (BSE) mode and characteristic X-rays are to be quantified using an energy-dispersive spectroscopy (EDS) detector. However, obtaining a well-polished section, especially for cementitious materials containing aggregates, is considered to be challenging and requires experience. A sample preparation procedure consists of cutting, grinding and polishing. Undercutting of soft and brittle paste between harder aggregates can be overcome by vacuum epoxy impregnation offering mechanical support in the matrix. Furthermore, most of the attention during the sample preparation is given to the polishing of the sample. There is a wide range of suggestions on polishing steps, ranging from grain sizes, time and applied force; however, the final assessment of a polish surface is often subjective and qualitative. Therefore, a quantitative, reproducible guidance on the grinding steps, effect of experimental parameters and the influence of different grinding steps on the surface quality are required. In this paper, the influence of grinding was quantitatively evaluated by a digital microscope equipped with optical profilometry tools, through a step-wise procedure, including sample orientation, grinding time and the difference between cement paste and concrete. Throughout the grinding procedure, the surface profiles were determined after each grinding step. This showed the step-wise change in surface roughness and quality during the grinding procedure. Finally, the surface qualities were evaluated using optical and electron microscopy, which show the importance of the grinding/prepolishing steps during sample preparation.

12.
J Microsc ; 294(2): 233-238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38576376

RESUMEN

The performance of cementitious composites reinforced with fibres or/and bars depends on the bond strength between inclusion and cementitious matrix. The nature of formation of fibre-matrix bond is crucial for enhancing the reliability and utilisation of reinforced composites. The research provides a review on the recently published result about the changes in the microstructure of cement matrix surrounding steel fibres with different surface roughness, using a scanning electron microscope (SEM) coupled with k-means clustering algorithm for image segmentation. The debonding pattern of the fibre-matrix bond after the tensile loading cycles was discussed by observing the amount of adhered cement paste to the pulled out fibre surface with SEM. Therefore, analysis of SEM images enabled to explain the connection between the micro-scale properties of cement paste and fibre after application of cyclic loading.

13.
Nanotechnology ; 35(27)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38574479

RESUMEN

This article investigates the radiation effects on as-deposited and annealed AlN films on 4H-SiC substrates under gamma-rays. The AlN films are prepared using plasma-enhanced-atomic-layer-deposition on an n-type 4H-SiC substrate. The AlN/4H-SiC MIS structure is subjected to gamma-ray irradiation with total doses of 0, 300, and 600 krad(Si). Physical, chemical, and electrical methods were employed to study the variations in surface morphology, charge transport, and interfacial trapping characteristics induced by irradiation. After 300 krad(Si) irradiation, the as-deposited and annealed samples exhibit their highest root mean square values of 0.917 nm and 1.190 nm, respectively, which is attributed to N vacancy defects induced by irradiation. Under irradiation, the flatband voltage (Vfb) of the as-deposited sample shifts from 2.24 to 0.78 V, while the annealed sample shifts from 1.18 to 2.16 V. X-ray photoelectron spectrum analysis reveals the decomposition of O-related defects in the as-deposited AlN and the formation of Al(NOx)ycompounds in the annealed sample. Furthermore, the space-charge-limits-conduction (SCLC) in the as-deposited sample is enhanced after radiation, while the barrier height of the annealed sample decreases from 1.12 to 0.84 eV, accompanied by the occurrence of the SCLC. The physical mechanism of the degradation of electrical performance in irradiated devices is the introduction of defects like N vacancies and O-related defects like Al(NOx)y. These findings provide valuable insights for SiC power devices in space applications.

14.
J Periodontal Res ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828886

RESUMEN

AIMS: To test whether titanium surface roughness disparity might be used to specifically guide the behavior of gingiva fibroblasts and keratinocytes, thereby improving the quality of soft tissue (ST) integration around abutments. METHODS: Titanium discs resembling the roughness of enamel (M) or cementum (MA) were created with normal or increased hydrophilicity and used as substrates for human fibroblasts and keratinocytes. Adhesion and proliferation assays were performed to assess cell-type specific responses upon encountering the different surfaces. Additionally, immunofluorescence and qPCR analyses were performed to study more in depth the behavior of fibroblasts and keratinocytes on MA and M surfaces, respectively. RESULTS: While enamel-like M surfaces supported adhesion, growth and a normal differentiation potential of keratinocytes, cementum-emulating MA surfaces specifically impaired the growth of keratinocytes. Vice versa, MA surfaces sustained regular adhesion and proliferation of fibroblasts. Yet, a more intimate adhesion between fibroblasts and titanium was achieved by an increased hydrophilicity of MA surfaces, which was associated with an increased expression of elastin. CONCLUSION: The optimal titanium implant abutment might be achieved by a bimodal roughness design, mimicking the roughness of enamel (M) and cementum with increased hydrophilicity (hMA), respectively. These surfaces can selectively elicit cell responses favoring proper ST barrier by impairing epithelial downgrowth and promoting firm adhesion of fibroblasts.

15.
Support Care Cancer ; 32(5): 295, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635051

RESUMEN

OBJECTIVE: The aim of this in vitro study was to evaluate the effect of radiotherapy on the surface microhardness and roughness of different bioactive restorative materials. MATERIALS AND METHODS: A total of 60-disc specimens (5 mm × 2 mm) were performed in four groups (n = 15 each) from Equia Forte HT, Cention N, Activa Bioactive Restorative, and Beautifil II. Following the polishing procedure (600, 1000, 1200 grit silicon carbide papers), all specimens were irradiated at 2 Gy per fraction, five times a week for a total dose of 70 Gy in 30 fractions over 7 weeks. Before and after the irradiation, the specimens were analyzed regarding the surface roughness and microhardness. Surface morphology was also analyzed by scanning electron microscopy. Kruskal-Wallis test, Wilcoxon test, and paired sample t-test were used for statistical analysis. RESULTS: Significant differences were found after radiation with increased mean roughness of both Cention N (p = 0.001) and Beautifil II (p < 0.001) groups. In terms of microhardness, only the Beautifil II group showed significant differences with decreased values after radiation. There were statistically significant differences among the groups' roughness and microhardness data before and after radiotherapy (p < 0.05). CONCLUSION: The effect of radiotherapy might differ according to the type of the restorative material. Although results may differ for other tested materials, giomer tends to exhibit worse behaviour in terms of both surface roughness and microhardness. CLINICAL RELEVANCE: In patients undergoing head and neck radiotherapy, it should be taken into consideration that the treatment process may also have negative effects on the surface properties of anti-caries restorative materials.


Asunto(s)
Caries Dental , Oncología por Radiación , Humanos , Cariostáticos , Cuello , Proyectos de Investigación
16.
Eur J Oral Sci ; 132(2): e12967, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38105518

RESUMEN

The aim of the study was to evaluate the effects of erosion and abrasion on resin-matrix ceramic CAD/CAM materials [CERASMART (GC); VITA ENAMIC (VITA Zahnfabrik); Lava Ultimate (3 M)] in comparison to feldspar ceramic (VITABLOCS Mark II, VITA Zahnfabrik) and resin composite materials (ceram.x universal, Dentsply Sirona). Daily brushing and acid exposure were simulated using a brushing apparatus and a solution of 0.5 vol% citric acid. Microhardness, surface roughness, and substance loss were measured at baseline and after simulation of 1 and 3 years of function. All materials showed a decrease in microhardness after 3 years and an increase in surface roughness (Ra) after 1 and 3 years. The Ra increase was statistically significantly lower for the resin-matrix ceramics than for feldspar ceramic and similar to composite material. After 3 years, only feldspar ceramic showed no significant substance loss. In conclusion, resin-matrix ceramics demonstrate reduced roughening compared to feldspar ceramics, potentially improving restoration longevity by preventing plaque buildup, but differences in abrasion resistance suggest the need for further material-specific research. Future research should aim to replicate clinical conditions closely and to transition to in vivo trials.


Asunto(s)
Cerámica , Porcelana Dental , Compuestos de Potasio , Propiedades de Superficie , Ensayo de Materiales , Resinas Compuestas , Silicatos de Aluminio , Diseño Asistido por Computadora , Materiales Dentales
17.
Microsc Microanal ; 30(1): 14-26, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38214892

RESUMEN

In this study, a novel application of synchrotron X-ray nanotomography based on high-resolution full-field transmission X-ray microscopy for characterizing the structure and morphology of micrometric hollow polymeric fibers is presented. By employing postimage analysis using an open-source software such as Tomviz and ImageJ, various key parameters in fiber morphology, including diameter, wall thickness, wall thickness distribution, pore size, porosity, and surface roughness, were assessed. Electrospun polycaprolactone fibers with micrometric diameters and submicrometric features with induced porosity via gas dissolution foaming were used to this aim. The acquired synchrotron X-ray nanotomography data were analyzed using two approaches: 3D tomographic reconstruction and 2D radiographic projection-based analysis. The results of the combination of both approaches demonstrate unique capabilities of this technique, not achievable by other available techniques, allowing for a full characterization of the internal and external morphology and structure of the fibers as well as to obtain valuable qualitative insights into the overall fiber structure.

18.
Lasers Med Sci ; 39(1): 162, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910231

RESUMEN

The review critically evaluates the current state of studies investigating laser irradiation for modifying titanium surfaces to enhance the biointegration of dental implants. Laser modification is a rapidly evolving physicochemical surface modification process with the potential to revolutionize dental implant technology. A thorough search of electronic databases, including PubMed, Science Direct, MEDLINE, and Web of Knowledge, was conducted to identify relevant articles. The review focuses on the surface features of laser-modified implants, encompassing in vitro cell culture experiments, rare animal experiments, and limited clinical trials. Of the 26 selected sources, 21 describe surface features, while only two involve in vivo human experiments. The review highlights the lack of long-term clinical experience and calls for further research to mature these technologies. Despite the absence of a consensus on optimal laser types and settings, the overall results are promising, with few negative outcomes. As research in laser irradiation of titanium surfaces progresses, significant advancements in dental implant technology and improved patient well-being are anticipated.


Asunto(s)
Implantes Dentales , Rayos Láser , Propiedades de Superficie , Titanio , Humanos , Animales , Oseointegración
19.
Lasers Med Sci ; 39(1): 98, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38583109

RESUMEN

AIM: The aim of the present study was to evaluate the efficacy of 30°-angled Er:YAG laser tip and different periodontal instruments on root surface roughness and morphology in vitro. METHODS: Eighteen bovine teeth root without carious lesion were decoronated from the cementoenamel junction and seperated longitidunally. A total of 36 obtained blocks were mounted in resin blocks and polished with silicon carbide papers under water irrigation. These blocks were randomly assigned into 3 treatment groups. In Group 1, 30°-angled Er:YAG laser (2.94 µm) tip was applied onto the blocks with a 20 Hz, 120 mJ energy output under water irrigation for 20 s. In Groups 2 and 3, the same treatment was applied to the blocks with new generation ultrasonic tip and conventional curette apico-coronally for 20 s with a sweeping motion. Surface roughness and morphology were evaluated before and after instrumentation with a profilometer and SEM, respectively. RESULTS: After instrumentation, profilometric analysis revealed significantly higher roughness values compared to baseline in all treatment groups(p < 0.05). Laser group revealed the roughest surface morphology followed by conventional curette and new generation ultrasonic tip treatment groups (p < 0.05). In SEM analysis, irregular surfaces and crater defects were seen more frequently in the laser group. CONCLUSION: Results of the study showed that the use of new generation ultrasonic tip was associated with smoother surface morphology compared to 30°-angled Er-YAG laser tip and conventional curette. Further in vitro and in vivo studies with an increased sample size are necessary to support the present study findings.


Asunto(s)
Láseres de Estado Sólido , Animales , Bovinos , Láseres de Estado Sólido/uso terapéutico , Proyectos de Investigación , Tamaño de la Muestra , Cuello del Diente , Agua
20.
Clin Oral Investig ; 28(5): 294, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698252

RESUMEN

OBJECTIVES: To compare ultrasonic scaler prototypes based on a planar piezoelectric transducer with different working frequencies featuring a titanium (Ti-20, Ti-28, and Ti-40) or stainless steel (SS-28) instrument, with a commercially available scaler (com-29) in terms of biofilm removal and reformation, dentine surface roughness and adhesion of periodontal fibroblasts. MATERIALS AND METHODS: A periodontal multi-species biofilm was formed on specimens with dentine slices. Thereafter specimens were instrumented with scalers in a periodontal pocket model or left untreated (control). The remaining biofilms were quantified and allowed to reform on instrumented dentine slices. In addition, fibroblasts were seeded for attachment evaluation after 72 h of incubation. Dentine surface roughness was analyzed before and after instrumentation. RESULTS: All tested instruments reduced the colony-forming unit (cfu) counts by about 3 to 4 log10 and the biofilm quantity (each p < 0.01 vs. control), but with no statistically significant difference between the instrumented groups. After 24-hour biofilm reformation, no differences in cfu counts were observed between any groups, but the biofilm quantity was about 50% in all instrumented groups compared to the control. The attachment of fibroblasts on instrumented dentine was significantly higher than on untreated dentine (p < 0.05), with the exception of Ti-20. The dentine surface roughness was not affected by any instrumentation. CONCLUSIONS: The planar piezoelectric scaler prototypes are able to efficiently remove biofilm without dentine surface alterations, regardless of the operating frequency or instrument material. CLINICAL RELEVANCE: Ultrasonic scalers based on a planar piezoelectric transducer might be an alternative to currently available ultrasonic scalers.


Asunto(s)
Biopelículas , Raspado Dental , Dentina , Fibroblastos , Ligamento Periodontal , Propiedades de Superficie , Titanio , Humanos , Raspado Dental/instrumentación , Técnicas In Vitro , Dentina/microbiología , Ligamento Periodontal/citología , Transductores , Adhesión Celular , Acero Inoxidable , Diseño de Equipo , Terapia por Ultrasonido/instrumentación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda