Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Infect Dis ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438123

RESUMEN

BACKGROUND: The RTS, S/AS01E malaria vaccine (RTS, S) is recommended for children in moderate-to-high Plasmodium falciparum malaria transmission areas. This phase 2b trial (NCT03276962) evaluates RTS, S fractional- and full-dose regimens in Ghana and Kenya. METHODS: 1500 children aged 5-17 months were randomised (1:1:1:1:1) to receive RTS, S or rabies control vaccine. RTS, S groups received two full RTS, S doses at month (M)0/M1 followed by either full (groups R012-20, R012-14-26) or fractional (1/5) doses (groups Fx012-14-26, Fx017-20-32). RESULTS: At M32 post-first dose, vaccine efficacy (VE) against clinical malaria (all episodes) ranged from 38% (R012-20; 95%CI: 24-49) to 53% (R012-14-26; 95%CI: 42-62). Vaccine impact estimates (cumulative number of malaria cases averted/1000 children vaccinated) were 1344 (R012-20), 2450 (R012-14-26), 2273 (Fx012-14-26), 2112 (Fx017-20-32). To account for differences in vaccine volume (fractional- versus full-dose), in a post-hoc analysis, we also estimated cases averted/1000 RTS, S full-dose equivalents: 336 (R012-20), 490 (R012-14-26), 874 (Fx012-14-26), 880 (Fx017-20-32). CONCLUSIONS: VE against clinical malaria was similar in all RTS, S groups. Vaccine impact accounting for full-dose equivalence suggests that using fractional-dose regimens could be a viable dose-sparing strategy. If borne out through trial end (M50), these observations underscore the means to reduce cost per regimen with a goal of maximising impact and optimising supply.

2.
BMC Med ; 22(1): 111, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475775

RESUMEN

Ensuring that malaria vaccines deliver maximum public health impact is non-trivial. Drawing on current research, this article examines hurdles that malaria immunization may face to reach high-risk children and explores the policy implications. The analysis finds health system related risks with the potential to reduce the ability of malaria vaccines to provide equitable protection. Deployment of effective frameworks to tackle these risks so as to strengthen within-country equity and progress tracking should be entangled with the deployment of the vaccines. To capture more comprehensively disease- and system-related risks to child health and survival, vaccine allocation criteria should expand their data and indicator breadth. Factoring molecular, clinical, and epidemiological features of antimalarial drug resistance into vaccine allocation frameworks is critical to effectively reflect current and future risks to malaria control interventions. It is proposed that approximately 6-15 children would need to be vaccinated to prevent a malaria adverse outcome. Vaccine purchasing and delivery costs may overwhelm endemic countries' health systems given the sizeable number needed to vaccinate, the population of at-risk children, and limited government financing of the health sector. Innovations in health financing are pivotal to ensuring the cost-effectiveness and sustainability of immunization programs aiming to attain and maintain universal and equitable protection.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Niño , Humanos , Lactante , Malaria Falciparum/epidemiología , Malaria/epidemiología , Inmunización , Vacunación
3.
Malar J ; 23(1): 136, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711053

RESUMEN

Malaria vaccine introduction in endemic countries is a game-changing milestone in the fight against the disease. This article examines the inequity in the global pharmaceutical research, development, manufacturing, and trade landscape. The role of inequity in hindering progress towards malaria elimination is explored. The analysis finds that transformational changes are required to create an equity-enabling environment. Addressing the inequity is critical to maximizing the public health impact of vaccines and attaining sustainability. Avenues to catalyze progress by leveraging malaria vaccines and messenger ribonucleic acid (mRNA) technology are discussed.


Asunto(s)
Vacunas contra la Malaria , Malaria , Vacunas de ARNm , Humanos , Erradicación de la Enfermedad/métodos , Salud Global , Malaria/inmunología , Malaria/prevención & control , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/genética , Investigación Farmacéutica , Vacunas de ARNm/inmunología , África
4.
Immunogenetics ; 75(3): 207-214, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084013

RESUMEN

In modern medicine, vaccination is one of the most effective public health strategies to prevent infectious diseases. Indisputably, vaccines have saved millions of lives by reducing the burden of many serious infections such as polio, tuberculosis, measles, pneumonia, and tetanus. Despite the recent recommendation by the World Health Organization (WHO) to roll out RTS,S/AS01, this malaria vaccine still faces major challenges of variability in its efficacy partly due to high genetic variation in humans and malaria parasites. Immune responses to malaria vary between individuals and populations. Human genetic variation in immune system genes is the probable cause for this heterogeneity. In this review, we will focus on human genetic factors that determine variable responses to vaccination and how variation in immune system genes affect the immunogenicity and efficacy of the RTS,S/AS01 vaccine.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Humanos , Lactante , África , Variación Genética
5.
Malar J ; 22(1): 260, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674197

RESUMEN

BACKGROUND: While Ghana has a good track record in the Expanded Programme on Immunization, there are substantial challenges with regards to subsequent vaccinations, particularly after the first year of life of the child. Given that the last dose of the RTS, S/AS01E vaccine against malaria is administered at 24 months, there is a high likelihood of default. Hence, it is imperative to understand the dynamics and reasons for the defaults to enable the development of effective implementation strategies. This study explored why caregivers default on the RTS, S/AS01E vaccine from the perspective of health service providers and caregivers. METHODS: This study employed an exploratory, descriptive approach. Using a purposive sampling technique, caregivers who defaulted and health service providers directly involved in the planning and delivery of the RTS, S/AS01E vaccine at the district level were recruited. A total of five health service providers and 30 mothers (six per FGD) participated in this study. Data analysis was done using NVivo-12 following Collaizi's thematic framework for qualitative analysis. The study relies on the Standards for Reporting Qualitative Research. RESULTS: Reasons for defaulting included the overlap of timing of the last dose and the child starting school, disrespectful attitudes of some health service providers, concerns about adverse side effects and discomforts, travel out of the implementing district, the perception that the vaccines are too many, and lack of support from partners. CONCLUSION: To reduce the occurrence of defaulting on the RTS, S/AS01E vaccine programme, stakeholders must reconsider the timing of the last dose of the vaccine. The schedule of the RTS, S/AS01E vaccine should be aligned with the established EPI schedule of Ghana. This will significantly limit the potential of defaults, particularly for the last dose. Also, the findings from this study underscore a need to encourage male partner involvement in the RTS, S/AS01E vaccine programme. Health promotion programmes could be implemented to raise caregivers' awareness of potential adverse reactions and discomforts-this is necessary to prepare the caregiver for the vaccine process psychologically.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Vacunas , Niño , Humanos , Masculino , Ghana , Vacunación , Análisis de Datos
6.
Malar J ; 22(1): 287, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759277

RESUMEN

BACKGROUND: The World Health Organization approved the RTS,S/AS01 malaria vaccine for wider rollout, and Kenya participated in a phased pilot implementation from 2019 to understand its impact under routine conditions. Vaccine delivery requires coverage measures at national and sub-national levels to evaluate progress over time. This study aimed to estimate the coverage of the RTS,S/AS01 vaccine during the first 36 months of the Kenyan pilot implementation. METHODS: Monthly dose-specific immunization data for 23 sub-counties were obtained from routine health information systems at the facility level for 2019-2022. Coverage of each RTS,S/AS01 dose was determined using reported doses as a numerator and service-based (Penta 1 and Measles) or population (projected infant populations from WorldPop) as denominators. Descriptive statistics of vaccine delivery, dropout rates and coverage estimates were computed across the 36-month implementation period. RESULTS: Over 36 months, 818,648 RTSS/AS01 doses were administered. Facilities managed by the Ministry of Health and faith-based organizations accounted for over 88% of all vaccines delivered. Overall, service-based malaria vaccine coverage was 96%, 87%, 78%, and 39% for doses 1-4 respectively. Using a population-derived denominator for age-eligible children, vaccine coverage was 78%, 68%, 57%, and 24% for doses 1-4, respectively. Of the children that received measles dose 1 vaccines delivered at 9 months (coverage: 95%), 82% received RTSS/AS01 dose 3, only 66% of children who received measles dose 2 at 18 months (coverage: 59%) also received dose 4. CONCLUSION: The implementation programme successfully maintained high levels of coverage for the first three doses of RTSS/AS01 among children defined as EPI service users up to 9 months of age but had much lower coverage within the community with up to 1 in 5 children not receiving the vaccine. Consistent with vaccines delivered over the age of 1 year, coverage of the fourth malaria dose was low. Vaccine uptake, service access and dropout rates for malaria vaccines require constant monitoring and intervention to ensure maximum protection is conferred.


Asunto(s)
Sistemas de Información en Salud , Vacunas contra la Malaria , Sarampión , Niño , Lactante , Humanos , Kenia , Transporte Biológico
7.
BMC Public Health ; 23(1): 2283, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980467

RESUMEN

BACKGROUND: Malaria is a significant public health threat in sub-Saharan Africa, particularly among children. The RTS,S/AS01 malaria vaccine reduces the risk and severity of malaria in children. RTS,S/AS01 was piloted in three African countries, Ghana, Kenya and Malawi, to assess safety, feasibility and cost-effectiveness in real-world settings. A qualitative longitudinal study was conducted as part of the feasibility assessment. This analysis explores RTS,S/AS01 vaccination barriers and identifies potential motivators among caregivers in three sub-counties in western Kenya. METHODS: A cohort of 63 caregivers with a malaria vaccine eligible child was interviewed at three time points over 24 months. A sub-set of 11 caregivers whose eligible children were either partially or non-vaccinated were selected for this sub-analysis. The 5A Taxonomy for root causes of under-vaccination was used to organise the inductively-coded data into categories (awareness, acceptance, access, affordability, and activation) and identify the factors influencing uptake across caregivers. A trajectory analysis was conducted to understand changes in factors over time within each caregiver experience. Caregiver narratives are used to illustrate how the factors influencing uptake were interrelated and changed over time. RESULTS: Lack of awareness, previous negative experiences with routine childhood immunisations and the burden of getting to the health facility contributed to caregivers initially delaying uptake of the vaccine. Over time concerns about vaccine side effects diminished and anticipated vaccination benefits strongly motivated caregivers to vaccinate their children. Persistent health system barriers (e.g., healthcare provider strikes, vaccine stockouts, negative provider attitudes) meant some children missed the first-dose eligibility window by aging-out. CONCLUSIONS: Caregivers in this study believed the RTS,S/AS01 to be effective and were motivated to have their children vaccinated. Despite these positive perceptions of the malaria vaccine, uptake was substantially hindered by persistent health system constraints. Negative provider attitudes emerged as a powerful deterrent to attending immunisation services and hampered uptake of the vaccine. Strategies that focus on improving interpersonal communication skills among healthcare providers are needed.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Niño , Humanos , Lactante , Malaria Falciparum/prevención & control , Kenia , Estudios Longitudinales , Malaria/prevención & control , Malaria/tratamiento farmacológico , Vacunación
8.
Clin Infect Dis ; 75(4): 613-622, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34894221

RESUMEN

BACKGROUND: A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial. METHODS: Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay. The association between post-vaccination antibody titer and incidence of malaria was explored. RESULTS: A strong anti-circumsporozoite antibody response to 3 priming doses of RTS,S/AS01E was seen (geometric mean titer, 368.9 enzyme-linked immunosorbent assay units/mL), but titers fell prior to the first booster dose. A strong antibody response to an annual, pre-malaria transmission season booster dose was observed, but this was lower than after the primary vaccination series and lower after the second than after the first booster dose (ratio of geometric mean rise, 0.66; 95% confidence interval [CI], .57-.77). Children whose antibody response was in the upper tercile post-vaccination had a lower incidence of malaria during the following year than children in the lowest tercile (hazard ratio, 0.43; 95% CI, .28-.66). CONCLUSIONS: Seasonal vaccination with RTS,S/AS01E induced a strong booster antibody response that was lower after the second than after the first booster dose. The diminished antibody response to the second booster dose was not associated with diminished efficacy. CLINICAL TRIALS REGISTRATION: NCT03143218.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Formación de Anticuerpos , Niño , Humanos , Lactante , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Plasmodium falciparum , Estaciones del Año , Vacunación
9.
BMC Med ; 20(1): 352, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36203149

RESUMEN

BACKGROUND: A recent trial of 5920 children in Burkina Faso and Mali showed that the combination of seasonal vaccination with the RTS,S/AS01E malaria vaccine (primary series and two seasonal boosters) and seasonal malaria chemoprevention (four monthly cycles per year) was markedly more effective than either intervention given alone in preventing clinical malaria, severe malaria, and deaths from malaria. METHODS: In order to help optimise the timing of these two interventions, trial data were reanalysed to estimate the duration of protection against clinical malaria provided by RTS,S/AS01E when deployed seasonally, by comparing the group who received the combination of SMC and RTS,S/AS01E with the group who received SMC alone. The duration of protection from SMC was also estimated comparing the combined intervention group with the group who received RTS,S/AS01E alone. Three methods were used: Piecewise Cox regression, Flexible parametric survival models and Smoothed Schoenfeld residuals from Cox models, stratifying on the study area and using robust standard errors to control for within-child clustering of multiple episodes. RESULTS: The overall protective efficacy from RTS,S/AS01E over 6 months was at least 60% following the primary series and the two seasonal booster doses and remained at a high level over the full malaria transmission season. Beyond 6 months, protective efficacy appeared to wane more rapidly, but the uncertainty around the estimates increases due to the lower number of cases during this period (coinciding with the onset of the dry season). Protection from SMC exceeded 90% in the first 2-3 weeks post-administration after several cycles, but was not 100%, even immediately post-administration. Efficacy begins to decline from approximately day 21 and then declines more sharply after day 28, indicating the importance of preserving the delivery interval for SMC cycles at a maximum of four weeks. CONCLUSIONS: The efficacy of both interventions was highest immediately post-administration. Understanding differences between these interventions in their peak efficacy and how rapidly efficacy declines over time will help to optimise the scheduling of SMC, malaria vaccination and the combination in areas of seasonal transmission with differing epidemiology, and using different vaccine delivery systems. TRIAL REGISTRATION: The RTS,S-SMC trial in which these data were collected was registered at clinicaltrials.gov: NCT03143218.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Anticuerpos Antiprotozoarios , Quimioprevención , Humanos , Lactante , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/epidemiología , Plasmodium falciparum , Estaciones del Año , Vacunación
10.
Malar J ; 21(1): 132, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468801

RESUMEN

BACKGROUND: Following a 30-year development process, RTS,S/AS01E (GSK, Belgium) is the first malaria vaccine to reach Phase IV assessments. The World Health Organization-commissioned Malaria Vaccine Implementation Programme (MVIP) is coordinating the delivery of RTS,S/AS01E through routine national immunization programmes in areas of 3 countries in sub-Saharan Africa. The first doses were given in the participating MVIP areas in Malawi on 23 April, Ghana on 30 April, and Kenya on 13 September 2019. The countries participating in the MVIP have little or no baseline incidence data on rare diseases, some of which may be associated with immunization, a deficit that could compromise the interpretation of possible adverse events reported following the introduction of a new vaccine in the paediatric population. Further, effects of vaccination on malaria transmission, existing malaria control strategies, and possible vaccine-mediated selective pressure on Plasmodium falciparum variants, could also impact long-term malaria control. To address this data gap and as part of its post-approval commitments, GSK has developed a post-approval plan comprising of 4 complementary Phase IV studies that will evaluate safety, effectiveness and impact of RTS,S/AS01E through active participant follow-up in the context of its real-life implementation. METHODS: EPI-MAL-002 (NCT02374450) is a pre-implementation safety surveillance study that is establishing the background incidence rates of protocol-defined adverse events of special interest. EPI-MAL-003 (NCT03855995) is an identically designed post-implementation safety and vaccine impact study. EPI-MAL-005 (NCT02251704) is a cross-sectional pre- and post-implementation study to measure malaria transmission intensity and monitor the use of other malaria control interventions in the study areas, and EPI-MAL-010 (EUPAS42948) will evaluate the P. falciparum genetic diversity in the periods before and after vaccine implementation. CONCLUSION: GSK's post-approval plan has been designed to address important knowledge gaps in RTS,S/AS01E vaccine safety, effectiveness and impact. The studies are currently being conducted in the MVIP areas. Their implementation has provided opportunities and posed challenges linked to conducting large studies in regions where healthcare infrastructure is limited. The results from these studies will support ongoing evaluation of RTS,S/AS01E's benefit-risk and inform decision-making for its potential wider implementation across sub-Saharan Africa.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Niño , Estudios Transversales , Humanos , Lactante , Kenia , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Plasmodium falciparum
11.
Malar J ; 21(1): 59, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193608

RESUMEN

BACKGROUND: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01E malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition. METHODS: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01E alone, or SMC combined with RTS,S/AS01E for three malaria transmission seasons (2017-2019). After each transmission season, anthropometric measurements were collected from all study children at a cross-sectional survey and used to derive nutritional status indicators, including the binary variables wasted and stunted (weight-for-height and height-for-age z-scores below - 2, respectively). Binary and continuous outcomes between treatment groups were compared by Poisson and linear regression. RESULTS: In 2017, compared to SMC alone, the combined intervention reduced the prevalence of wasting by approximately 12% [prevalence ratio (PR) = 0.88 (95% CI 0.75, 1.03)], and approximately 21% in 2018 [PR = 0.79 (95% CI 0.62, 1.01)]. Point estimates were similar for comparisons with RTS,S/AS01E, but there was stronger evidence of a difference. There was at least a 30% reduction in the point estimates for the prevalence of severe wasting in the combined group compared to the other two groups in 2017 and 2018. There was no difference in the prevalence of moderate or severe wasting between the groups in 2019. The prevalence of stunting, low-MUAC-for-age or being underweight did not differ between groups for any of the three years. The prevalence of severe stunting was higher in the combined group compared to both other groups in 2018, and compared to RTS,S/AS01E alone in 2017; this observation does not have an obvious explanation and may be a chance finding. Overall, malnutrition was very common in this cohort, but declined over the study as the children became older. CONCLUSIONS: Despite a high burden of malnutrition and malaria in the study populations, and a major reduction in the incidence of malaria in children receiving both interventions, this had only a modest impact on nutritional status. Therefore, other interventions are needed to reduce the high burden of malnutrition in these areas. TRIAL REGISTRATION: https://www.clinicaltrials.gov/ct2/show/NCT03143218 , registered 8th May 2017.


Asunto(s)
Antimaláricos , Malaria , Antimaláricos/uso terapéutico , Burkina Faso/epidemiología , Quimioprevención , Niño , Preescolar , Estudios Transversales , Humanos , Lactante , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Malí/epidemiología , Estado Nutricional , Estaciones del Año , Vacunación
12.
Malar J ; 20(1): 452, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34856981

RESUMEN

BACKGROUND: RTS,S/AS01, the leading malaria vaccine has been recommended by the WHO for widespread immunization of children at risk. RTS,S/AS01-induced anti-CSP IgG antibodies are associated with the vaccine efficacy. Here, the long-term kinetics of RTS,S/AS01-induced antibodies was investigated. METHODS: 150 participants were randomly selected from the 447 children who participated in the RTS,S/AS01 phase IIb clinical trial in 2007 from Kilifi-Kenya. Cumulatively, the retrospective follow-up period was 93 months with annual plasma samples collection. The levels of anti-CSP IgM, total IgG, IgG1, IgG2, IgG3, and IgG4 antibodies were then determined using an enzyme-linked immunosorbent assay. RESULTS: RTS,S/AS01 induced high levels of anti-CSP IgG antibodies which exhibited a rapid waning over 6.5 months post-vaccination, followed by a slower decay over the subsequent years. RTS,S/AS01-induced anti-CSP IgG antibodies remained elevated above the control group levels throughout the 7 years follow-up period. The anti-CSP IgG antibodies were mostly IgG1, IgG3, IgG2, and to a lesser extent IgG4. IgG2 predominated in later timepoints. RTS,S/AS01 also induced high levels of anti-CSP IgM antibodies which increased above the control group levels by month 3. The controls exhibited increasing levels of the anti-CSP IgM antibodies which caught up with the RTS,S/AS01 vaccinees levels by month 21. In contrast, there were no measurable anti-CSP IgG antibodies among the controls. CONCLUSION: RTS,S/AS01-induced anti-CSP IgG antibodies kinetics are consistent with long-lived but waning vaccine efficacy. Natural exposure induces anti-CSP IgM antibodies in children, which increases with age, but does not induce substantial levels of anti-CSP IgG antibodies.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Eficacia de las Vacunas/estadística & datos numéricos , Humanos , Lactante , Kenia , Cinética , Estudios Retrospectivos
13.
Malar J ; 20(1): 438, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789253

RESUMEN

BACKGROUND: The RTS,S/AS01 malaria vaccine is currently being evaluated in a cluster-randomized pilot implementation programme in three African countries. This study seeks to identify whether vaccination could reach additional children who are at risk from malaria but do not currently have access to, or use, core malaria interventions. METHODS: Using data from household surveys, the overlap between malaria intervention coverage and childhood vaccination (diphtheria-tetanus-pertussis dose 3, DTP3) uptake in 20 African countries with at least one first administrative level unit with Plasmodium falciparum parasite prevalence greater than 10% was calculated. Multilevel logistic regression was used to explore patterns of overlap by demographic and socioeconomic variables. The public health impact of delivering RTS,S/AS01 to those children who do not use an insecticide-treated net (ITN), but who received the DTP3 vaccine, was also estimated. RESULTS: Uptake of DTP3 was higher than malaria intervention coverage in most countries. Overall, 34% of children did not use ITNs and received DTP3, while 35% of children used ITNs and received DTP3, although this breakdown varied by country. It was estimated that there are 33 million children in these 20 countries who do not use an ITN. Of these, 23 million (70%) received the DTP3 vaccine. Vaccinating those 23 million children who receive DTP3 but do not use an ITN could avert up to an estimated 9.7 million (range 8.5-10.8 million) clinical malaria cases each year, assuming all children who receive DTP3 are administered all four RTS,S doses. An additional 10.8 million (9.5-12.0 million) cases could be averted by vaccinating those 24 million children who receive the DTP3 vaccine and use an ITN. Children who had access to or used an ITN were 9-13% more likely to reside in rural areas compared to those who had neither intervention regardless of vaccination status. Mothers' education status was a strong predictor of intervention uptake and was positively associated with use of ITNs and vaccination uptake and negatively associated with having access to an ITN but not using it. Wealth was also a strong predictor of intervention coverage. CONCLUSIONS: Childhood vaccination to prevent malaria has the potential to reduce inequity in access to existing malaria interventions and could substantially reduce the childhood malaria burden in sub-Saharan Africa, even in regions with lower existing DTP3 coverage.


Asunto(s)
Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Vacunas contra la Malaria , Malaria/prevención & control , África del Sur del Sahara , Preescolar , Escolaridad , Femenino , Humanos , Lactante , Vacunas contra la Malaria/administración & dosificación , Masculino , Oportunidad Relativa , Estudios Prospectivos , Población Rural , Clase Social , Población Urbana
14.
J Infect Dis ; 222(10): 1681-1691, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32687161

RESUMEN

BACKGROUND: A previous RTS,S/AS01B vaccine challenge trial demonstrated that a 3-dose (0-1-7-month) regimen with a fractional third dose can produce high vaccine efficacy (VE) in adults challenged 3 weeks after vaccination. This study explored the VE of different delayed fractional dose regimens of adult and pediatric RTS,S/AS01 formulations. METHODS: A total of 130 participants were randomized into 5 groups. Four groups received 3 doses of RTS,S/AS01B or RTS,S/AS01E on a 0-1-7-month schedule, with the final 1 or 2 doses being fractional (one-fifth dose volume). One group received 1 full (month 0) and 1 fractional (month 7) dose of RTS,S/AS01E. Immunized and unvaccinated control participants underwent Plasmodium falciparum-infected mosquito challenge (controlled human malaria infection) 3 months after immunization, a timing chosen to potentially discriminate VEs between groups. RESULTS: The VE of 3-dose formulations ranged from 55% (95% confidence interval, 27%-72%) to 76% (48%-89%). Groups administered equivalent formulations of RTS,S/AS01E and RTS,S/AS01B demonstrated comparable VE. The 2-dose group demonstrated lower VE (29% [95% confidence interval, 6%-46%]). All regimens were well tolerated and immunogenic, with trends toward higher anti-circumsporozoite antibody titers in participants protected against infection. CONCLUSIONS: RTS,S/AS01E can provide VE comparable to an equivalent RTS,S/AS01B regimen in adults, suggesting a universal formulation may be considered. Results also suggest that the 2-dose regimen is inferior to the 3-dose regimens evaluated. CLINICAL TRIAL REGISTRATION: NCT03162614.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Malaria/prevención & control , Adolescente , Adulto , Femenino , Humanos , Esquemas de Inmunización , Control de Infecciones , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Masculino , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Vacunación , Adulto Joven
15.
Malar J ; 19(1): 261, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32690097

RESUMEN

We have read the publication of Molina-Franky and colleagues on Plasmodium falciparum pre-erythrocytic stage vaccine development (Malaria Journal, 2020;19:56). The commentary revises some of their statements on the RTS,S/AS01 vaccine that are considered either imprecise or incorrect.


Asunto(s)
Vacunas contra la Malaria/análisis , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Eritrocitos/parasitología , Humanos
16.
BMC Public Health ; 20(1): 910, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532234

RESUMEN

BACKGROUND: RTS,S/AS01 is the first vaccine against malaria to undergo pilot implementation, beginning in 2019 and vaccinating 360,000 children per year in Malawi, Ghana, and Kenya. The four-dose vaccine is given as a primary three-dose series with a fourth dose given approximately 18 months later. The efficacy of RTS,S/AS01 was variable among the 11 sites participating in the 2009-2014 phase III trial (MALARIA-055, NCT00866619), possibly due to differences in transmission intensity. However, a within-site examination of environmental factors related to transmission intensity and their impact on vaccine efficacy has yet to be conducted. METHODS: We implemented the phase III RTS,S/AS01 trial at the Malawi site, which enrolled 1578 infants (6-12 weeks) and children (5-17 months) living in the Lilongwe District in Central Malawi and followed them for 3 years between 2009 and 2014. A global positioning system survey and an ecological questionnaire were conducted to collect participant household locations and characteristics, while additional data on background malaria prevalence were obtained from a concurrent Malaria Transmission Intensity (MTI) survey. Negative binomial regression models were used to assess whether the efficacy of the vaccine varied by estimated background malaria prevalence, household roof type, or amount of nearby vegetation. RESULTS: Vaccine efficacy did not significantly vary by estimated malaria prevalence or by roof type. However, increased vegetation cover was associated with an increase in the efficacy of the three-dose primary RTS,S/AS01 series in the 18 months before the fourth dose and a decrease in the efficacy of the primary vaccine series in the second 18 months following, if the fourth dose was not given. Vegetation cover did not alter the efficacy of the fourth dose in a statistically or practically significant manner. CONCLUSIONS: Vegetation coverage in this study site might be a proxy for nearness to rivers or branching, shallow wetlands called "dambos" which could serve as breeding sites for mosquitoes. We observed statistically significant modification of the efficacy of RTS,S/AS01 by forest cover, suggesting that initial vaccine efficacy and the importance of the fourth dose varies based on ecological context. TRIAL REGISTRATION: Efficacy of GSK Biologicals' Candidate Malaria Vaccine (257049) Against Malaria Disease Caused by P. falciparum Infection in Infants and Children in Africa. NCT00866619 prospectively registered 20 March 2009.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/epidemiología , Plasmodium falciparum/inmunología , Niño , Ambiente , Femenino , Sistemas de Información Geográfica , Humanos , Lactante , Malaria Falciparum/prevención & control , Malaui/epidemiología , Masculino , Análisis Espacial , Encuestas y Cuestionarios , Vacunación
17.
BMC Med ; 16(1): 109, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-30001708

RESUMEN

BACKGROUND: The RTS,S/AS01 vaccine for Plasmodium falciparum malaria demonstrated moderate efficacy in 5-17-month-old children in phase 3 trials, and from 2018, the vaccine will be evaluated through a large-scale pilot implementation program. Work is ongoing to optimise this vaccine, with higher efficacy for a different schedule demonstrated in a phase 2a challenge study. The objective of our study was to investigate the population-level impact of a modified RTS,S/AS01 schedule and dose amount in order to inform the target product profile for a second-generation malaria vaccine. METHODS: We used a mathematical modelling approach as the basis for our study. We simulated the changing anti-circumsporozoite antibody titre following vaccination and related the titre to vaccine efficacy. We then implemented this efficacy profile within an individual-based model of malaria transmission. We compared initial efficacy, duration and dose timing, and evaluated the potential public health impact of a modified vaccine in children aged 5-17 months, measuring clinical cases averted in children younger than 5 years. RESULTS: In the first decade of delivery, initial efficacy was associated with a higher reduction in childhood clinical cases compared to vaccine duration. This effect was more pronounced in high transmission settings and was due to the efficacy benefit occurring in younger ages where disease burden is highest. However, the low initial efficacy and long duration schedule averted more cases across all age cohorts if a longer time horizon was considered. We observed an age-shifting effect due to the changing immunological profile in higher transmission settings, in scenarios where initial efficacy was higher, and the fourth dose administered earlier. CONCLUSIONS: Our findings indicate that, for an imperfect childhood malaria vaccine with suboptimal efficacy, it may be advantageous to prioritise initial efficacy over duration. We predict that a modified vaccine could outperform the current RTS,S/AS01, although fourth dose timing will affect the age group that derives the greatest benefit. Further, the outcome measure and timeframe over which a vaccine is assessed are important when prioritising vaccine elements. This study provides insight into the most important characteristics of a malaria vaccine for at-risk groups and shows how distinct vaccine properties translate to public health outcomes. These findings may be used to prioritise target product profile elements for second-generation childhood malaria vaccines.


Asunto(s)
Vacunas contra la Malaria/uso terapéutico , Malaria/prevención & control , Niño , Preescolar , Femenino , Humanos , Lactante , Vacunas contra la Malaria/farmacología , Factores de Tiempo
18.
J Infect Dis ; 214(5): 762-71, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27296848

RESUMEN

BACKGROUND: Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS: In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS: A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS: A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION: NCT01857869.


Asunto(s)
Esquemas de Inmunización , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/biosíntesis , Anticuerpos Antiprotozoarios/inmunología , Afinidad de Anticuerpos , Femenino , Humanos , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Ligeras de Inmunoglobulina/biosíntesis , Masculino , Persona de Mediana Edad , Adulto Joven
20.
Gene ; 927: 148744, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964492

RESUMEN

Current understanding of genetic polymorphisms and natural selection in Plasmodium falciparum circumsporozoite (PfCSP), the leading malaria vaccine, is crucial for the development of next-generation vaccines, and such data is lacking in Africa. Blood samples were collected among Plasmodium-infected individuals living in four Cameroonian areas (Douala, Maroua, Mayo-Oulo, Pette). DNA samples were amplified using nested PCR protocols, sequenced, and BLASTed. Single nucleotide polymorphisms (SNPs) were analysed in each PfCSP region, and their impact on PfCSP function/structure was predicted in silico. The N-terminal region showed a limited polymorphism with four haplotypes, and three novel SNPs (N68Y, R87W, K93E) were found. Thirty-five haplotypes were identified in the central region, with several variants (e.g., NVNP and KANP). The C-terminal region was also highly diverse, with 25 haplotypes and eight novel SNPs (N290D, N308I, S312G, K317A, V344I, D356E, E357L, D359Y). Most polymorphic codon sites were mainly observed in the Th2R subregion in isolates from Douala and Pette. The codon site 321 was under episodic positive selection. One novel (E357L) and three known (K322I, G349D, D359Y) SNPs show an impact on function/structure. This study showed extensive genetic diversity with geographical patterns and evidence of the selection of Cameroonian PfCSP central and C-terminal regions.


Asunto(s)
Haplotipos , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Camerún , Proteínas Protozoarias/genética , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda