Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(31): e2400728, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38433393

RESUMEN

Lithium-sulfur (Li-S) batteries, with their high energy density, nontoxicity, and the natural abundance of sulfur, hold immense potential as the next-generation energy storage technology. To maximize the actual energy density of the Li-S batteries for practical applications, it is crucial to escalate the areal capacity of the sulfur cathode by fabricating an electrode with high sulfur loading. Herein, ultra-high sulfur loading (up to 12 mg cm-2) cathodes are fabricated through an industrially viable and sustainable solvent-free dry-processing method that utilizes a polytetrafluoroethylene binder fibrillation. Due to its low porosity cathode architecture formed by the binder fibrillation process, the dry-processed electrodes exhibit a relatively lower initial capacity compared to the slurry-processed electrode. However, its mechanical stability is well maintained throughout the cycling without the formation of electrode cracking, demonstrating significantly superior cycling stability. Additionally, through the optimization of the dry-processing, a single-layer pouch cell with a loading of 9 mg cm-2 and a novel multi-layer pouch cell that uses an aluminum mesh as its current collector with a total loading of 14 mg cm-2 are introduced. To address the reduced initial capacity of dry-processed electrodes, strategies such as incorporating electrocatalysts or employing prelithiated active materials are suggested.

2.
Chemistry ; 28(6): e202104201, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-34870350

RESUMEN

Manufactured globally on industrial scale, cyclodextrins (CD) are cyclic oligosaccharides produced by enzymatic conversion of starch. Their typical structure of truncated cone can host a wide variety of guest molecules to create inclusion complexes; indeed, we daily use CD as unseen components of food, cosmetics, textiles and pharmaceutical excipients. The synthesis of active material composites from CD resources can enable or enlarge the effective utilization of these products in the battery industry with some economical as well as environmental benefits. New and simple strategies are here presented for the synthesis of nanostructured silicon and sulfur composite materials with carbonized hyper cross-linked CD (nanosponges) that show satisfactory performance as high-capacity electrodes. For the sulfur cathode, the mesoporous carbon host limits polysulfide dissolution and shuttle effects and guarantees stable cycling performance. The embedding of silicon nanoparticles into the carbonized nanosponge allows to achieve high capacity and excellent cycling performance. Moreover, due to the high surface area of the silicon composite, the characteristics at the electrode/electrolyte interface dominate the overall electrochemical reversibility, opening a detailed analysis on the behavior of the material in different electrolytes. We show that the use of commercial LP30 electrolyte causes a larger capacity fade, and this is associated with different solid electrolyte interface layer formation and it is also demonstrated that fluoroethylene carbonate addition can significantly increase the capacity retention and the overall performance of our nanostructured Si/C composite in both ether-based and LP30 electrolytes. As a result, an integration of the Si/C and S/C composites is proposed to achieve a complete lithiated Si-S cell.


Asunto(s)
Ciclodextrinas , Silicio , Carbono , Electrodos , Azufre
3.
Angew Chem Int Ed Engl ; 61(31): e202206012, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35642627

RESUMEN

The high activation barrier, inferior rate performance, and short cycling life severely constrain the practical applications of the high-capacity Li2 S cathode. Herein, we fabricate a Li2 S-Cu nanocomposite with a drastically reduced activation potential, fast rate capability, and extraordinary cycling stability even under a practically relevant areal capacity of 2.96 mAh cm-2 . Detailed experimental investigations aided by theoretical calculations indicate that instead of converting to S8 via troublesome soluble lithium polysulfides, Li2 S is thermodynamically and kinetically more favorable to react with Cu by the displacement reaction, which alters the redox couple from Li2 S/S to Cu/Cu2 S, leading to the excellent electrochemical performance. Moreover, the stability of the composite is demonstrated in the full-cell configuration consisting of commercial graphite anodes. This work provides an innovative and effective approach to realize highly activated and stable Li2 S cathode materials.

4.
Adv Mater ; 36(14): e2310756, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38174831

RESUMEN

Using Li2S cathodes instead of S cathodes presents an opportunity to pair them with Li-free anodes (e.g., graphite), thereby circumventing anode-related issues, such as poor reversibility and safety, encountered in Li-S batteries. However, the moisture-sensitive nature of Li2S causes the release of hazardous H2S and the formation of insulative by-products, increasing the manufacturing difficulty and adversely affecting cathode performance. Here, Li4SnS4, a Li+ conductor that is air-stable according to the hard-soft acid-base principle, is formed in situ and uniformly on Li2S particles because Li2S itself participates in Li4SnS4 formation. When exposed to air (20% relative humidity), the protective Li4SnS4 layer maintains its components and structure, thus contributing to the enhanced stability of the Li2S@Li4SnS4 composite. In addition, the Li4SnS4 layer can accelerate the sluggish conversion of Li2S because of its favorable interfacial charge transfer, and continuously confine lithium polysulfides owing to its integrity during electrochemical processes. A graphite-Li2S pouch cell containing a Li2S@Li4SnS4 cathode is constructed, which shows stable cyclability with 97% capacity retention after 100 cycles. Hence, combining a desirable air-stable Li2S cathode and a highly reversible Li-free configuration offers potential practical applications of graphite-Li2S full cells.

5.
Adv Mater ; 35(7): e2208846, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36444853

RESUMEN

The elaborate design of powerful Li-S binders with extended-functions like polysulfides adsorption/catalysis and Li+ hopping/transferring in addition to robust adhesion-property has remained a challenge. Here, an in situ cathode-interweaving strategy based on metalloporphyrin based covalent-bonding organic polymer (M-COP, M = Mn, Ni, and Zn) binders is reported for the first time. Thus-produced functional binders possess excellent mechanical-strengths, polysulfides adsorption/catalysis, and Li+ hopping/transferring ability. Specifically, the modulus of Mn-COP can reach up to ≈54.60 GPa (≈40 times higher than poly(vinylidene fluoride)) and the relative cell delivers a high initial-capacity (1027 mAh g-1 , 1 C and 913 mAh g-1 , 2 C), and excellent cycling-stability for >1000 cycles even at 4 C. The utilization-rate of sulfur can reach up to 81.8% and the electrodes based on these powerful binders can be easily scale-up fabricated (≈20 cm in a batch-experiment). Noteworthy, Mn-COP based cell delivers excellent capacities at a high sulfur-loading (8.6 mg cm-2 ) and low E/S ratio (5.8 µL mg-1 ). In addition, theoretical calculations reveal the vital roles of metalloporphyrin and thiourea-groups in enhancing the battery-performance.

6.
ACS Nano ; 17(14): 14032-14042, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428961

RESUMEN

Lithium-sulfur (Li-S) batteries using Li2S and Li-free anodes have emerged as a potential high-energy and safe battery technology. Although the operation of Li-S full batteries based on Li2S has been demonstrated at room temperature, their effective use at a subzero temperature has not been realized due to the low electrochemical utilization of Li2S. Here, ammonium nitrate (NH4NO3) is introduced as a functional additive that allows Li-S full batteries to operate at -10 °C. The polar N-H bonds in the additive alter the activation pathway of Li2S by inducing the dissolution of the Li2S surface. Then, Li2S with an amorphized surface layer undergoes the modified activation process, which consists of the disproportionation and direct conversion reaction, through which Li2S is efficiently converted into S8. The Li-S full battery using NH4NO3 delivers a reversible capacity and cycling stability over 400 cycles at -10 °C.

7.
Small Methods ; 5(9): e2100176, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34928060

RESUMEN

Numerous efforts are made to improve the reversible capacity and long-term cycling stability of Li-S cathodes. However, they are susceptible to irreversible capacity loss during cycling owing to shuttling effects and poor Li+ transport under high sulfur loading. Herein, a physically and chemically enhanced lithium sulfur cathode is proposed to address these challenges. Additive manufacturing is used to construct numerous microchannels within high sulfur loading cathodes, which enables desirable deposition mechanisms of lithium polysulfides and improves Li+ and e- transport. Concurrently, cobalt sulfide is incorporated into the cathode composition and demonstrates strong adsorption behavior toward lithium polysulfides during cycling. As a result, excellent electrochemical performance is obtained by the design of a physically and chemically enhanced lithium sulfur cathode. The reported electrode, with a sulfur loading of 8 mg cm-2 , delivers an initial capacity of 1118.8 mA h g-1 and a reversible capacity of 771.7 mA h g-1 after 150 cycles at a current density of 3 mA cm-2 . This work demonstrates that a chemically enhanced sulfur cathode, manufactured through additive manufacturing, is a viable pathway to achieve high-performance Li-S batteries.

8.
ACS Appl Mater Interfaces ; 13(24): 28270-28280, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34121381

RESUMEN

The extrinsic cathode interface between the sulfide electrolyte and the Li2S electrode is always ignored in all-solid-state lithium-sulfur batteries. However, the aggregation of the Li2S cathode is still observed during cycling. The gradually lost extrinsic contact interface between the cathode and the electrolyte would result in considerable interface resistance and severe capacity decay in the cell due to the lack of efficient electron and ionic conduction at the interface. Herein, a facile dual-doping strategy demonstrates the synthesis of a functional inorganic electrolyte. The obtained Li7P2.9Ce0.2S10.9Cl0.3 glass-ceramic electrolyte shows a higher-lithium-ionic conductivity of 3.2 mS cm-1 at room temperature. Further, UV-vis absorption and ex situ scanning electron microscopy studies confirm robust interfacial adhesion between the functional inorganic electrolyte, Li7P2.9Ce0.2S10.9Cl0.3, and the Li2S cathode. Thus, a stable extrinsic cathode interface is unprecedently built. Finally, the all-solid-state lithium-sulfur battery based on the Li7P2.9Ce0.2S10.9Cl0.3 electrolyte delivers a higher reversible initial capacity of 617 mA h g-1, a lower interface resistance of 25 Ω cm2 and much better cycling stability (with a high capacity retention of 89% after 100 cycles) than the pristine Li7P3S11 electrolyte.

9.
Nanomicro Lett ; 12(1): 145, 2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34138150

RESUMEN

Smart combination of manifold carbonaceous materials with admirable functionalities (like full of pores/functional groups, high specific surface area) is still a mainstream/preferential way to address knotty issues of polysulfides dissolution/shuttling and poor electrical conductivity for S-based cathodes. However, extensive use of conductive carbon fillers in cell designs/technology would induce electrolytic overconsumption and thereby shelve high-energy-density promise of Li-S cells. To cut down carbon usage, we propose the incorporation of multi-functionalized NiFe2O4 quantum dots (QDs) as affordable additive substitutes. The total carbon content can be greatly curtailed from 26% (in traditional S/C cathodes) to a low/commercial mass ratio (~ 5%). Particularly, note that NiFe2O4 QDs additives own superb chemisorption interactions with soluble Li2Sn molecules and proper catalytic features facilitating polysulfide phase conversions and can also strengthen charge-transfer capability/redox kinetics of overall cathode systems. Benefiting from these intrinsic properties, such hybrid cathodes demonstrate prominent rate behaviors (decent capacity retention with ~ 526 mAh g-1 even at 5 A g-1) and stable cyclic performance in LiNO3-free electrolytes (only ~ 0.08% capacity decay per cycle in 500 cycles at 0.2 A g-1). This work may arouse tremendous research interest in seeking other alternative QDs and offer an economical/more applicable methodology to construct low-carbon-content electrodes for practical usage.

10.
ACS Appl Mater Interfaces ; 7(38): 21188-97, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26364810

RESUMEN

High-surface-area microporous carbons with controllable nitrogen doping were prepared via a novel organic-inorganic sol-gel approach, using phenolic resol and hexamethoxymethyl melamine (HMMM) as carbon precursors, and partially hydrolyzed tetraethoxysilane as silica template. The pore structures of microporous carbons were completely replicated from a thin silica framework and could be tailored greatly by changing the organic/inorganic ratio. The nitrogen atoms doped into the carbon framework were issued from high-nitrogen-content HMMM precursors, and the nitrogen content could be adjusted in a wide range by changing the phenolic resol/HMMM ratio. Moreover, the porous structure and nitrogen content could be simultaneously controlled, allowing the preparation of a series of microporous carbons with almost the same microstructures (BET surface areas of ca.1900 m(2)·g(-1)and pore volumes of ca. 1.2 cm(3)·g(-1), and the same pore size distributions) but with different nitrogen contents (0-12 wt %). These results provided a general method to synthesize nitrogen-doped microporous carbons and allowed these materials to serve as a model system to illustrate the role of nitrogen content on the performance of the carbons. When used as the supports for sulfur cathodes, only an appropriate nitrogen content of ca. 6.3 wt % was found to effectively improve sulfur utilization and cycle life of the sulfur cathodes. The resulting sulfur cathodes could deliver an outstanding reversible discharge capacity of 1054 mAh·g(-1) at 0.5 C after 100 cycles.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda