Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Brain ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38939966

RESUMEN

SCN2A gene-related early-infantile developmental and epileptic encephalopathy (EI-DEE) is a rare and severe disorder that manifests in early infancy. SCN2A mutations affecting the fast inactivation gating mechanism can result in altered voltage dependence and incomplete inactivation of the encoded neuronal Nav1.2 channel and lead to abnormal neuronal excitability. In this study, we evaluated clinical data of seven missense Nav1.2 variants associated with DEE and performed molecular dynamics simulations, patch-clamp electrophysiology, and dynamic clamp real-time neuronal modelling to elucidate the molecular and neuron-scale phenotypic consequences of the mutations. The N1662D mutation almost completely prevented fast inactivation without affecting activation. The comparison of wild-type and N1662D channel structures suggested that the ambifunctional hydrogen bond formation between residues N1662 and Q1494 is essential for fast inactivation. Fast inactivation could also be prevented with engineered Q1494A or Q1494L Nav1.2 channel variants, whereas Q1494E or Q1494 K variants resulted in incomplete inactivation and persistent current. Molecular dynamics simulations revealed a reduced affinity of the hydrophobic IFM-motif to its receptor site with N1662D and Q1494L variants relative to wild-type. These results demonstrate that the interactions between N1662 and Q1494 underpin the stability and the orientation of the inactivation gate and are essential for the development of fast inactivation. Six DEE-associated Nav1.2 variants, with mutations mapped to channel segments known to be implicated in fast inactivation were also evaluated. Remarkably, the L1657P variant also prevented fast inactivation and produced biophysical characteristics that were similar to those of N1662D, whereas the M1501 V, M1501T, F1651C, P1658S, and A1659 V variants resulted in biophysical properties that were consistent with gain-of-function and enhanced action potential firing of hybrid neurons in dynamic action potential clamp experiments. Paradoxically, low densities of N1662D or L1657P currents potentiated action potential firing, whereas increased densities resulted in sustained depolarization. Our results provide novel structural insights into the molecular mechanism of Nav1.2 channel fast inactivation and inform treatment strategies for SCN2A-related EI-DEE. The contribution of non-inactivating Nav1.2 channels to neuronal excitability may constitute a distinct cellular mechanism in the pathogenesis of SCN2A-related DEE.

2.
J Neurochem ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38544375

RESUMEN

De novo variants in the NaV1.2 voltage-gated sodium channel gene SCN2A are among the major causes of developmental and epileptic encephalopathies (DEE). Based on their biophysical impact on channel conductance and gating, SCN2A DEE variants can be classified into gain-of-function (GoF) or loss-of-function (LoF). Clinical and functional data have linked early seizure onset DEE to the GoF SCN2A variants, whereas late seizure onset DEE is associated with the loss of SCN2A function. This study aims to assess the impact of GoF and LoF SCN2A variants on cultured neuronal network activity and explore their modulation by selected antiseizure medications (ASM). To this end, primary cortical cultures were generated from two knock-in mouse lines carrying variants corresponding to human GoF SCN2A p.R1882Q and LoF p.R853Q DEE variant. In vitro neuronal network activity and responses to ASM were analyzed using multielectrode array (MEA) between 2 and 4 weeks in culture. The SCN2A p.R1882Q neuronal cultures showed significantly greater mean firing and burst firing. Their network synchronicity was also higher. In contrast, the SCN2A p.R853Q cultures showed lower mean firing rate, and burst firing events were less frequent. The network synchronicity was also lower. Phenytoin and levetiracetam reduced the excitability of GoF cultures, while retigabine showed differential and potentially beneficial effects on cultures with both GoF and LoF variants. We conclude that in vitro neuronal networks harboring SCN2A GoF or LoF DEE variants present with distinctive phenotypes and responses to ASM.

3.
Am J Med Genet C Semin Med Genet ; : e32101, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056510

RESUMEN

Variants in SCN2A are a known risk factor for developing autism spectrum disorder (ASD). Catatonia is a complex neuropsychiatric syndrome, which occurs at a higher rate in individuals with ASD. Catatonia has also been associated with COVID-19 infection, though the majority of these cases are associated with increased serum inflammatory markers. We present a case of a 15-year-old female with ASD and corticosteroid responsive stuporous catatonia to explore the relationship between SCN2A variants, ASD, COVID-19 exposure, and treatment refractory catatonia. Despite a lack of significantly elevated serum or CSF inflammatory markers, this patient showed significant improvement following initiation of corticosteroid therapy. This case presents a novel approach to the work-up and treatment of catatonia in individuals with SCN2A variants independent of elevated inflammatory markers.

4.
Am J Med Genet A ; : e63813, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975734

RESUMEN

Large cohort studies and variant-specific electrophysiology have enabled the delineation of different SCN2A-epilepsy phenotypes, phenotype-genotype correlations, prediction of pharmacosensitivity to sodium channel blockers, and long-term prognostication for clinicians and families. One of the most common clinical presentations of SCN2A pathological variants is benign familial neonatal-infantile seizures (BFNIS), which are characterized by seizure onset between the first day of life and 23 months of age and typically resolve, either spontaneously or with the aid of sodium channel blockers, within the first 2 years of life. In 2004, Berkovic et al. reported the case of a young boy affected by SCN2A-related BFNIS whose mother, who carried the same pathological variant, had also presented with BFNIS in infancy. Our case report focuses on the aforementioned woman who, more than 40 years later, presented two additional seizures, therefore opening the possibility of a role for SCN2A-related seizures in adulthood.

5.
Qual Life Res ; 33(2): 519-528, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064015

RESUMEN

PURPOSE: There are limited psychometric data on outcome measures for children with Developmental Epileptic Encephalopathies (DEEs), beyond measuring seizures, and no data to describe meaningful change. This study aimed to explore parent perceptions of important differences in functional abilities that would guide their participation in clinical trials. METHODS: This was a descriptive qualitative study. Semi-structured one-on-one interviews were conducted with 10 families (15 parent participants) with a child with a SCN2A-DEE [8 male, median (range) age 7.5 (4.5-21)] years. Questions and probes sought to understand the child's functioning across four domains: gross motor, fine motor, communication, and activities of daily living. Additional probing questions sought to identify the smallest differences in the child's functioning for each domain that would be important to achieve, if enrolling in a traditional therapy clinical trial or in a gene therapy trial. Data were analyzed with directed content analysis. RESULTS: Expressed meaningful differences appeared to describe smaller developmental steps for children with more limited developmental skills and more complex developmental steps for children with less limited skills and were different for different clinical trial scenarios. Individual meaningful changes were described as important for the child's quality of life and to facilitate day-to-day caring. CONCLUSION: Meaningful change thresholds have not been evaluated in the DEE literature. This study was a preliminary qualitative approach to inform future studies that will aim to determine quantitative values of change, applicable to groups and within-person, to inform interpretation of specific clinical outcome assessments in individuals with a DEE.


Asunto(s)
Actividades Cotidianas , Epilepsia , Niño , Humanos , Masculino , Calidad de Vida/psicología , Padres , Investigación Cualitativa , Canal de Sodio Activado por Voltaje NAV1.2
6.
Neurochem Res ; 48(3): 895-908, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36378391

RESUMEN

It is vital to understand the mechanism of epilepsy onset and development. Dysregulated lncRNAs are closely associated with epilepsy. Our work probed the role of lncRNA PVT1/miR-488-3p/FOXD3/SCN2A axis in epilepsy. The mRNA and protein expressions were assessed using qRT-PCR and western blot. MTT assay and TUNEL staining were conducted to assess cell viability and apoptosis, respectively. TNFα, IL-1ß and IL-6 levels were analyzed using ELISA. LDH level was tested by Assay Kit. The binding relationship between PVT1, miR-488-3p and FOXD3 were verified using dual luciferase reporter gene assay. The epilepsy model of rats was established by lithium-pilocarpine injection. Nissl staining was performed to evaluate neuronal damage. PVT1 was markedly upregulated in epilepsy model cells. Knockdown of PVT1 increased the viability, while repressed the apoptosis and inflammatory cytokines secretion as well as LDH level in epilepsy cell model. MiR-488-3p alleviated neuronal injury and neuroinflammation in model cells. MiR-488-3p functioned as the direct target of PVT1, and its inhibition neutralized the effects of PVT1 silencing on neuronal cell injury and neuroinflammation in model cells. Furthermore, miR-488-3p inhibited neuronal cell injury and neuroinflammation in model cells by regulating FOXD3/SCN2A pathway. Finally, animal experiments proved that PVT1 promoted epilepsy-induced neuronal cell injury and neuroinflammation by regulating miR-488-3p-mediated FOXD3/SCN2A pathway. PVT1 promoted neuronal cell injury and inflammatory response in epilepsy via inhibiting miR-488-3p and further regulating FOXD3/SCN2A pathway.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Ratas , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Enfermedades Neuroinflamatorias , Factores de Transcripción , Apoptosis , Proteínas Represoras , Factores de Transcripción Forkhead/genética
7.
Brain ; 145(12): 4275-4286, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35037686

RESUMEN

Pathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).


Asunto(s)
Canalopatías , Epilepsia , Enfermedades del Sistema Nervioso Periférico , Canales de Sodio Activados por Voltaje , Animales , Canalopatías/genética , Canales de Sodio Activados por Voltaje/genética , Epilepsia/genética , Fenotipo , Mamíferos
8.
J Neurosci ; 41(49): 10194-10208, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34716231

RESUMEN

With the wide adoption of genomic sequencing in children having seizures, an increasing number of SCN2A genetic variants have been revealed as genetic causes of epilepsy. Voltage-gated sodium channel Nav1.2, encoded by gene SCN2A, is predominantly expressed in the pyramidal excitatory neurons and supports action potential (AP) firing. One recurrent SCN2A genetic variant is L1342P, which was identified in multiple patients with epileptic encephalopathy and intractable seizures. However, the mechanism underlying L1342P-mediated seizures and the pharmacogenetics of this variant in human neurons remain unknown. To understand the core phenotypes of the L1342P variant in human neurons, we took advantage of a reference human-induced pluripotent stem cell (hiPSC) line from a male donor, in which L1342P was introduced by CRISPR/Cas9-mediated genome editing. Using patch-clamping and microelectrode array (MEA) recordings, we revealed that cortical neurons derived from hiPSCs carrying heterozygous L1342P variant have significantly increased intrinsic excitability, higher sodium current density, and enhanced bursting and synchronous network firing, suggesting hyperexcitability phenotypes. Interestingly, L1342P neuronal culture displayed a degree of resistance to the anticonvulsant medication phenytoin, which recapitulated aspects of clinical observation of patients carrying the L1342P variant. In contrast, phrixotoxin-3 (PTx3), a Nav1.2 isoform-specific blocker, can potently alleviate spontaneous and chemically-induced hyperexcitability of neurons carrying the L1342P variant. Our results reveal a possible pathogenic underpinning of Nav1.2-L1342P mediated epileptic seizures and demonstrate the utility of genome-edited hiPSCs as an in vitro platform to advance personalized phenotyping and drug discovery.SIGNIFICANCE STATEMENT A mounting number of SCN2A genetic variants have been identified from patients with epilepsy, but how SCN2A variants affect the function of human neurons contributing to seizures is still elusive. This study investigated the functional consequences of a recurring SCN2A variant (L1342P) using human iPSC-derived neurons and revealed both intrinsic and network hyperexcitability of neurons carrying a mutant Nav1.2 channel. Importantly, this study recapitulated elements of clinical observations of drug-resistant features of the L1342P variant, and provided a platform for in vitro drug testing. Our study sheds light on cellular mechanism of seizures resulting from a recurring Nav1.2 variant, and helps to advance personalized drug discovery to treat patients carrying pathogenic SCN2A variant.


Asunto(s)
Epilepsia/genética , Epilepsia/fisiopatología , Edición Génica/métodos , Canal de Sodio Activado por Voltaje NAV1.2/genética , Neuronas/patología , Corteza Cerebral/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/fisiología , Mutación
9.
J Neurophysiol ; 127(5): 1388-1397, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417276

RESUMEN

SCN2A encodes a voltage-gated sodium channel (NaV1.2) expressed throughout the central nervous system in predominantly excitatory neurons. Pathogenic variants in SCN2A are associated with epilepsy and neurodevelopmental disorders. Genotype-phenotype correlations have been described, with loss-of-function variants typically being associated with neurodevelopmental delay and later-onset seizures, whereas gain-of-function variants more often result in early infantile-onset epilepsy. However, the true electrophysiological effects of most disease-causing SCN2A variants have yet to be characterized. We report an infant who presented with migrating focal seizures in the neonatal period. She was found to have a mosaic c.2635G>A, p.Gly879Arg variant in SCN2A. Voltage-clamp studies of the variant expressed on adult and neonatal NaV1.2 isoforms demonstrated a mixed gain and loss of function, with predominantly a loss-of-function effect with reduced cell surface expression and current density. Additional small electrophysiological alterations included a decrease in the voltage dependence of activation and an increase in the voltage dependence of inactivation. This finding of a predominantly loss-of-function effect was unexpected, as the infant's early epilepsy onset would have suggested a predominantly gain-of-function effect. This case illustrates that our understanding of genotype-phenotype correlations is still limited and highlights the complexity of the underlying electrophysiological effects of SCN2A variants.NEW & NOTEWORTHY Voltage-gated sodium channels play an important role in the central nervous system, mutations in which have been reported to be responsible for epilepsy. We report here an infant presenting with epilepsy of infancy with migrating focal seizures (EIMFS) in the neonatal period with a mosaic c.2635G>A, resulting in a p.Gly879Arg missense mutation on the SCN2A gene encoding NaV1.2 sodium channels. Biophysical characterization of this variant revealed a mixture of gain- and loss-of-function effects.


Asunto(s)
Epilepsia , Canal de Sodio Activado por Voltaje NAV1.2 , Epilepsia/genética , Femenino , Humanos , Lactante , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Fenotipo , Convulsiones/genética
10.
Am J Med Genet A ; 188(3): 941-947, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34874093

RESUMEN

SCN2A (sodium channel 2A) encodes the Nav1.2 channel protein in excitatory neurons in the brain. Nav1.2 is a critical voltage-gated sodium channel of the central nervous system. Mutations in SCN2A are responsible for a broad phenotypic spectrum ranging from autism and developmental delay to severe encephalopathy with neonatal or early infantile onset. SCN2A can be spliced into two different isoforms, a neonatal (6N) and an adult (6A) form. After birth, there is an equal or higher amount of the 6N isoform, protecting the brain from the increased neuronal excitability of the infantile brain. During postnatal development, 6N is gradually replaced by 6A. In an infant carrying the novel SCN2A mutation c.643G > A (p.Ala215Thr) only in the neonatal transcript, seizures started immediately after birth. The clinical presentation evolved from a burst-suppression pattern with 30-50 tonic seizures per day to hypsarrhythmia. The first exome analysis, focusing only on common transcripts, missed the diagnosis and delayed early therapy. A reevaluation including all transcripts revealed the SCN2A variant.


Asunto(s)
Epilepsia , Espasmos Infantiles , Epilepsia/genética , Humanos , Lactante , Recién Nacido , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/genética , Isoformas de Proteínas/genética , Convulsiones/genética , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/genética
11.
Am J Med Genet A ; 188(3): 867-877, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34894057

RESUMEN

SCN2A-related disorders include intellectual disability, autism spectrum disorder, seizures, episodic ataxia, and schizophrenia. In this study, the phenotype-genotype association in SCN2A-related disorders was further delineated by collecting detailed clinical and molecular characteristics. Using previously proposed genotype-phenotype hypotheses based on variant function and position, the potential of phenotype prediction from the variants found was examined. Patients were identified through the Deciphering Developmental Disorders study and gene matching strategies. Phenotypic information and variant interpretation evidence were collated. Seventeen previously unreported patients and five patients who had been previously reported (but with minimal phenotypic and segregation data) were included (10 males, 12 females; median age 10.5 years). All patients had developmental delays and the majority had intellectual disabilities. Seizures were reported in 15 of 22 (68.2%), four of 22 (18.2%) had autism spectrum disorder and no patients were reported with episodic ataxia. The majority of variants were de novo. One family had presumed gonadal mosaicism. The correlation of the use of sodium channel-blocking antiepileptic drugs with phenotype or genotype was variable. These data suggest that variant type and position alone can provide some predictive information about the phenotype in a proportion of cases, but more precise assessment of variant function is needed for meaningful phenotype prediction.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastorno del Espectro Autista/genética , Niño , Femenino , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Canal de Sodio Activado por Voltaje NAV1.2/genética , Fenotipo , Convulsiones/genética
12.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361691

RESUMEN

Complex genomic rearrangements (CGRs) are structural variants arising from two or more chromosomal breaks, which are challenging to characterize by conventional or molecular cytogenetic analysis (karyotype and FISH). The integrated approach of standard and genomic techniques, including optical genome mapping (OGM) and genome sequencing, is crucial for disclosing and characterizing cryptic chromosomal rearrangements at high resolutions. We report on a patient with a complex developmental and epileptic encephalopathy in which karyotype analysis showed a de novo balanced translocation involving the long arms of chromosomes 2 and 18. Microarray analysis detected a 194 Kb microdeletion at 2q24.3 involving the SCN2A gene, which was considered the likely translocation breakpoint on chromosome 2. However, OGM redefined the translocation breakpoints by disclosing a paracentric inversion at 2q24.3 disrupting SCN1A. This combined genomic high-resolution approach allowed a fine characterization of the CGR, which involves two different chromosomes with four breakpoints. The patient's phenotype resulted from the concomitant loss of function of SCN1A and SCN2A.


Asunto(s)
Encefalopatías , Aberraciones Cromosómicas , Humanos , Cariotipificación , Translocación Genética , Inversión Cromosómica , Cariotipo , Genómica , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.1
13.
Br J Clin Pharmacol ; 87(3): 1568-1573, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32737897

RESUMEN

Sodium channel 2 subunit α (SCN2A) mutations cause difficult-to-treat early-onset epilepsy. Effective treatment includes high-dose phenytoin or carbamazepine ± ketogenic diet (KD). We describe an infant with early-onset SCN2A-epilepsy with subtherapeutic carbamazepine concentration during transition from phenytoin treatment to avoid long-term neurotoxicity. The transition from high-dose phenytoin (20 mg kg-1 d-1 , concentration: ≥20 mg/L) with KD, to carbamazepine (50-75 mg kg-1 d-1 , concentration: 9-12 mg/L) lasted 85 days, which we suspected was due to significant drug-drug and/or drug-food interactions. Model-based analysis of carbamazepine pharmacokinetics quantified significant time- and dose-dependent phenytoin-mediated CYP3A4 induction and carbamazepine concentration-dependent auto-induction (apparent clearance increased up to 2.5/3-fold). Lower carbamazepine concentrations under KD were modelled as decreased relative bioavailability (44%), potentially related to decreased fraction absorbed (unexpected for this lipophilic drug), increased intestinal/hepatic metabolism and/or decreased protein-binding with KD. This suggests importance of carbamazepine-concentration monitoring during KD-introduction/removal and necessity of high carbamazepine doses to achieve therapeutic concentrations, especially in infants treated with high-dose phenytoin.


Asunto(s)
Dieta Cetogénica , Epilepsia , Preparaciones Farmacéuticas , Anticonvulsivantes/uso terapéutico , Carbamazepina/uso terapéutico , Interacciones Farmacológicas , Epilepsia/tratamiento farmacológico , Interacciones Alimento-Droga , Humanos , Lactante , Canal de Sodio Activado por Voltaje NAV1.2/genética , Fenitoína/uso terapéutico
14.
Neurol Sci ; 42(7): 2705-2711, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33914194

RESUMEN

BACKGROUND: Previous studies have investigated the association between rs2304016 and rs17183814 polymorphisms in sodium voltage-gated channel alpha subunit 2 (SCN2A) and epilepsy risk and responsiveness to antiepileptic drugs (AEDs) but with conflicting results. Our aim was to reevaluate the relationship by performing a systematic review and meta-analysis. METHODS: By searching PubMed, Medline, and CNKI, 14 studies were selected. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were computed to measure the association between rs17183814 and rs2304016 polymorphisms and the risk of epilepsy and AEDs response using the fixed-effects model or the random-effects model. RESULTS: No significant association between the rs17183814 in SCN2A and the risk of epilepsy was observed (heterozygous comparison: OR = 0.78, 95% CI: 0.61-1.00; homozygous comparison: OR = 1.34, 95% CI: 0.63-2.86; dominant model: OR = 0.82, 95% CI: 0.64-1.04; recessive model: OR = 1.44, 95% CI: 0.68-3.05; allele comparison: OR = 0.88, 95%CI: 0.71-1.10). Moreover, neither the rs17183814 nor the rs2304016 was associated with AEDs response. CONCLUSION: This meta-analysis suggests that the rs17183814 and rs2304016 polymorphisms in SCN2A are not associated with the risk of epilepsy and response to AEDs.


Asunto(s)
Anticonvulsivantes , Epilepsia , Alelos , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Predisposición Genética a la Enfermedad , Humanos , Canal de Sodio Activado por Voltaje NAV1.2/genética , Polimorfismo de Nucleótido Simple
15.
Proc Natl Acad Sci U S A ; 115(24): E5516-E5525, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844171

RESUMEN

De novo variants in SCN2A developmental and epileptic encephalopathy (DEE) show distinctive genotype-phenotype correlations. The two most recurrent SCN2A variants in DEE, R1882Q and R853Q, are associated with different ages and seizure types at onset. R1882Q presents on day 1 of life with focal seizures, while infantile spasms is the dominant seizure type seen in R853Q cases, presenting at a median age of 8 months. Voltage clamp, which characterizes the functional properties of ion channels, predicted gain-of-function for R1882Q and loss-of-function for R853Q. Dynamic action potential clamp, that we implement here as a method for modeling neurophysiological consequences of a given epilepsy variant, predicted that the R1882Q variant would cause a dramatic increase in firing, whereas the R853Q variant would cause a marked reduction in action potential firing. Dynamic clamp was also able to functionally separate the L1563V variant, seen in benign familial neonatal-infantile seizures from R1882Q, seen in DEE, suggesting a diagnostic potential for this type of analysis. Overall, the study shows a strong correlation between clinical phenotype, SCN2A genotype, and functional modeling. Dynamic clamp is well positioned to impact our understanding of pathomechanisms and for development of disease mechanism-targeted therapies in genetic epilepsy.


Asunto(s)
Potenciales de Acción/genética , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Adolescente , Adulto , Encefalopatías/genética , Niño , Preescolar , Femenino , Estudios de Asociación Genética/métodos , Variación Genética/genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , Convulsiones/genética , Espasmos Infantiles/genética , Adulto Joven
16.
Clin Genet ; 97(1): 209-221, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31497877

RESUMEN

Crisponi/cold-induced sweating syndrome (CS/CISS) is an autosomal recessive disease characterized by hyperthermia, camptodactyly, feeding and respiratory difficulties often leading to sudden death in the neonatal period. The affected individuals who survived the first critical years of life, develop cold-induced sweating and scoliosis in early childhood. The disease is caused by variants in the CRLF1 or in the CLCF1 gene. Both proteins form a heterodimeric complex that acts on cells expressing the ciliary neurotrophic factor receptor (CNTFR). CS/CISS belongs to the family of "CNTFR-related disorders" showing a similar clinical phenotype. Recently, variants in other genes, including KLHL7, NALCN, MAGEL2 and SCN2A, previously linked to other diseases, have been associated with a CS/CISS-like phenotype. Therefore, retinitis pigmentosa and Bohring-Optiz syndrome-like (KLHL7), Congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome (NALCN), Chitayat-Hall/Schaaf-Yang syndrome (MAGEL2), and early infantile epileptic encephalopathy-11 syndrome (SCN2A) all share an overlapping phenotype with CS/CISS, especially in the neonatal period. This review aims to summarize the existing literature on CS/CISS, focusing on the current state of differential diagnosis, pathogenesis and treatment concepts in order to achieve an accurate and rapid diagnosis. This will improve patient management and enable specific treatments for the affected individuals.


Asunto(s)
Craneosinostosis/diagnóstico , Citocinas/genética , Deformidades Congénitas de la Mano/diagnóstico , Hiperhidrosis/diagnóstico , Discapacidad Intelectual/diagnóstico , Receptores de Citocinas/genética , Trismo/congénito , Subunidad alfa del Receptor del Factor Neurotrófico Ciliar/genética , Craneosinostosis/genética , Craneosinostosis/patología , Muerte Súbita/patología , Diagnóstico Diferencial , Facies , Deformidades Congénitas de la Mano/patología , Deformidades Congénitas de la Mano/terapia , Humanos , Hiperhidrosis/patología , Hiperhidrosis/terapia , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Escoliosis/diagnóstico , Trismo/diagnóstico , Trismo/patología , Trismo/terapia
17.
Epilepsia ; 61(3): 387-399, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32090326

RESUMEN

OBJECTIVE: Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS: We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS: Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE: Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.


Asunto(s)
Síndromes Epilépticos/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.3/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canales de Sodio/genética , Edad de Inicio , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Codón sin Sentido , Variaciones en el Número de Copia de ADN , Electroencefalografía , Síndromes Epilépticos/tratamiento farmacológico , Síndromes Epilépticos/fisiopatología , Femenino , Mutación con Ganancia de Función , Eliminación de Gen , Duplicación de Gen , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Humanos , Lactante , Recién Nacido , Mutación con Pérdida de Función , Masculino , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.3/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Bloqueadores de los Canales de Sodio/uso terapéutico , Canales de Sodio/metabolismo
18.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899446

RESUMEN

The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined.


Asunto(s)
Ataxia/genética , Ataxia/metabolismo , Ataxia/fisiopatología , Canales de Calcio/genética , Ataxia Cerebelosa/genética , Transportador 1 de Aminoácidos Excitadores/genética , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/genética
19.
Mol Med ; 25(1): 6, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30813884

RESUMEN

BACKGROUND: Deleterious variants in the voltage-gated sodium channel type 2 (Nav1.2) lead to a broad spectrum of phenotypes ranging from benign familial neonatal-infantile epilepsy (BFNIE), severe developmental and epileptic encephalopathy (DEE) and intellectual disability (ID) to autism spectrum disorders (ASD). Yet, the underlying mechanisms are still incompletely understood. METHODS: To further elucidate the genotype-phenotype correlation of SCN2A variants we investigated the functional effects of six variants representing the phenotypic spectrum by whole-cell patch-clamp studies in transfected HEK293T cells and in-silico structural modeling. RESULTS: The two variants p.L1342P and p.E1803G detected in patients with early onset epileptic encephalopathy (EE) showed profound and complex changes in channel gating, whereas the BFNIE variant p.L1563V exhibited only a small gain of channel function. The three variants identified in ID patients without seizures, p.R937C, p.L611Vfs*35 and p.W1716*, did not produce measurable currents. Homology modeling of the missense variants predicted structural impairments consistent with the electrophysiological findings. CONCLUSIONS: Our findings support the hypothesis that complete loss-of-function variants lead to ID without seizures, small gain-of-function variants cause BFNIE and EE variants exhibit variable but profound Nav1.2 gating changes. Moreover, structural modeling was able to predict the severity of the variant impact, supporting a potential role of structural modeling as a prognostic tool. Our study on the functional consequences of SCN2A variants causing the distinct phenotypes of EE, BFNIE and ID contributes to the elucidation of mechanisms underlying the broad phenotypic variability reported for SCN2A variants.


Asunto(s)
Epilepsia Benigna Neonatal/genética , Síndromes Epilépticos/genética , Discapacidad Intelectual/genética , Canal de Sodio Activado por Voltaje NAV1.2/fisiología , Adolescente , Niño , Epilepsia Benigna Neonatal/fisiopatología , Síndromes Epilépticos/fisiopatología , Estudios de Asociación Genética , Células HEK293 , Humanos , Discapacidad Intelectual/fisiopatología , Fenotipo , Adulto Joven
20.
Clin Genet ; 95(5): 607-614, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30859550

RESUMEN

Crisponi/cold-induced sweating syndrome (CS/CISS) is a rare autosomal recessive disorder characterized by a complex phenotype (hyperthermia and feeding difficulties in the neonatal period, followed by scoliosis and paradoxical sweating induced by cold since early childhood) and a high neonatal lethality. CS/CISS is a genetically heterogeneous disorder caused by mutations in CRLF1 (CS/CISS1), CLCF1 (CS/CISS2) and KLHL7 (CS/CISS-like). Here, a whole exome sequencing approach in individuals with CS/CISS-like phenotype with unknown molecular defect revealed unpredicted alternative diagnoses. This approach identified putative pathogenic variations in NALCN, MAGEL2 and SCN2A. They were already found implicated in the pathogenesis of other syndromes, respectively the congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome, the Schaaf-Yang syndrome, and the early infantile epileptic encephalopathy-11 syndrome. These results suggest a high neonatal phenotypic overlap among these disorders and will be very helpful for clinicians. Genetic analysis of these genes should be considered for those cases with a suspected CS/CISS during neonatal period who were tested as mutation negative in the known CS/CISS genes, because an expedited and corrected diagnosis can improve patient management and can provide a specific clinical follow-up.


Asunto(s)
Secuenciación del Exoma , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Hiperhidrosis/diagnóstico , Hiperhidrosis/genética , Trismo/congénito , Muerte Súbita , Facies , Femenino , Humanos , Lactante , Masculino , Linaje , Fenotipo , Trismo/diagnóstico , Trismo/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda