Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biol Res ; 57(1): 49, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068496

RESUMEN

BACKGROUND: The significant role of embryonic cerebrospinal fluid (eCSF) in the initial stages of brain development has been thoroughly studied. This fluid contains crucial molecules for proper brain development such as members of the Wnt and FGF families, apolipoproteins, and retinol binding protein. Nevertheless, the source of these molecules remains uncertain since they are present before the formation of the choroid plexus, which is conventionally known as the primary producer of cerebrospinal fluid. The subcommissural organ (SCO) is a highly conserved gland located in the diencephalon and is one of the earliest differentiating brain structures. The SCO secretes molecules into the eCSF, prior to the differentiation of the choroid plexus, playing a pivotal role in the homeostasis and dynamics of this fluid. One of the key molecules secreted by the SCO is SCO-spondin, a protein involved in maintenance of the normal ventricle size, straight spinal axis, neurogenesis, and axonal guidance. Furthermore, SCO secretes transthyretin and basic fibroblast growth factor 2, while other identified molecules in the eCSF could potentially be secreted by the SCO. Additionally, various transcription factors have been identified in the SCO. However, the precise mechanisms involved in the early SCO development are not fully understood. RESULTS: To uncover key molecular players and signaling pathways involved in the role of the SCO during brain development, we conducted a transcriptomic analysis comparing the embryonic chick SCO at HH23 and HH30 stages (4 and 7 days respectively). Additionally, a public transcriptomic data from HH30 entire chick brain was used to compare expression levels between SCO and whole brain transcriptome. These analyses revealed that, at both stages, the SCO differentially expresses several members of bone morphogenic proteins, Wnt and fibroblast growth factors families, diverse proteins involved in axonal guidance, neurogenic and differentiative molecules, cell receptors and transcription factors. The secretory pathway is particularly upregulated at stage HH30 while the proliferative pathway is increased at stage HH23. CONCLUSION: The results suggest that the SCO has the capacity to secrete several morphogenic molecules to the eCSF prior to the development of other structures, such as the choroid plexus.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Órgano Subcomisural , Animales , Encéfalo/metabolismo , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Órgano Subcomisural/metabolismo , Órgano Subcomisural/embriología , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica
2.
Glycobiology ; 31(8): 988-1004, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-33909046

RESUMEN

Peters plus syndrome, characterized by defects in eye and skeletal development with isolated cases of ventriculomegaly/hydrocephalus, is caused by mutations in the ß3-glucosyltransferase (B3GLCT) gene. In the endoplasmic reticulum, B3GLCT adds glucose to O-linked fucose on properly folded thrombospondin type 1 repeats (TSRs). The resulting glucose-fucose disaccharide is proposed to stabilize the TSR fold and promote secretion of B3GLCT substrates, with some substrates more sensitive than others to loss of glucose. Mouse B3glct mutants develop hydrocephalus at high frequency. In this study, we demonstrated that B3glct mutant ependymal cells had fewer cilia basal bodies and altered translational polarity compared to controls. Localization of mRNA encoding A Disintegrin and Metalloproteinase with ThromboSpondin type 1 repeat 20 (ADAMTS20) and ADAMTS9 suggested that reduced function of these B3GLCT substrates contributed to ependymal cell abnormalities. In addition, we showed that multiple B3GLCT substrates (Adamts3, Adamts9 and Adamts20) are expressed by the subcommissural organ, that subcommissural organ-spondin ((SSPO) also known as SCO-spondin) TSRs were modified with O-linked glucose-fucose and that loss of B3GLCT reduced secretion of SSPO in cultured cells. In the B3glct mutant, intracellular levels of SSPO were reduced and BiP levels increased, suggesting a folding defect. Secreted SSPO colocalized with BiP, raising the possibility that abnormal extracellular assembly of SSPO into Reissner's fiber also contributed to impaired CSF flow in mutants. Combined, these studies underscore the complexity of the B3glct mutant hydrocephalus phenotype and demonstrate that impaired cerebrospinal fluid (CSF) flow likely stems from the collective effects of the mutation on multiple processes.


Asunto(s)
Hidrocefalia , Deformidades Congénitas de las Extremidades , Órgano Subcomisural , Animales , Glucosiltransferasas/genética , Glicosiltransferasas , Trastornos del Crecimiento/genética , Hidrocefalia/genética , Deformidades Congénitas de las Extremidades/genética , Ratones , Órgano Subcomisural/metabolismo
3.
Cell Tissue Res ; 375(2): 507-529, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30259139

RESUMEN

The subcommissural organ (SCO) is an ancient and conserved brain gland secreting into cerebrospinal fluid (CSF) glycoproteins that form the Reissner fiber (RF). The present investigation was designed to further investigate the dynamic of the biosynthetic process of RF glycoproteins prior and after their release into the CSF, to identify the RF proteome and N-glycome and to clarify the mechanism of assembly of RF glycoproteins. Various methodological approaches were used: biosynthetic labelling injecting 35S-cysteine and 3H-galactose into the CSF, injection of antibodies against galectin-1 into the cerebrospinal fluid, light and electron microscopical methods; isolated bovine RF was used for proteome analyses by mass spectrometry and glycome analysis by xCGE-LIF. The biosynthetic labelling study further supported that a small pool of SCO-spondin molecules rapidly enter the secretory pathways after its synthesis, while most of the SCO-spondin molecules are stored in the rough endoplasmic reticulum for hours or days before entering the secretory pathway and being released to assemble into RF. The proteomic analysis of RF revealed clusterin and galectin-1 as partners of SCO-spondin; the in vivo use of anti-galectin-1 showed that this lectin is essential for the assembly of RF. Galectin-1 is not secreted by the SCO but evidence was obtained that it would be secreted by multiciliated ependymal cells lying close to the SCO. Further, a surprising variety and complexity of glycan structures were identified in the RF N-glycome that further expands the potential functions of RF to a level not previously envisaged. A model of the macromolecular organization of Reissner fiber is proposed.


Asunto(s)
Glicoproteínas/metabolismo , Órgano Subcomisural/fisiología , Animales , Bovinos , Cisteína/metabolismo , Citoplasma/metabolismo , Epéndimo/citología , Epéndimo/metabolismo , Galactosa/metabolismo , Galectina 1/metabolismo , Glicoproteínas/ultraestructura , Glicosilación , Masculino , Polisacáridos/química , Polisacáridos/metabolismo , Ratas Sprague-Dawley , Vías Secretoras , Coloración y Etiquetado , Órgano Subcomisural/ultraestructura , Radioisótopos de Azufre/metabolismo , Tritio/metabolismo
4.
Int J Biol Macromol ; 253(Pt 5): 127157, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37778576

RESUMEN

The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca2+- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development.


Asunto(s)
Sistema Nervioso Central , Vertebrados , Animales , Femenino , Masculino , Secuencia de Bases
5.
Fluids Barriers CNS ; 20(1): 89, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049798

RESUMEN

Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo, an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Ventrículos Cerebrales , Pez Cebra , Animales , Ratones , Moléculas de Adhesión Celular Neuronal/metabolismo , Ventrículos Cerebrales/metabolismo , Médula Espinal/metabolismo , Pez Cebra/metabolismo
6.
Gigascience ; 112022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36472574

RESUMEN

BACKGROUND: The advancement of hybrid sequencing technologies is increasingly expanding genome assemblies that are often annotated using hybrid sequencing transcriptomics, leading to improved genome characterization and the identification of novel genes and isoforms in a wide variety of organisms. RESULTS: We developed an easy-to-use genome-guided transcriptome annotation pipeline that uses assembled transcripts from hybrid sequencing data as input and distinguishes between coding and long non-coding RNAs by integration of several bioinformatic approaches, including gene reconciliation with previous annotations in GTF format. We demonstrated the efficiency of this approach by correctly assembling and annotating all exons from the chicken SCO-spondin gene (containing more than 105 exons), including the identification of missing genes in the chicken reference annotations by homology assignments. CONCLUSIONS: Our method helps to improve the current transcriptome annotation of the chicken brain. Our pipeline, implemented on Anaconda/Nextflow and Docker is an easy-to-use package that can be applied to a broad range of species, tissues, and research areas helping to improve and reconcile current annotations. The code and datasets are publicly available at https://github.com/cfarkas/annotate_my_genomes.


Asunto(s)
Análisis de Secuencia de ARN
7.
Fluids Barriers CNS ; 18(1): 45, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600566

RESUMEN

Cerebrospinal fluid is a clear fluid that occupies the ventricular and subarachnoid spaces within and around the brain and spinal cord. Cerebrospinal fluid is a dynamic signaling milieu that transports nutrients, waste materials and neuroactive substances that are crucial for the development, homeostasis and functionality of the central nervous system. The mechanisms that enable cerebrospinal fluid to simultaneously exert these homeostatic/dynamic functions are not fully understood. SCO-spondin is a large glycoprotein secreted since the early stages of development into the cerebrospinal fluid. Its domain architecture resembles a combination of a matricellular protein and the ligand-binding region of LDL receptor family. The matricellular proteins are a group of extracellular proteins with the capacity to interact with different molecules, such as growth factors, cytokines and cellular receptors; enabling the integration of information to modulate various physiological and pathological processes. In the same way, the LDL receptor family interacts with many ligands, including ß-amyloid peptide and different growth factors. The domains similarity suggests that SCO-spondin is a matricellular protein enabled to bind, modulate, and transport different cerebrospinal fluid molecules. SCO-spondin can be found soluble or polymerized into a dynamic threadlike structure called the Reissner fiber, which extends from the diencephalon to the caudal tip of the spinal cord. Reissner fiber continuously moves caudally as new SCO-spondin molecules are added at the cephalic end and are disaggregated at the caudal end. This movement, like a conveyor belt, allows the transport of the bound molecules, thereby increasing their lifespan and action radius. The binding of SCO-spondin to some relevant molecules has already been reported; however, in this review we suggest more than 30 possible binding partners, including peptide ß-amyloid and several growth factors. This new perspective characterizes SCO-spondin as a regulator of cerebrospinal fluid activity, explaining its high evolutionary conservation, its apparent multifunctionality, and the lethality or severe malformations, such as hydrocephalus and curved body axis, of knockout embryos. Understanding the regulation and identifying binding partners of SCO-spondin are crucial for better comprehension of cerebrospinal fluid physiology.


Asunto(s)
Encéfalo/metabolismo , Proteínas CCN de Señalización Intercelular/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Líquido Cefalorraquídeo/metabolismo , Animales
8.
Curr Biol ; 30(12): 2353-2362.e3, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32386529

RESUMEN

Cerebrospinal fluid (CSF) physiology is important for the development and homeostasis of the central nervous system, and its disruption has been linked to scoliosis in zebrafish [1, 2]. Suspended in the CSF is an extracellular structure called the Reissner fiber, which extends from the brain through the central canal of the spinal cord. Zebrafish scospondin-null mutants are unable to assemble a Reissner fiber and fail to form a straight body axis during embryonic development [3]. Here, we describe hypomorphic missense mutations of scospondin, which allow Reissner fiber assembly and extension of a straight axis. However, during larval development, these mutants display progressive Reissner fiber disassembly, which is concomitant with the emergence of axial curvatures and scoliosis in adult animals. Using a scospondin-GFP knockin zebrafish line, we demonstrate several dynamic properties of the Reissner fiber in vivo, including embryonic fiber assembly, the continuous rostral to caudal movement of the fiber within the brain and central canal, and subcommissural organ (SCO)-spondin-GFP protein secretion from the floor plate to merge with the fiber. Finally, we show that disassembly of the Reissner fiber is also associated with the progression of axial curvatures in distinct scoliosis mutant zebrafish models. Together, these data demonstrate a critical role for the Reissner fiber for the maintenance of a straight body axis and spine morphogenesis in adult zebrafish. Our study establishes a framework for future investigations to address the cellular effectors responsible for Reissner-fiber-dependent regulation of axial morphology. VIDEO ABSTRACT.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Morfogénesis , Columna Vertebral/crecimiento & desarrollo , Pez Cebra/anomalías , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Columna Vertebral/anomalías , Pez Cebra/crecimiento & desarrollo
9.
Elife ; 92020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33048048

RESUMEN

The cerebrospinal fluid (CSF) contains an extracellular thread conserved in vertebrates, the Reissner fiber, which controls body axis morphogenesis in the zebrafish embryo. Yet, the signaling cascade originating from this fiber to ensure body axis straightening is not understood. Here, we explore the functional link between the Reissner fiber and undifferentiated spinal neurons contacting the CSF (CSF-cNs). First, we show that the Reissner fiber is required in vivo for the expression of urp2, a neuropeptide expressed in CSF-cNs. We show that the Reissner fiber is also required for embryonic calcium transients in these spinal neurons. Finally, we study how local adrenergic activation can substitute for the Reissner fiber-signaling pathway to CSF-cNs and rescue body axis morphogenesis. Our results show that the Reissner fiber acts on CSF-cNs and thereby contributes to establish body axis morphogenesis, and suggest it does so by controlling the availability of a chemical signal in the CSF.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Neuronas/fisiología , Nervios Espinales/embriología , Pez Cebra/embriología , Animales , Embrión no Mamífero/embriología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Expresión Génica , Morfogénesis/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transducción de Señal , Pez Cebra/genética
10.
Curr Biol ; 30(12): 2363-2373.e6, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32386528

RESUMEN

Adolescent idiopathic scoliosis (AIS) affects 3% to 4% of children between the ages of 11 and 18 [1, 2]. This disorder, characterized by abnormal three-dimensional spinal curvatures that typically develop during periods of rapid growth, occurs in the absence of congenital vertebral malformations or neuromuscular defects [1]. Genetic heterogeneity [3] and a historical lack of appropriate animal models [4] have confounded basic understanding of AIS biology; thus, treatment options remain limited [5, 6]. Recently, genetic studies using zebrafish have linked idiopathic-like scoliosis to irregularities in motile cilia-mediated cerebrospinal fluid flow [7-9]. However, because loss of cilia motility in human primary ciliary dyskinesia patients is not fully associated with scoliosis [10, 11], other pathogenic mechanisms remain to be determined. Here, we demonstrate that zebrafish scospondin (sspo) mutants develop late-onset idiopathic-like spinal curvatures in the absence of obvious cilia motility defects. Sspo is a large secreted glycoprotein functionally associated with the subcommissural organ and Reissner's fiber [12]-ancient and enigmatic organs of the brain ventricular system reported to govern cerebrospinal fluid homeostasis [13, 14], neurogenesis [12, 15-18], and embryonic morphogenesis [19]. We demonstrate that irregular deposition of Sspo within brain ventricles is associated with idiopathic-like scoliosis across diverse genetic models. Furthermore, Sspo defects are sufficient to induce oxidative stress and neuroinflammatory responses implicated in AIS pathogenesis [9]. Through screening for chemical suppressors of sspo mutant phenotypes, we also identify potent agents capable of blocking severe juvenile spine deformity. Our work thus defines a new preclinical model of AIS and provides tools to realize novel therapeutic strategies.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Ventrículos Cerebrales/metabolismo , Inflamación/fisiopatología , Morfogénesis , Médula Espinal/inmunología , Columna Vertebral/crecimiento & desarrollo , Pez Cebra/anomalías , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Modelos Animales de Enfermedad , Humanos , Médula Espinal/anomalías , Médula Espinal/crecimiento & desarrollo , Columna Vertebral/anomalías , Pez Cebra/crecimiento & desarrollo
11.
Curr Biol ; 30(5): 827-839.e4, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32084399

RESUMEN

Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.


Asunto(s)
Líquido Cefalorraquídeo/fisiología , Morfogénesis , Células Receptoras Sensoriales/fisiología , Médula Espinal/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo , Animales , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Médula Espinal/ultraestructura
12.
Oncotarget ; 8(49): 85969-85983, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29156770

RESUMEN

Angiogenesis plays a critical role in glioblastoma growth and progression. We therefore aimed at evaluating the anti-angiogenic properties of an oligopeptide originating from SCO-spondin (NX) on a model of human glioblastoma. To this end, we studied the impact of NX treatment on human brain endothelial cells (HBMECs) alone or co-cultured with glioblastoma cells (U87-MG) on apoptosis, proliferation, migration and release of angiogenic factors. We further investigated the anti-angiogenic potential of NX on human glioblastoma cells grown on chorio-allantoic membrane (CAM) or in glioblastoma xenografts. The results of our experiments showed that NX treatment impaired the microvascular network and induced a decrease in cell proliferation, vascularization and tumor growth in the CAM model as well as in xenotransplants. Interestingly, our in vitro experiments showed that NX impairs HBMECs migration but also regulates the release of angiogenic factors from U87-MG. These results are confirmed by the profiling of NX-treated U87-MG grown on CAM that highlighted modifications of several genes involved in angiogenesis. In conclusion, NX inhibits tumorigenesis by impairing the ability of glioblastoma cells to induce angiogenesis and by inhibiting endothelial cell migration. This molecule might therefore be an interesting candidate for future cancer therapies.

13.
Front Neuroanat ; 10: 89, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27733818

RESUMEN

Extracellular matrix (ECM) molecules are pivotal for central nervous system (CNS) development, facilitating cell migration, axonal growth, myelination, dendritic spine formation, and synaptic plasticity, among other processes. During axon guidance, the ECM not only acts as a permissive or non-permissive substrate for navigating axons, but also modulates the effects of classical guidance cues, such as netrin or Eph/ephrin family members. Despite being highly important, little is known about the expression of ECM molecules during CNS development. Therefore, this study assessed the molecular expression patterns of tenascin, HNK-1, laminin, fibronectin, perlecan, decorin, and osteopontin along chick embryo prosomere 1 during posterior commissure development. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. Located in the dorso-caudal portion of prosomere 1, posterior commissure axons primarily arise from the neurons of basal pretectal nuclei that run dorsally to the roof plate midline, where some turn toward the ipsilateral side. Expressional analysis of ECM molecules in this area these revealed to be highly arranged, and molecule interactions with axon fascicles suggested involvement in processes other than structural support. In particular, tenascin and the HNK-1 epitope extended in ventro-dorsal columns and enclosed axons during navigation to the roof plate. Laminin and osteopontin were expressed in the midline, very close to axons that at this point must decide between extending to the contralateral side or turning to the ipsilateral side. Finally, fibronectin, decorin, and perlecan appeared unrelated to axonal pathfinding in this region and were instead restricted to the external limiting membrane. In summary, the present report provides evidence for an intricate expression of different extracellular molecules that may cooperate in guiding posterior commissure axons.

14.
Front Neuroanat ; 9: 72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074785

RESUMEN

During early stages of development, encephalic vesicles are composed by a layer of neuroepithelial cells surrounding a central cavity filled with embryonic cerebrospinal fluid (eCSF). This fluid contains several morphogens that regulate proliferation and differentiation of neuroepithelial cells. One of these neurogenic factors is SCO-spondin, a giant protein secreted to the eCSF from early stages of development. Inhibition of this protein in vivo or in vitro drastically decreases the neurodifferentiation process. Other important neurogenic factors of the eCSF are low density lipoproteins (LDL), the depletion of which generates a 60% decrease in mesencephalic explant neurodifferentiation. The presence of several LDL receptor class A (LDLrA) domains (responsible for LDL binding in other proteins) in the SCO-spondin sequence suggests a possible interaction between both molecules. This possibility was analyzed using three different experimental approaches: (1) Bioinformatics analyses of the SCO-spondin region, that contains eight LDLrA domains in tandem, and of comparisons with the LDL receptor consensus sequence; (2) Analysis of the physical interactions of both molecules through immunohistochemical colocalization in embryonic chick brains and through the immunoprecipitation of LDL with anti-SCO-spondin antibodies; and (3) Analysis of functional interactions during the neurodifferentiation process when these molecules were added to a culture medium of mesencephalic explants. The results revealed that LDL and SCO-spondin interact to form a complex that diminishes the neurogenic capacities that both molecules have separately. Our work suggests that the eCSF is an active signaling center with a complex regulation system that allows for correct brain development.

15.
Front Cell Neurosci ; 9: 480, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26778959

RESUMEN

The dynamic and molecular composition of the cerebrospinal fluid (CSF) and, consequently, the CSF physiology is much more complex and fascinating than the simplistic view held for decades. Signal molecules either transported from blood to CSF or secreted into the CSF by circumventricular organs and CSF-contacting neurons, use the CSF to reach their targets in the brain, including the pre- and postnatal neurogenic niche. The subcommissural organ (SCO), a highly conserved brain gland present throughout the vertebrate phylum, is one of the sources for signals, as well as the choroid plexus, tanycytes and CSF-contacting neurons. The SCO secretes into the fetal and adult CSF SCO-spondin, transthyretin, and basic fibroblast growth factor. These proteins participate in certain aspects of neurogenesis, such as cell cycle of neural stem cells, neuronal differentiation, and axon pathfinding. Through the CSF, the SCO-secretory proteins may reach virtually any target in the embryonic and adult central nervous system. Since the SCO continues to secrete throughout life span, it seems likely that the neurogenetic property of the SCO compounds would be targeted to the niches where neurogenesis continues in adulthood. This review is aimed to bring into discussion early and new evidence concerning the role(s) of the SCO, and the probable mechanisms by which SCO compounds can readily reach the neurogenic niche of the subventricular zone flowing with the CSF to participate in the regulation of the neurogenic niche. As we unfold the multiples trans-fluid talks between discrete brain domains we will have more tools to influence such talks.

16.
Front Neuroanat ; 8: 49, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25009468

RESUMEN

Bilaterally symmetric organisms need to exchange information between the two sides of their bodies in order to integrate sensory inputs and coordinate motor control. This exchange occurs through commissures formed by neurons that project axons across the midline to the contralateral side of the central nervous system. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. It is located in the dorsal portion of the prosomere 1, at the caudal diencephalon. The axons of the posterior commissure principally come from neurons of ventrolateral and dorsolateral pretectal nuclei (parvocellular and magnocellular nucleus of the posterior commissure, respectively) that extend their axons toward the dorsal region. The trajectory of these axons can be divided into the following three stages: (1) dorsal axon extension towards the lateral roof plate; (2) fasciculation in the lateral roof plate; and (3) midline decision of turning to the ipsilateral side or continuing to the opposite side. The mechanisms and molecules that guide the axons during these steps are unknown. In the present work, immunohistochemical and in situ hybridization analyses were performed, with results suggesting the participation of EphA7 in guiding axons from the ventral to the dorsal region of the prosomere 1 through the generation of an axonal corridor limited by repulsive EphA7 walls. At the lateral roof plate, the axons became fasciculated in presence of SCO-spondin until reaching the midline. Finally, EphA7 expression was observed in the diencephalic midline roof plate, specifically in the region where some axons turn to the ipsilateral side, suggesting its participation in this decision. In summary, the present work proposes a mechanism of posterior commissure formation orchestrated by the complementary expression of the axon guidance cues SCO-spondin and EphA7.

17.
Front Cell Neurosci ; 7: 80, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23761733

RESUMEN

The central nervous system (CNS) develops from the neural tube, a hollow structure filled with embryonic cerebrospinal fluid (eCSF) and surrounded by neuroepithelial cells. Several lines of evidence suggest that the eCSF contains diffusible factors regulating the survival, proliferation, and differentiation of the neuroepithelium, although these factors are only beginning to be uncovered. One possible candidate as eCSF morphogenetic molecule is SCO-spondin, a large glycoprotein whose secretion by the diencephalic roof plate starts at early developmental stages. In vitro, SCO-spondin promotes neuronal survival and differentiation, but its in vivo function still remains to be elucidated. Here we performed in vivo loss of function experiments for SCO-spondin during early brain development by injecting and electroporating a specific shRNA expression vector into the neural tube of chick embryos. We show that SCO-spondin knock down induces an increase in neuroepithelial cells proliferation concomitantly with a decrease in cellular differentiation toward neuronal lineages, leading to hyperplasia in both the diencephalon and the mesencephalon. In addition, SCO-spondin is required for the correct morphogenesis of the posterior commissure and pineal gland. Because SCO-spondin is secreted by the diencephalon, we sought to corroborate the long-range function of this protein in vitro by performing gain and loss of function experiments on mesencephalic explants. We find that culture medium enriched in SCO-spondin causes an increased neurodifferentiation of explanted mesencephalic region. Conversely, inhibitory antibodies against SCO-spondin cause a reduction in neurodifferentiation and an increase of mitosis when such explants are cultured in eCSF. Our results suggest that SCO-spondin is a crucial eCSF diffusible factor regulating the balance between proliferation and differentiation of the brain neuroepithelial cells.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda