Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894870

RESUMEN

Chronic kidney disease (CKD) is a global health concern affecting millions worldwide. One of the critical challenges in CKD is the accumulation of uremic toxins such as p-cresol sulfate (pCS) and indoxyl sulfate (IS), which contribute to systemic damage and CKD progression. Understanding the transport mechanisms of these prominent toxins is essential for developing effective treatments. Here, we investigated whether pCS and IS are routed to the plasma membrane or to the cytosol by two key transporters, SLC22A11 and OAT1. To distinguish between cytosolic transport and plasma membrane insertion, we used a hyperosmolarity assay in which the accumulation of substrates into HEK-293 cells in isotonic and hypertonic buffers was measured in parallel using LC-MS/MS. Judging from the efficiency of transport (TE), pCS is a relevant substrate of SLC22A11 at 7.8 ± 1.4 µL min-1 mg protein-1 but not as good as estrone-3-sulfate; OAT1 translocates pCS less efficiently. The TE of SLC22A11 for IS was similar to pCS. For OAT1, however, IS is an excellent substrate. With OAT1 and p-aminohippuric acid, our study revealed an influence of transporter abundance on the outcomes of the hyperosmolarity assay; very high transport activity confounded results. SLC22A11 was found to insert both pCS and IS into the plasma membrane, whereas OAT1 conveys these toxins to the cytosol. These disparate transport mechanisms bear profound ramifications for toxicity. Membrane insertion might promote membrane damage and microvesicle release. Our results underscore the imperative for detailed structural inquiries into the translocation of small molecules.


Asunto(s)
Insuficiencia Renal Crónica , Toxinas Biológicas , Humanos , Tóxinas Urémicas , Indicán/metabolismo , Cromatografía Liquida , Células HEK293 , Espectrometría de Masas en Tándem , Insuficiencia Renal Crónica/metabolismo , Cresoles/metabolismo , Toxinas Biológicas/metabolismo , Membrana Celular/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente
2.
Mol Genet Genomics ; 295(4): 1013-1026, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32363570

RESUMEN

Obesity, a risk factor for multiple diseases (e.g. diabetes, hypertension, cancers) originates through complex interactions between genes and prevailing environment (food habit and lifestyle) that varies across populations. Indians exhibit a unique obesity phenotype with high abdominal adiposity for a given body weight compared to matched white populations suggesting presence of population-specific genetic and environmental factors influencing obesity. However, Indian population-specific genetic contributors for obesity have not been explored yet. Therefore, to identify potential genetic contributors, we performed a two-staged genome-wide association study (GWAS) for body mass index (BMI), a common measure to evaluate obesity in 5973 Indian adults and the lead findings were further replicated in 1286 Indian adolescents. Our study revealed novel association of variants-rs6913677 in BAI3 gene (p = 1.08 × 10-8) and rs2078267 in SLC22A11 gene (p = 4.62 × 10-8) at GWAS significance, and of rs8100011 in ZNF45 gene (p = 1.04 × 10-7) with near GWAS significance. As genetic loci may dictate the phenotype through modulation of epigenetic processes, we overlapped genetic data of identified signals with their DNA methylation patterns in 236 Indian individuals and performed methylation quantitative trait loci (meth-QTL) analysis. Further, functional roles of discovered variants and underlying genes were speculated using publicly available gene regulatory databases (ENCODE, JASPAR, GeneHancer, GTEx). The identified variants in BAI3 and SLC22A11 genes were found to dictate methylation patterns at unique CpGs harboring critical cis-regulatory elements. Further, BAI3, SLC22A11 and ZNF45 variants were located in repressive chromatin, active enhancer, and active chromatin regions, respectively, in human subcutaneous adipose tissue in ENCODE database. Additionally, these genomic regions represented potential binding sites for key transcription factors implicated in obesity and/or metabolic disorders. Interestingly, GTEx portal identify rs8100011 as a robust cis-expression quantitative trait locus (cis-eQTL) in subcutaneous adipose tissue (p = 1.6 × 10-7), and ZNF45 gene expression in skeletal muscle of Indian subjects showed an inverse correlation with BMI indicating its possible role in obesity. In conclusion, our study discovered 3 novel population-specific functional genetic variants (rs6913677, rs2078267, rs8100011) in 2 novel (SLC22A11 and ZNF45) and 1 earlier reported gene (BAI3) for BMI in Indians. Our study decodes key genomic loci underlying obesity phenotype in Indians that may serve as prospective drug targets in future.


Asunto(s)
Estudio de Asociación del Genoma Completo , Factores de Transcripción de Tipo Kruppel/genética , Obesidad/genética , Transportadores de Anión Orgánico Sodio-Independiente/genética , Proteínas Represoras/genética , Adolescente , Adulto , Pueblo Asiatico/genética , Índice de Masa Corporal , Metilación de ADN , Femenino , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Humanos , Indígenas Norteamericanos/genética , Masculino , Obesidad/patología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Adulto Joven
3.
Biochem Pharmacol ; 186: 114484, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33617845

RESUMEN

Many drugs are largely hydrophobic molecules; a transporter might conceivably insert these into the plasma membrane. At least 18 transporters from diverse families have been reported to transport the model compound estrone sulfate alias estrone-3-sulfate (E3S). Out of these, we recently examined SLC22A11 (OAT4). We concluded from a comparison of E3S and uric acid transport that SLC22A11 does not translocate E3S into the cytosol, but into the plasma membrane. Here we present a hyperosmolarity alias hypertonicity assay to differentiate transport mechanisms. Human transporters were expressed heterologously in 293 cells. Solute uptake into intact cells was measured by LC-MS. Addition of mannitol or sucrose led to rapid cell shrinkage, but cell viability after 60 min in hyperosmolar buffer was not impaired. A decrease in substrate accumulation with increasing osmolarity as observed here for several substrates and the transporters SLC22A11, ETT (SLC22A4), OCT2 (SLC22A2), OAT3 (SLC22A8), and MATE1 (SLC47A1) suggests regular substrate translocation into the cytosol. An increase as observed for E3S transport by SLC22A11, OAT3, MATE1, SLC22A9, and SLC10A6 implies insertion into the membrane. In marked contrast to the other E3S transporters, the bile acid transporter SLC10A1 (NTCP, Na+ taurocholate co-transporting polypeptide) showed a decrease in the accumulation of E3S in hyperosmolar buffer; the same was observed with taurocholic acid. Indeed, our data from several functional assays strongly suggest that the transport mechanism is identical for both substrates. Apparently, a unique transport mechanism has been established for SLC10A1 by evolution that ensures the transport of amphipathic, detergent-like molecules into the cytosol.


Asunto(s)
Membrana Celular/metabolismo , Estrona/análogos & derivados , Manitol/administración & dosificación , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Sacarosa/administración & dosificación , Simportadores/metabolismo , Membrana Celular/efectos de los fármacos , Diuréticos Osmóticos/administración & dosificación , Relación Dosis-Respuesta a Droga , Estrona/metabolismo , Estrona/farmacología , Células HEK293 , Humanos , Concentración Osmolar , Edulcorantes/administración & dosificación
4.
Biochem Pharmacol ; 128: 74-82, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28027879

RESUMEN

Estrone sulfate alias estrone-3-sulfate (E3S) is considerably larger and much more hydrophobic than typical substrates of SLC22 transporters. It is puzzling that many otherwise unrelated transporters have been reported to transport E3S. Here we scrutinized the mechanism of transport of E3S by SLC22A11 (alias OAT4), by direct comparison with uric acid (UA), an important physiological substrate. Heterologous expression of SLC22A11 in human 293 cells gave rise to a huge unidirectional efflux of glutamate (Glu) and aspartate, as determined by LC-MS/MS. The uptake of E3S was 20-fold faster than the uptake of UA. Yet, the outward transport of Glu was inhibited by extracellular E3S, but not by UA. The release of E3S after preloading was trans-stimulated by extracellular dehydroepiandrosterone sulfate (DHEAS), but neither by UA nor 6-carboxyfluorescein (6CF). The equilibrium accumulation of E3S was enhanced 3-fold by replacement of chloride with gluconate, but the opposite effect was observed for UA. These results establish that SLC22A11 provides entirely different transport mechanisms for E3S and UA. Therefore, E3S must not be used as a substitute for UA to assay the function of SLC22A11. In equilibrium accumulation experiments, the transporter-mediated uptake was a linear function of the concentration of UA and 6CF. By contrast, in the same concentration range the graph for E3S was hyperbolic. This suggests that SLC22A11 inserts E3S into a small volume with limited capacity, the plasma membrane. Our data support the notion that the reverse process, extraction from the membrane, is also catalyzed by the carrier.


Asunto(s)
Estrona/análogos & derivados , Ácido Glutámico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ácido Úrico/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Estrona/metabolismo , Células HEK293 , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda