Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(31): e2400078121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39058580

RESUMEN

Current treatments of anxiety and depressive disorders are plagued by considerable side effects and limited efficacies, underscoring the need for additional molecular targets that can be leveraged to improve medications. Here, we have identified a molecular cascade triggered by chronic stress that exacerbates anxiety- and depressive-like behaviors. Specifically, chronic stress enhances Src kinase activity and tyrosine phosphorylation of calmodulin, which diminishes MyosinVa (MyoVa) interaction with Neuroligin2 (NL2), resulting in decreased inhibitory transmission and heightened anxiety-like behaviors. Importantly, pharmacological inhibition of Src reinstates inhibitory synaptic deficits and effectively reverses heightened anxiety-like behaviors in chronically stressed mice, a process requiring the MyoVa-NL2 interaction. These data demonstrate the reversibility of anxiety- and depressive-like phenotypes at both molecular and behavioral levels and uncover a therapeutic target for anxiety and depressive disorders.


Asunto(s)
Ansiedad , Calmodulina , Transducción de Señal , Estrés Psicológico , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Estrés Psicológico/metabolismo , Calmodulina/metabolismo , Familia-src Quinasas/metabolismo , Fosforilación , Miosinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Depresión/tratamiento farmacológico , Depresión/metabolismo , Humanos
2.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36628974

RESUMEN

Src kinases are important regulators of cell adhesion. Here, we have explored the function of Src42A in junction remodelling during Drosophila gastrulation. Src42A is required for tyrosine phosphorylation at bicellular (bAJ) and tricellular (tAJ) junctions in germband cells, and localizes to hotspots of mechanical tension. The role of Src42A was investigated using maternal RNAi and CRISPR-Cas9-induced germline mosaics. We find that, during cell intercalations, Src42A is required for the contraction of junctions at anterior-posterior cell interfaces. The planar polarity of E-cadherin is compromised and E-cadherin accumulates at tricellular junctions after Src42A knockdown. Furthermore, we show that Src42A acts in concert with Abl kinase, which has also been implicated in cell intercalations. Our data suggest that Src42A is involved in two related processes: in addition to establishing tension generated by the planar polarity of MyoII, it may also act as a signalling factor at tAJs to control E-cadherin residence time.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Uniones Adherentes/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Uniones Intercelulares/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
3.
Mol Cell ; 67(6): 947-961.e5, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28890336

RESUMEN

The Hsp90 system in the eukaryotic cytosol is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function. Although progress has been made regarding the underlying biochemical mechanisms, how co-chaperones influence Hsp90 client proteins in vivo has remained elusive. By investigating the effect of 12 Hsp90 co-chaperones on the activity of different client proteins in yeast, we find that deletion of co-chaperones can have a neutral or negative effect on client activity but can also lead to more active clients. Only a few co-chaperones are active on all clients studied. Closely related clients and even point mutants can depend on different co-chaperones. These effects are direct because differences in client-co-chaperone interactions can be reconstituted in vitro. Interestingly, some co-chaperones affect client conformation in vivo. Thus, co-chaperones adapt the Hsp90 cycle to the requirements of the client proteins, ensuring optimal activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Plasticidad de la Célula , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Genotipo , Proteínas HSP90 de Choque Térmico/genética , Mutación , Proteína Oncogénica pp60(v-src)/genética , Proteína Oncogénica pp60(v-src)/metabolismo , Fenotipo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
4.
Mol Cell Proteomics ; 22(1): 100451, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36423812

RESUMEN

Dimerization of SRC kinase adaptor phosphoprotein 2 (SKAP2) induces an increase of binding for most SRC kinases suggesting a fine-tuning with transphosphorylation for kinase activation. This work addresses the molecular basis of SKAP2-mediated SRC kinase regulation through the lens of their interaction capacities. By combining a luciferase complementation assay and extensive site-directed mutagenesis, we demonstrated that SKAP2 interacts with SRC kinases through a modular organization depending both on their phosphorylation-dependent activation and subcellular localization. SKAP2 contains three interacting modules consisting in the dimerization domain, the SRC homology 3 (SH3) domain, and the second interdomain located between the Pleckstrin homology and the SH3 domains. Functionally, the dimerization domain is necessary and sufficient to bind to most activated and myristyl SRC kinases. In contrast, the three modules are necessary to bind SRC kinases at their steady state. The Pleckstrin homology and SH3 domains of SKAP2 as well as tyrosines located in the interdomains modulate these interactions. Analysis of mutants of the SRC kinase family member hematopoietic cell kinase supports this model and shows the role of two residues, Y390 and K7, on its degradation following activation. In this article, we show that a modular architecture of SKAP2 drives its interaction with SRC kinases, with the binding capacity of each module depending on both their localization and phosphorylation state activation. This work opens new perspectives on the molecular mechanisms of SRC kinases activation, which could have significant therapeutic impact.


Asunto(s)
Dominios Homologos src , Familia-src Quinasas , Familia-src Quinasas/metabolismo , Fosfoproteínas/metabolismo , Fosforilación
5.
Drug Resist Updat ; 73: 101051, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219531

RESUMEN

Trastuzumab resistance in HER2+ breast cancer (BC) is the major reason leading to poor prognosis of BC patients. Oncogenic gene overexpression or aberrant activation of tyrosine kinase SRC is identified to be the key modulator of trastuzumab response. However, the detailed regulatory mechanisms underlying SRC activation-associated trastuzumab resistance remain poorly understood. In the present study, we discover that SRC-mediated YAP1 tyrosine phosphorylation facilitates its interaction with transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha, TFAP2A), which in turn promotes YAP1/TEAD-TFAP2A (YTT) complex-associated transcriptional outputs, thereby conferring trastuzumab resistance in HER2+ BC. Inhibition of SRC kinase activity or disruption of YTT complex sensitizes cells to trastuzumab treatment in vitro and in vivo. Additionally, we also identify YTT complex co-occupies the regulatory regions of a series of genes related to trastuzumab resistance and directly regulates their transcriptions, including EGFR, HER2, H19 and CTGF. Moreover, YTT-mediated transcriptional regulation is coordinated by SRC kinase activity. Taken together, our study reveals that SRC-mediated YTT complex formation and transcriptions are responsible for multiple mechanisms associated with trastuzumab resistance. Therefore, targeting HER2 signaling in combination with the inhibition of YTT-associated transcriptional outputs could serve as the treatment strategy to overcome trastuzumab resistance caused by SRC activation.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Trastuzumab/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosforilación , Factor de Transcripción AP-2/metabolismo , Receptor ErbB-2/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Familia-src Quinasas/metabolismo , Familia-src Quinasas/uso terapéutico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina/metabolismo , Tirosina/uso terapéutico
6.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G525-G542, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38440826

RESUMEN

The inflamed mucosa contains a complex assortment of proteases that may participate in wound healing or the development of inflammation-associated colon cancer. We sought to determine the role of protease-activated receptor 2 (PAR2) in epithelial wound healing in both untransformed and transformed colonic epithelial cells. Monolayers of primary epithelial cells derived from organoids cultivated from patient colonic biopsies and of the T84 colon cancer cell line were grown to confluence, wounded in the presence of a selective PAR2-activating peptide, and healing was visualized by live cell microscopy. Inhibitors of various signaling molecules were used to assess the relevant pathways responsible for wound healing. Activation of PAR2 induced an enhanced wound-healing response in T84 cells but not primary cells. The PAR2-enhanced wound-healing response was associated with the development of lamellipodia in cells at the wound edge, consistent with sheet migration. The response to PAR2 activation in T84 cells was completely dependent on Src kinase activity and partially dependent on Rac1 activity. The Src-associated signaling molecules, focal adhesion kinase, and epidermal growth factor receptor, which typically mediate wound-healing responses, were not involved in the PAR2 response. Experiments repeated in the presence of the inflammatory cytokines TNF and IFNγ revealed a synergistically enhanced PAR2 wound-healing response in T84s but not primary cells. The epithelial response to proteases may be different between primary and cancer cells and is accentuated in the presence of inflammatory cytokines. Our findings have implications for understanding epithelial restitution in the context of inflammatory bowel disease (IBD) and inflammation-associated colon cancer.NEW & NOTEWORTHY Protease-activated receptor 2 enhances wound healing in the T84 colon cancer cell line, but not in primary cells derived from patient biopsies, an effect that is synergistically enhanced in the presence of the inflammatory cytokines TNF and IFNγ.


Asunto(s)
Neoplasias del Colon , Receptor PAR-2 , Humanos , Línea Celular , Movimiento Celular , Neoplasias del Colon/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Inflamación/metabolismo , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/farmacología , Receptor PAR-2/metabolismo
7.
J Membr Biol ; 257(1-2): 79-89, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436710

RESUMEN

The gastric H+,K+-ATPase is an integral membrane protein which derives energy from the hydrolysis of ATP to transport H+ ions from the parietal cells of the gastric mucosa into the stomach in exchange for K+ ions. It is responsible for the acidic environment of the stomach, which is essential for digestion. Acid secretion is regulated by the recruitment of the H+,K+-ATPase from intracellular stores into the plasma membrane on the ingestion of food. The similar amino acid sequences of the lysine-rich N-termini α-subunits of the H+,K+- and Na+,K+-ATPases, suggests similar acute regulation mechanisms, specifically, an electrostatic switch mechanism involving an interaction of the N-terminal tail with the surface of the surrounding membrane and a modulation of the interaction via regulatory phosphorylation by protein kinases. From a consideration of sequence alignment of the H+,K+-ATPase and an analysis of its coevolution with protein kinase C and kinases of the Src family, the evidence points towards a phosphorylation of tyrosine-7 of the N-terminus by either Lck or Yes in all vertebrates except cartilaginous fish. The results obtained will guide and focus future experimental research.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Estómago , Animales , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transporte Biológico , ATPasa Intercambiadora de Hidrógeno-Potásio/química , Iones/metabolismo
8.
Cell Mol Life Sci ; 80(2): 41, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633714

RESUMEN

SRC is the first identified oncogene, and its aberrant activation has been implicated as a driving event in tumor initiation and progression. However, its role in cancer stemness regulation and the underlying regulatory mechanism are still elusive. Here, we identified a YAP1 tyrosine phosphorylation-dependent YAP1-KLF5 oncogenic module, as the key downstream mediator of SRC kinase regulating cancer stemness and metastasis in triple-negative breast cancer (TNBC). SRC was overexpressed in TNBC patient tissues and its expression level was highly correlated with the tumor malignancy. SRC activation induced, while inhibition of SRC kinase reduced the cancer stemness, tumor cell growth and metastasis in vitro and in vivo. Transcriptomic and proteomic analysis revealed that SRC-mediated YAP1 tyrosine phosphorylation induced its interaction with Kruppel-like factor 5 (KLF5) to form a YAP1/TEAD-KLF5 complex in TNBC cells. YAP1-KLF5 association further promoted TEAD-mediated transcriptional program independently of canonical Hippo kinases, which eventually gave rise to the enhanced cancer stemness and metastasis. Disruption of YAP1-KLF5 module in TNBC cells dramatically attenuated the SRC-induced cancer stemness and metastasis in vitro and in vivo. Accordingly, co-upregulations of SRC and YAP1-KLF5 module in TNBC tissues were significantly positively correlated with the tumor malignance. Altogether, our work presents a novel tyrosine phosphorylation-dependent YAP1-KLF5 oncogenic module governing SRC-induced cancer stemness and metastasis in TNBC. Therefore, targeting YAP1/KLF5-mediated transcription may provide a promising strategy for TNBC treatment with SRC aberrantly activation.


Asunto(s)
Proteínas Tirosina Quinasas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Proteómica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Familia-src Quinasas/metabolismo , Proliferación Celular , Tirosina , Línea Celular Tumoral , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
9.
Bioorg Chem ; 132: 106387, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724660

RESUMEN

Aberrant activation of the Hedgehog (Hh) signaling pathway has been observed in various human malignancies. Glioma-associated oncogene transcription factor 1 (GLI1) is the ultimate effector of the canonical Hh pathway and has also been identified as a common regulator of several tumorigenic pathways prevalent in Hh-independent cancers. The anti-cancer potential of GLI1 antagonism with small molecule inhibitors has demonstrated initial promise; however, the continued development of GLI1 inhibitors is still needed. We previously identified a scaffold containing an 8-hydroxyquinoline as a promising lead GLI1 inhibitor (compound 1). To further develop this scaffold, we performed a systematic structure-activity relationship study to map the structural requirements of GLI1 inhibition by this chemotype. A series of biophysical and cellular experiments identified compound 39 as an enhanced GLI1 inhibitor with improved activity. In addition, our studies on this scaffold suggest a potential role for SRC family kinases in regulating oncogenic GLI1 transcriptional activity.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Proliferación Celular , Línea Celular Tumoral
10.
Chem Biodivers ; 20(9): e202300515, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37563848

RESUMEN

The physiological Src proto-oncogene is a protein tyrosine kinase receptor that served as the essential signaling pathway in different types of cancer. Src kinase receptor is divided into different domains: a unique domain, an SH3 domain, an SH2 domain, a protein tyrosine kinase domain, and a regulatory tail, which runs from the N-terminus to the C-terminus. Src kinase inhibitors bind in the kinase domain and are activated by phosphorylation. The etiology of cancer involved various signaling pathways and Src signaling pathways are also involved in those clusters. Although the dysregulation of Src kinase resulted in cancer being discovered in the late 19th century it is still considered a cult pathway because it is not much explored by different medicinal chemists and oncologists. The Src kinase regulated through different kinase pathways (MAPK, PI3K/Akt/mTOR, JAK/STAT3, Hippo kinase, PEAK1, and Rho/ROCK pathways) and proceeded downstream signaling to conduct cell proliferation, angiogenesis, migration, invasion, and metastasis of cancer cells. There are numerous FDA-approved drugs flooded the market but still, there is a huge demand for the creation of novel anticancer drugs. As the existing drugs are accompanied by several adverse effects and drug resistance due to rapid mutation in proteins. In this review, we have elaborated about the structure and activation of Src kinase, as well as the development of Src kinase inhibitors. Our group also provided a comprehensive overview of Src inhibitors throughout the last two decades, including their biological activity, structure-activity relationship, and Src kinase selectivity. The Src binding pocket has been investigated in detail to better comprehend the interaction of Src inhibitors with amino acid residues. We have strengthened the literature with our contribution in terms of molecular docking and ADMET studies of top compounds. We hope that the current analysis will be a useful resource for researchers and provide glimpse of direction toward the design and development of more specific, selective, and potent Src kinase inhibitors.


Asunto(s)
Antineoplásicos , Familia-src Quinasas , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Química Farmacéutica , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
11.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614319

RESUMEN

Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a cell-cell adhesion protein conferring heterotypic and homotypic interactions between cells of the same type and different types. It is aberrantly expressed in various cancer types and has been shown to be a regulator of cancer metastasis. In the present study, we investigated potential roles of ALCAM in the peritoneal transcoelomic metastasis in gastrointestinal cancers, a metastatic type commonly occurred in gastro-intestinal and gynaecological malignancies and resulting in poor clinical outcomes. Specifically, we studied whether ALCAM acts as both a 'seed' receptor in these tumour cells and a 'soil' receptor in peritoneal mesothelial cells during cancer metastasis. Gastric cancer and pancreatic cancer tissues with or without peritoneal metastasis were compared for their levels of ALCAM expression. The impact of ALCAM expression in these tumours was also correlated to the patients' clinical outcomes, namely peritoneal metastasis-free survival. In addition, cancer cells of gastric and pancreatic origins were used to create cell models with decreased or increased levels of ALCAM expression by genetic knocking down or overexpression, respectively. Human peritoneal mesothelial cells were also genetically transfected to generate cell models with different profiles of ALCAM expression. These cell models were used in the tumour-mesothelial interaction assay to assess if and how the interaction was influenced by ALCAM. Both gastric and pancreatic tumour tissues from patients who developed peritoneal metastases had higher levels of ALCAM transcript than those without. Patients who had tumours with high levels of ALCAM had a much shorter peritoneal metastasis free survival compared with those who had low ALCAM expression (p = 0.006). ALCAM knockdown of the mesothelial cell line MET5A rendered the cells with reduced interaction with both gastric cancer cells and pancreatic cancer cells. Likewise, levels of ALCAM in both human gastric and pancreatic cancer cells were also a determining factor for their adhesiveness to mesothelial cells, a process that was likely to be triggered the phosphorylation of the SRC kinase. A soluble ALCAM (sALCAM) was found to be able to inhibit the adhesiveness between cancer cells and mesothelial cells, mechanistically behaving like a SRC kinase inhibitor. ALCAM is an indicator of peritoneal metastasis in both gastric and pancreatic cancer patients. It acts as not only a potential peritoneal 'soil' receptor of tumour seeding but also a 'soil' receptor in peritoneal mesothelial cells during cancer metastasis. These findings have an important therapeutic implication for treating peritoneal transcoelomic metastases.


Asunto(s)
Molécula de Adhesión Celular del Leucocito Activado , Neoplasias Pancreáticas , Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Molécula de Adhesión Celular del Leucocito Activado/genética , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Adhesión Celular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Familia-src Quinasas/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Peritoneales/secundario , Neoplasias Pancreáticas
12.
Breast Cancer Res ; 24(1): 99, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581908

RESUMEN

Breast cancer (BC) has been ranked the most common malignant tumor throughout the world and is also a leading cause of cancer-related deaths among women. SRC family kinases (SFKs) belong to the non-receptor tyrosine kinase (nRTK) family, which has eleven members sharing similar structure and function. Among them, SRC is the first identified proto-oncogene in mammalian cells. Oncogenic overexpression or activation of SRC has been revealed to play essential roles in multiple events of BC progression, including tumor initiation, growth, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of SRC kinase and SRC-relevant functions in various subtypes of BC and then systematically summarize SRC-mediated signaling transductions, with particular emphasis on SRC-mediated substrate phosphorylation in BC. Furthermore, we will discuss the progress of SRC-based targeted therapies in BC and the potential future direction.


Asunto(s)
Neoplasias de la Mama , Familia-src Quinasas , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Fosforilación , Transducción de Señal , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
13.
Mol Carcinog ; 61(7): 677-689, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35472679

RESUMEN

The Src tyrosine kinase is a strong tumor promotor. Over a century of research has elucidated fundamental mechanisms that drive its oncogenic potential. Src phosphorylates effector proteins to promote hallmarks of tumor progression. For example, Src associates with the Cas focal adhesion adaptor protein to promote anchorage independent cell growth. In addition, Src phosphorylates Cas to induce Pdpn expression to promote cell migration. Pdpn is a transmembrane receptor that can independently increase cell migration in the absence of oncogenic Src kinase activity. However, to our knowledge, effects of Src kinase activity on anchorage independent cell growth and migration have not been examined in the absence of Pdpn expression. Here, we analyzed the effects of an inducible Src kinase construct in knockout cells with and without exogenous Pdpn expression on cell morphology migration and anchorage independent growth. We report that Src promoted anchorage independent cell growth in the absence of Pdpn expression. In contrast, Src was not able to promote cell migration in the absence of Pdpn expression. In addition, continued Src kinase activity was required for cells to assume a transformed morphology since cells reverted to a nontransformed morphology upon cessation of Src kinase activity. We also used phosphoproteomic analysis to identify 28 proteins that are phosphorylated in Src transformed cells in a Pdpn dependent manner. Taken together, these data indicate that Src utilizes Pdpn to promote transformed cell growth and motility in complementary, but parallel, as opposed to serial, pathways.


Asunto(s)
Neoplasias , Familia-src Quinasas , Adhesión Celular , Movimiento Celular , Humanos , Fosforilación , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
14.
Invest New Drugs ; 40(4): 773-781, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35579731

RESUMEN

Poor tolerance to standard therapies and multi-drug resistance complicate treatment of elderly patients with acute myeloid leukemia (AML). It is therefore imperative to explore novel tolerable agents and target alternative pathways. KX2-391 is an oral non-ATP-competitive inhibitor of Src kinase and tubulin polymerization. This multi-center phase Ib open-label safety and activity study involved elderly patients with relapsed or refractory AML, or who declined standard chemotherapy. Twenty-four patients averaging 74 years of age were enrolled. The majority previously received hypomethylating agents. Five doses were tested: 40 mg (n = 1), 80 mg (n = 2), 120 mg (n = 8), 140 mg (n = 12), and 160 mg (n = 1). Seven patients were treated for 12 days or less, nine for 15-29 days, five for 33-58 days, and three for 77-165 days. One patient receiving 120 mg for 165 days had reduced splenomegaly and survived 373 days. Another had no evidence of disease progression for 154 days. One patient receiving 160 mg for 12 days remained treatment-free for about 18 months. Dose-limiting toxicities occurred in eight patients at: 120 mg (transaminitis, hyperbilirubinemia), 140 mg (mucositis, allergic reaction, transaminitis, acute kidney injury), and 160 mg (mucositis). The maximum tolerated dose for KX2-391 was 120 mg once daily. KX2-391 bone marrow concentrations were approximately similar to plasma concentrations. This is the first study to evaluate the safety of KX2-391 in elderly patients with AML. Further studies are warranted, including alternative dosing phase I trials evaluating shorter courses at higher doses and phase II trials. (Clinical Trial Registration:The study was registered at ClinicalTrials.gov: NCT01397799 (July 20, 2011)).


Asunto(s)
Leucemia Mieloide Aguda , Mucositis , Acetamidas , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Dosis Máxima Tolerada , Morfolinas/uso terapéutico , Mucositis/tratamiento farmacológico , Piridinas
15.
J Biochem Mol Toxicol ; 36(7): e23074, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35416377

RESUMEN

Statins have anti-inflammatory and antifibrotic effects in addition to cholesterol-lowering effect. We aimed to investigate the effect of atorvastatin (ATR) in fibrotic mouse lung and human lung fibroblasts (MRC5s). Pulmonary fibrosis was induced by a single dose of bleomycin by intratracheal instillation in adult mice. ATR was administered (20 mg/kg ip) to mice with healthy and pulmonary fibrosis for 10 days from Day 7 of the experiment. Mice were dissected on the 21st day. The levels of alpha-smooth muscle actin (α-SMA), pSMAD2/3, LOXL2, and p-Src were determined by Western blot analysis in the lungs. Furthermore, a group of MRC5 was differentiated into myofibroblasts by transforming growth factor-beta (TGF-ß). Another group of MRC5s was treated with 10 µM ATR at 24 h after TGF-ß stimulation. Cells were collected at 0, 24, 48, and 72 h. The effects of ATR on myofibroblast differentiation, apoptosis, and TGF-ß and Wnt/ß-catenin signaling activations were examined by Western blot analysis and flow cytometry in MRC5s. ATR attenuated pulmonary fibrosis by regulating myofibroblast differentiation and interstitial accumulation of collagen, by acting on LOXL2, p-Src, and pSMAD2/3 in mice lungs. Additionally, it blocked myofibroblast differentiation via reduced TGF-ß and Wnt/ß-catenin signaling and decreased α-SMA in MRC5s stimulated with TGF-ß. Moreover, ATR caused myofibroblast apoptosis via caspase-3 activation. ATR treatment attenuates pulmonary fibrosis in mice treated with bleomycin. It also inhibits fibroblast/myofibroblast activation, by both reducing myofibroblasts differentiation and inducing myofibroblast apoptosis.


Asunto(s)
Fibrosis Pulmonar , Animales , Apoptosis , Atorvastatina/efectos adversos , Bleomicina/toxicidad , Diferenciación Celular , Fibroblastos , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Factor de Crecimiento Transformador beta , beta Catenina
16.
J Biochem Mol Toxicol ; 36(5): e23021, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35174920

RESUMEN

Sugar-borate esters have recently been reported to have anti-cancer potential. Among the sugar-borate esters, calcium fructoborate (CaFB) possesses beneficial effects on human health. Despite the beneficial effects of CaFB, there is a lack of knowledge about their mode of action in cancer. The potential cytotoxic effects of CaFB were investigated on colon cancer cells (Caco-2). The mode of action was determined through the evaluation of Fyn and Hck expression levels together with Bcl-2, Bax, and PI3K/Akt pathway proteins. CaFB treatment was found to be most effective on Caco-2 cells at 10 mM concentration for 24 h. Decreased Bcl-2 levels and increased Bax levels at 10 mM were evaluated as an indicator of apoptotic effects of CaFB. Akt, p70S6K, and 4EBP1 levels, in general, tend to decrease following CaFB, while PTEN and TSC2 levels have been found to increase. Furthermore, CaFB upregulated Hck expression and downregulated Fyn expression. In conclusion, our results indicated that CaFB treatment at 10 mM concentration, the IC50 dose found in our study, might prevent colon cancer cell proliferation both by inducing apoptosis and presumably by activating autophagy.


Asunto(s)
Boratos , Neoplasias del Colon , Apoptosis , Boratos/farmacología , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Ésteres/farmacología , Fructosa/análogos & derivados , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína X Asociada a bcl-2
17.
Exp Cell Res ; 399(2): 112438, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33358861

RESUMEN

Palmitic acid (PA)-induced hepatocyte apoptosis is critical for the progression of nonalcoholic fatty liver disease (NAFLD). Inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) is an intracellular Ca2+-release channel and is involved in PA-induced hepatocyte apoptosis. While the expression of IP3R1 is elevated in patients with NAFLD and in hepatocytes treated with PA, it remains unclear how PA promotes the expression of IP3R1. In present study, our results showed that PA induced mitochondrial dysfunction and apoptosis, which is accompanied with the increase of the IP3R1 expression in hepatic cells. The inhibition of IP3R1 expression using siRNA ameliorated the PA-induced mitochondrial dysfunction. Furthermore, PA enhanced the stability of the IP3R1 protein instead of an increase in its mRNA levels. PA also promoted the phosphorylation of IP3R1 at the Tyr353 site and increased the phosphorylation of src in hepatic cells. Moreover, an inhibitor of src kinase (SU6656) significantly reduced the Tyr353 phosphorylation of IP3R1 and decreased its stability. In addition, SU6656 improved mitochondrial function and reduced apoptosis in hepatocytes. Conclusion: PA promotes the Tyr353 phosphorylation of IP3R1 by activating the src pathway and increasing the protein stability of IP3R1, which consequently results in mitochondrial Ca2+ overload and mitochondrial dysfunction in hepatic cells. Our results also suggested that inhibition of the src/IP3R1 pathway, such as by SU6656, may be a novel potential therapeutic approach for the treatment of NAFLD.


Asunto(s)
Apoptosis , Hepatocitos/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ácido Palmítico/farmacología , Familia-src Quinasas/metabolismo , Apoptosis/efectos de los fármacos , Células Cultivadas , Células Hep G2 , Hepatocitos/fisiología , Humanos , Indoles/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Fosforilación/efectos de los fármacos , Estabilidad Proteica , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/fisiología
18.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613508

RESUMEN

The Na+, K+-ATPase is an integral membrane protein which uses the energy of ATP hydrolysis to pump Na+ and K+ ions across the plasma membrane of all animal cells. It plays crucial roles in numerous physiological processes, such as cell volume regulation, nutrient reabsorption in the kidneys, nerve impulse transmission, and muscle contraction. Recent data suggest that it is regulated via an electrostatic switch mechanism involving the interaction of its lysine-rich N-terminus with the cytoplasmic surface of its surrounding lipid membrane, which can be modulated through the regulatory phosphorylation of the conserved serine and tyrosine residues on the protein's N-terminal tail. Prior data indicate that the kinases responsible for phosphorylation belong to the protein kinase C (PKC) and Src kinase families. To provide indications of which particular enzyme of these families might be responsible, we analysed them for evidence of coevolution via the mirror tree method, utilising coevolution as a marker for a functional interaction. The results obtained showed that the most likely kinase isoforms to interact with the Na+, K+-ATPase were the θ and η isoforms of PKC and the Src kinase itself. These theoretical results will guide the direction of future experimental studies.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Familia-src Quinasas , Animales , Fosforilación , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Proteína Quinasa C/metabolismo , Iones/metabolismo
19.
J Biol Chem ; 295(39): 13474-13487, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32690605

RESUMEN

Yes-associated protein (YAP) signaling has emerged as a crucial pathway in several normal and pathological processes. Although the main upstream effectors that regulate its activity have been extensively studied, the role of the endosomal system has been far less characterized. Here, we identified the late endosomal/lysosomal adaptor MAPK and mTOR activator (LAMTOR) complex as an important regulator of YAP signaling in a preosteoblast cell line. We found that p18/LAMTOR1-mediated peripheral positioning of late endosomes allows delivery of SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) to the plasma membrane and promotes activation of an SRC-dependent signaling cascade that controls YAP nuclear shuttling. Moreover, ß1 integrin engagement and mechano-sensitive cues, such as external stiffness and related cell contractility, controlled LAMTOR targeting to the cell periphery and thereby late endosome recycling and had a major impact on YAP signaling. Our findings identify the late endosome recycling pathway as a key mechanism that controls YAP activity and explains YAP mechano-sensitivity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Endosomas/metabolismo , Integrina beta1/metabolismo , Factores de Transcripción/metabolismo , Familia-src Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/deficiencia , Línea Celular , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Proto-Oncogenes Mas , Transducción de Señal , Factores de Transcripción/deficiencia , Familia-src Quinasas/deficiencia
20.
J Biol Chem ; 295(50): 17281-17297, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33037073

RESUMEN

The adipocyte-derived hormone leptin increases trafficking of KATP and Kv2.1 channels to the pancreatic ß-cell surface, resulting in membrane hyperpolarization and suppression of insulin secretion. We have previously shown that this effect of leptin is mediated by the NMDA subtype of glutamate receptors (NMDARs). It does so by potentiating NMDAR activity, thus enhancing Ca2+ influx and the ensuing downstream signaling events that drive channel trafficking to the cell surface. However, the molecular mechanism by which leptin potentiates NMDARs in ß-cells remains unknown. Here, we report that leptin augments NMDAR function via Src kinase-mediated phosphorylation of the GluN2A subunit. Leptin-induced membrane hyperpolarization diminished upon pharmacological inhibition of GluN2A but not GluN2B, indicating involvement of GluN2A-containing NMDARs. GluN2A harbors tyrosine residues that, when phosphorylated by Src family kinases, potentiate NMDAR activity. We found that leptin increases phosphorylation of Tyr-418 in Src, an indicator of kinase activation. Pharmacological inhibition of Src or overexpression of a kinase-dead Src mutant prevented the effect of leptin, whereas a Src kinase activator peptide mimicked it. Using mutant GluN2A overexpression, we show that Tyr-1292 and Tyr-1387 but not Tyr-1325 are responsible for the effect of leptin. Importantly, ß-cells from db/db mice, a type 2 diabetes mouse model lacking functional leptin receptors, or from obese diabetic human donors failed to respond to leptin but hyperpolarized in response to NMDA. Our study reveals a signaling pathway wherein leptin modulates NMDARs via Src to regulate ß-cell excitability and suggests NMDARs as a potential target to overcome leptin resistance.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Leptina/metabolismo , Potenciales de la Membrana , Receptores de N-Metil-D-Aspartato/metabolismo , Familia-src Quinasas/metabolismo , Animales , Línea Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Leptina/genética , Ratones , Ratones Mutantes , Mutación , Obesidad/genética , Obesidad/metabolismo , Fosforilación , Receptores de N-Metil-D-Aspartato/genética , Familia-src Quinasas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda