Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Mol Cell ; 81(10): 2216-2230.e10, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33848455

RESUMEN

DNA double-strand break (DSB) repair is mediated by multiple pathways. It is thought that the local chromatin context affects the pathway choice, but the underlying principles are poorly understood. Using a multiplexed reporter assay in combination with Cas9 cutting, we systematically measure the relative activities of three DSB repair pathways as a function of chromatin context in >1,000 genomic locations. This reveals that non-homologous end-joining (NHEJ) is broadly biased toward euchromatin, while the contribution of microhomology-mediated end-joining (MMEJ) is higher in specific heterochromatin contexts. In H3K27me3-marked heterochromatin, inhibition of the H3K27 methyltransferase EZH2 reverts the balance toward NHEJ. Single-stranded template repair (SSTR), often used for precise CRISPR editing, competes with MMEJ and is moderately linked to chromatin context. These results provide insight into the impact of chromatin on DSB repair pathway balance and guidance for the design of Cas9-mediated genome editing experiments.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Secuencia de Bases , Reparación del ADN por Unión de Extremidades , Eucromatina/metabolismo , Reordenamiento Génico , Genoma Humano , Heterocromatina/metabolismo , Humanos , Mutación INDEL/genética , Células K562 , Cinética , Unión Proteica , Reproducibilidad de los Resultados
2.
Proc Natl Acad Sci U S A ; 121(26): e2321710121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885377

RESUMEN

Somatostatin receptor 5 (SSTR5) is an important G protein-coupled receptor and drug target for neuroendocrine tumors and pituitary disorders. This study presents two high-resolution cryogenicelectron microscope structures of the SSTR5-Gi complexes bound to the cyclic neuropeptide agonists, cortistatin-17 (CST17) and octreotide, with resolutions of 2.7 Å and 2.9 Å, respectively. The structures reveal that binding of these peptides causes rearrangement of a "hydrophobic lock", consisting of residues from transmembrane helices TM3 and TM6. This rearrangement triggers outward movement of TM6, enabling Gαi protein engagement and receptor activation. In addition to hydrophobic interactions, CST17 forms conserved polar contacts similar to somatostatin-14 binding to SSTR2, while further structural and functional analysis shows that extracellular loops differently recognize CST17 and octreotide. These insights elucidate agonist selectivity and activation mechanisms of SSTR5, providing valuable guidance for structure-based drug development targeting this therapeutically relevant receptor.


Asunto(s)
Octreótido , Receptores de Somatostatina , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/química , Humanos , Octreótido/química , Octreótido/farmacología , Octreótido/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/química , Microscopía por Crioelectrón , Unión Proteica , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Somatostatina/metabolismo , Somatostatina/química , Somatostatina/análogos & derivados , Modelos Moleculares , Células HEK293
3.
J Biol Chem ; 299(5): 104645, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965619

RESUMEN

The Somatostatin receptor 2 (Sstr2) is a heterotrimeric G protein-coupled receptor that is highly expressed in neuroendocrine tumors and is a common pharmacological target for intervention. Unfortunately, not all neuroendocrine tumors express Sstr2, and Sstr2 expression can be downregulated with prolonged agonist use. Sstr2 is rapidly internalized following agonist stimulation and, in the short term, is quantitatively recycled back to the plasma membrane. However, mechanisms controlling steady state expression of Sstr2 in the absence of agonist are less well described. Here, we show that Sstr2 interacts with the Wnt pathway protein Dvl1 in a ligand-independent manner to target Sstr2 for lysosomal degradation. Interaction of Sstr2 with Dvl1 does not affect receptor internalization, recycling, or signaling to adenylyl cyclase but does suppress agonist-stimulated ERK1/2 activation. Importantly, Dvl1-dependent degradation of Sstr2 can be stimulated by overexpression of Wnts and treatment of cells with Wnt pathway inhibitors can boost Sstr2 expression in neuroendocrine tumor cells. Taken together, this study identifies for the first time a mechanism that targets Sstr2 for lysosomal degradation that is independent of Sstr2 agonist and can be potentiated by Wnt ligand. Intervention in this signaling mechanism has the potential to elevate Sstr2 expression in neuroendocrine tumors and enhance Sstr2-directed therapies.


Asunto(s)
Proteínas Dishevelled , Lisosomas , Receptores de Somatostatina , Humanos , Proteínas Dishevelled/genética , Proteínas Dishevelled/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Lisosomas/metabolismo , Tumores Neuroendocrinos/fisiopatología , Unión Proteica , Transporte de Proteínas , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-39046521

RESUMEN

PURPOSE: [177Lu]Lu-DOTATATE is an established somatostatin receptor (SSTR) agonist for the treatment of metastasized neuroendocrine neoplasms, while the SSTR antagonist [177Lu]Lu-DOTA-LM3 has only scarcely been employed in clinics. Impressive preclinical data obtained with [161Tb]Tb-DOTA-LM3 in tumor-bearing mice indicated the potential of terbium-161 as an alternative to lutetium-177. The aim of the present study was to compare the tolerability of 161Tb- and 177Lu-based DOTA-LM3 and DOTATATE in immunocompetent mice. METHODS: Dosimetry calculations were performed based on biodistribution data of the radiopeptides in immunocompetent mice. Treatment-related effects on blood cell counts were assessed on Days 10, 28 and 56 after application of [161Tb]Tb-DOTA-LM3 or [161Tb]Tb-DOTATATE at 20 MBq per mouse. These radiopeptides were also applied at 100 MBq per mouse and the effects compared to those observed after application of the 177Lu-labeled counterparts. Bone marrow smears, blood plasma parameters and organ histology were assessed at the end of the study. RESULTS: The absorbed organ dose was commonly higher for the SSTR antagonist than for the SSTR agonist and for terbium-161 over lutetium-177. Application of a therapeutic activity level of 20 MBq [161Tb]Tb-DOTA-LM3 or [161Tb]Tb-DOTATATE was well tolerated without major hematological changes. The injection of 100 MBq of the 161Tb- and 177Lu-based somatostatin analogues affected the blood cell counts, however. The lymphocytes were 40-50% lower in treated mice compared to the untreated controls on Day 10 irrespective of the radionuclide employed. At the same timepoint, thrombocyte and erythrocyte counts were 30-50% and 6-12% lower, respectively, after administration of the SSTR antagonist (p < 0.05) while changes were less pronounced in mice injected with the SSTR agonist. All blood cell counts were in the normal range on Day 56. Histological analyses revealed minimal abnormalities in the kidneys, liver and spleen of treated mice. No correlation was observed between the organ dose and frequency of the occurrence of abnormalities. CONCLUSION: Hematologic changes were more pronounced in mice treated with the SSTR antagonist than in those treated with the SSTR agonist. Despite the increased absorbed dose delivered by terbium-161 over lutetium-177, [161Tb]Tb-DOTA-LM3 and [161Tb]Tb-DOTATATE should be safe at activity levels that are recommended for their respective 177Lu-based analogues.

5.
Eur J Nucl Med Mol Imaging ; 51(4): 1147-1162, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37955792

RESUMEN

PURPOSE: The lead-203 (203Pb)/lead-212 (212Pb) elementally identical radionuclide pair has gained significant interest in the field of image-guided targeted alpha-particle therapy for cancer. Emerging evidence suggests that 212Pb-labeled peptide-based radiopharmaceuticals targeting somatostatin receptor subtype 2 (SSTR2) may provide improved effectiveness compared to beta-particle-based therapies for neuroendocrine tumors (NETs). This study aims to improve the performance of SSTR2-targeted radionuclide imaging and therapy through structural modifications to Tyr3-octreotide (TOC)-based radiopharmaceuticals. METHODS: New SSTR2-targeted peptides were designed and synthesized with the goal of optimizing the incorporation of Pb isotopes through the use of a modified cyclization technique; the introduction of a Pb-specific chelator (PSC); and the insertion of polyethylene glycol (PEG) linkers. The binding affinity of the peptides and the cellular uptake of 203Pb-labeled peptides were evaluated using pancreatic AR42J (SSTR2+) tumor cells and the biodistribution and imaging of the 203Pb-labeled peptides were assessed in an AR42J tumor xenograft mouse model. A lead peptide was identified (i.e., PSC-PEG2-TOC), which was then further evaluated for efficacy in 212Pb therapy studies. RESULTS: The lead radiopeptide drug conjugate (RPDC) - [203Pb]Pb-PSC-PEG2-TOC - significantly improved the tumor-targeting properties, including receptor binding and tumor accumulation and retention as compared to [203Pb]Pb-DOTA0-Tyr3-octreotide (DOTATOC). Additionally, the modified RPDC exhibited faster renal clearance than the DOTATOC counterpart. These advantageous characteristics of [212Pb]Pb-PSC-PEG2-TOC resulted in a dose-dependent therapeutic effect with minimal signs of toxicity in the AR42J xenograft model. Fractionated administrations of 3.7 MBq [212Pb]Pb-PSC-PEG2-TOC over three doses further improved anti-tumor effectiveness, resulting in 80% survival (70% complete response) over 120 days in the mouse model. CONCLUSION: Structural modifications to chelator and linker compositions improved tumor targeting and pharmacokinetics (PK) of 203/212Pb peptide-based radiopharmaceuticals for NET theranostics. These findings suggest that PSC-PEG2-TOC is a promising candidate for Pb-based targeted radionuclide therapy for NETs and other types of cancers that express SSTR2.


Asunto(s)
Tumores Neuroendocrinos , Octreótido , Ratones , Humanos , Animales , Octreótido/uso terapéutico , Octreótido/metabolismo , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/radioterapia , Tumores Neuroendocrinos/tratamiento farmacológico , Radiofármacos/uso terapéutico , Radiofármacos/farmacocinética , Distribución Tisular , Plomo , Radioisótopos de Plomo , Receptores de Somatostatina/metabolismo , Quelantes
6.
Artículo en Inglés | MEDLINE | ID: mdl-39023784

RESUMEN

PURPOSE: Small cell lung cancer (SCLC) is a highly aggressive tumor with neuroendocrine origin. Although SCLC frequently express somatostatin receptor type 2 (SSTR2), a significant clinical benefit of SSTR2-targeted radionuclide therapies of SCLC was not observed so far. We hypothesize that combination treatment with a PARP inhibitor (PARPi) could lead to radiosensitization and increase the effectiveness of SSTR2-targeted therapy in SCLC. METHODS: SSTR2-ligand uptake of the SCLC cell lines H69 and H446 was evaluated in vitro using flow cytometry, and in vivo using SPECT imaging and cut-and-count biodistribution. Single-agent (Olaparib, Rucaparib, [177Lu]Lu-DOTA-TOC) and combination treatment responses were determined in vitro via cell viability, clonogenic survival and γH2AX DNA damage assays. In vivo, we treated athymic nude mice bearing H69 or H446 xenografts with Olaparib, Rucaparib, or [177Lu]Lu-DOTA-TOC alone or with combination treatment regimens to assess the impact on tumor growth and survival of the treated mice. RESULTS: H446 and H69 cells exhibited low SSTR2 expression, i.e. 60 to 90% lower uptake of SSTR2-ligands compared to AR42J cells. In vitro, combination treatment of [177Lu]Lu-DOTA-TOC with PARPi resulted in 2.9- to 67-fold increased potency relative to [177Lu]Lu-DOTA-TOC alone. We observed decreased clonogenic survival and higher amounts of persistent DNA damage compared to single-agent treatment for both Olaparib and Rucaparib. In vivo, tumor doubling times increased to 1.6-fold (H446) and 2.2-fold (H69) under combination treatment, and 1.0 to 1.1-fold (H446) and 1.1 to 1.7-fold (H69) in monotherapies compared to untreated animals. Concurrently, median survival was higher in the combination treatment groups in both models compared to monotherapy and untreated mice. Fractionating the PRRT dose did not lead to further improvement of therapeutic outcome. CONCLUSION: The addition of PARPi can markedly improve the potency of SSTR2-targeted PRRT in SCLC models in SSTR2 low-expressing tumors. Further evaluation in humans seems justified based on the results as novel treatment options for SCLC are urgently needed.

7.
Rev Endocr Metab Disord ; 25(2): 383-398, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38051470

RESUMEN

As the incidence of neuroendocrine tumors has been rising, gender differences in epidemiology and clinical behavior have emerged, and interest into a gender-driven management of these tumors has grown with the aim to improve survival and quality of life of these patients. Somatostatin Analogues represent the first line of systemic treatment of both functional and non-functional neuroendocrine tumors, through the expression of somatostatin receptors (SSTRs) in the tumor cells, and proved effective in controlling hormonal hypersecretion and inhibiting tumor growth, improving progression-free survival and overall survival of these patients. Aim of the present review is to investigate any differences by gender in efficacy and safety of SSTS-targeted therapies, that represent the mainstay treatment of neuroendocrine tumors, as they emerge from studies of varying design and intent. Although preclinical studies have provided evidence in favor of differences by gender in tumor expression of SSTR, as well as of the role of sex hormones and related receptors in modulating SSTRs expression and function, the clinical studies conducted so far have not shown substantial differences between males and females in either efficacy or toxicity of SSTR-targeted therapies, even if with sometimes inconsistent results. Moreover, in most studies gender was not a predictor of response to treatment. Studies specifically designed to address this issue are needed to develop gender-specific therapeutic algorithms, improving patients' prognosis and quality of life.


Asunto(s)
Tumores Neuroendocrinos , Somatostatina , Masculino , Femenino , Humanos , Somatostatina/uso terapéutico , Tumores Neuroendocrinos/patología , Calidad de Vida , Receptores de Somatostatina/metabolismo
8.
Int J Mol Sci ; 25(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38791582

RESUMEN

A novel nanotechnology-based drug delivery system (DDS) targeted at pancreatic cancer cells was developed, characterized, and tested. The system consisted of liposomes as carriers, an anticancer drug (paclitaxel) as a chemotherapeutic agent, and a modified synthetic somatostatin analog, 5-pentacarbonyl-octreotide, a ligand for somatostatin receptor 2 (SSTR2), as a targeting moiety for pancreatic cancer. The cellular internalization, cytotoxicity, and antitumor activity of the DDS were tested in vitro using human pancreatic ductal adenocarcinoma (PDAC) cells with different expressions of the targeted SSTR2 receptors, and in vivo on immunodeficient mice bearing human PDAC xenografts. The targeted drug delivery system containing paclitaxel exhibited significantly enhanced cytotoxicity compared to non-targeted DDS, and this efficacy was directly related to the levels of SSTR2 expression. It was found that octreotide-targeted DDS proved exceptionally effective in suppressing the growth of PDAC tumors. This study underscores the potential of octreotide-targeted liposomal delivery systems to enhance the therapeutic outcomes for PDAC compared with non-targeted liposomal DDS and Paclitaxel-Cremophor® EL, suggesting a promising avenue for future cancer therapy innovations.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Octreótido , Paclitaxel , Neoplasias Pancreáticas , Receptores de Somatostatina , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Receptores de Somatostatina/metabolismo , Ratones , Línea Celular Tumoral , Paclitaxel/farmacología , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Liposomas/química , Sistemas de Liberación de Medicamentos/métodos , Octreótido/administración & dosificación , Octreótido/farmacología , Somatostatina/análogos & derivados , Nanotecnología/métodos , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología
9.
Medicina (Kaunas) ; 60(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39202532

RESUMEN

Background and Objectives: This study explores the complex pathogenesis of pituitary adenomas (PAs), prevalent intracranial tumors in the pituitary gland. Despite their generally benign nature, PAs exhibit a diverse clinical spectrum involving hormone hypersecretion and varying invasiveness, hinting at multifaceted molecular mechanisms and abnormalities in tumorigenesis and gene regulation. Materials and Methods: The investigation focuses on the Ki-67 labeling index, SSTR2 rs2236750, SSTR5 rs34037914, and AIP rs267606574 polymorphisms, alongside serum levels of SSTR2, SSTR5, and AIP, to discern their association with PAs. The Ki-67 labeling index was assessed using immunohistochemical analysis with the monoclonal antibody clone SP6, representing the percentage of tumor cells showing positive staining. Genotyping was performed via real-time polymerase chain reaction, and serum levels were analyzed using ELISA. The study included 128 PA patients and 272 reference group subjects. Results: The results derived from binary logistic regression analysis revealed an intriguing correlation between the SSTR2 rs2236750 AG genotype and approximately a 1.6-fold increased likelihood of PA occurrence. When analyzing SSTR5 rs34037914, statistically significant differences were found between Micro-PA and the reference group (p = 0.022). Additionally, the SSTR5 rs34037914 TT genotype, compared with CC + CT, under the most robust genetic model (selected based on the lowest AIC value), was associated with a 12-fold increased odds of Micro-PA occurrence. However, it is noteworthy that after applying Bonferroni correction, these findings did not retain statistical significance. Conclusions: Consequently, while this study hinted at a potential link between SSTR2 rs2236750 and pituitary adenoma development, as well as a potential link between SSTR5 rs34037914 and Micro-PA development, it underscored the need for further analysis involving a larger cohort to robustly validate these findings.


Asunto(s)
Adenoma , Antígeno Ki-67 , Neoplasias Hipofisarias , Receptores de Somatostatina , Humanos , Receptores de Somatostatina/genética , Receptores de Somatostatina/análisis , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Antígeno Ki-67/análisis , Antígeno Ki-67/genética , Adenoma/genética , Adenoma/sangre , Genotipo , Anciano , Péptidos y Proteínas de Señalización Intracelular/genética , Variación Genética
10.
Eur J Nucl Med Mol Imaging ; 50(11): 3390-3399, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358620

RESUMEN

BACKGROUND: Somatostatin-receptor (SSTR)-targeted PET/CT provides important clinical information in addition to standard imaging in meningioma patients. [18F]SiTATE is a novel, 18F-labeled SSTR-targeting peptide with superior imaging properties according to preliminary data. We provide the first [18F]SiTATE PET/CT data of a large cohort of meningioma patients. METHODS: Patients with known or suspected meningioma undergoing [18F]SiTATE PET/CT were included. Uptake intensity (SUV) of meningiomas, non-meningioma lesions, and healthy organs were assessed using a 50% isocontour volume of interest (VOI) or a spherical VOI, respectively. Also, trans-osseous extension on PET/CT was assessed. RESULTS: A total of 107 patients with 117 [18F]SiTATE PET/CT scans were included. Overall, 231 meningioma lesions and 61 non-meningioma lesions (e.g., post-therapeutic changes) were analyzed. Physiological uptake was lowest in healthy brain tissue, followed by bone marrow, parotid, and pituitary (SUVmean 0.06 ± 0.04 vs. 1.4 ± 0.9 vs. 1.6 ± 1.0 vs. 9.8 ± 4.6; p < 0.001). Meningiomas showed significantly higher uptake than non-meningioma lesions (SUVmax 11.6 ± 10.6 vs. 4.0 ± 3.3, p < 0.001). Meningiomas showed significantly higher uptake than non-meningioma lesions (SUVmax 11.6±10.6 vs. 4.0±3.3, p<0.001). 93/231 (40.3%) meningiomas showed partial trans-osseous extension and 34/231 (14.7%) predominant intra-osseous extension. 59/231 (25.6%) meningioma lesions found on PET/CT had not been reported on previous standard imaging. CONCLUSION: This is the first PET/CT study using an 18F-labeled SSTR-ligand in meningioma patients: [18F]SiTATE provides extraordinary contrast in meningioma compared to healthy tissue and non-meningioma lesions, which leads to a high detection rate of so far unknown meningioma sites and osseous involvement. Having in mind the advantageous logistic features of 18F-labeled compared to 68Ga-labeled compounds (e.g., longer half-life and large-badge production), [18F]SiTATE has the potential to foster a widespread use of SSTR-targeted imaging in neuro-oncology.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Compuestos Organometálicos , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Meningioma/diagnóstico por imagen , Meningioma/patología , Receptores de Somatostatina , Péptidos , Neoplasias Meníngeas/diagnóstico por imagen
11.
J Cutan Pathol ; 50(7): 653-660, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36700349

RESUMEN

BACKGROUND: Encephaloceles are neural tube defects characterized by herniation of meninges, neural tissue and cerebrospinal fluid, while atretic cephaloceles denote a rudimentary connection to the intracranial space with absence of herniated neural tissue and represent an infrequent dermatopathologic diagnosis. Limited reports of these entities confound the challenge in their histopathologic distinction. Accurate classification is important given associated anomalies and neurologic manifestations that impact prognosis. METHODS: We describe the clinicopathological and immunohistochemical [glial fibrillary acidic protein (GFAP), S100, epithelial membrane antigen (EMA), and somatostatin receptor subtype 2A (SSTR2A)] features in a retrospective series encountered at a single institution between 1994 and 2020. RESULTS: We identified 13 cases classified as atretic cephalocele (n = 11) and encephalocele (n = 2). Hamartomatous changes and multinucleated cells were unique to atretic cephaloceles while myxoid areas were unique to encephaloceles. At least focal staining for SSTRA was seen in all atretic cephaloceles with the majority (87.5%) staining for EMA; negative staining for GFAP and S100 confirmed absence of neural tissue. Encephaloceles were GFAP and S100 positive, and negative for SSTR2 and EMA. Atretic cephaloceles had a favorable prognosis compared to encephaloceles, with severe morbidity present in both encephalocele cases. CONCLUSION: Our study raises awareness of atretic cephalocele and encephalocele among dermatopathologists and reveals a mutually exclusive immunophenotype that facilitates their distinction for prognostication and management.


Asunto(s)
Encefalocele , Meninges , Humanos , Encefalocele/patología , Estudios Retrospectivos , Meninges/patología , Pronóstico
12.
Pituitary ; 26(4): 419-428, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37285059

RESUMEN

PURPOSE: The pituitary gland has the fourth highest physiologic avidity of [68 Ga]-DOTATATE. In order to guide our understanding of [68 Ga]-DOTATATE PET in clinical contexts, accurate characterization of the normal pituitary gland is first required. This study aimed to characterize the normal pituitary gland using dedicated brain [68 Ga]-DOTATATE PET/MRI as a function of age and sex. METHODS: A total of 95 patients with a normal pituitary gland underwent brain [68 Ga]-DOTATATE PET examinations for the purpose of diagnosing CNS SSTR2 positive tumors (mean age: 58.9, 73% female). Maximum SUV of the pituitary gland was obtained in each patient. SUV of superior sagittal sinus was obtained to calculate normalized SUV score (SUVR) of the gland. The anatomic size of the gland was collected as maximum sagittal height (MSH). Correlations with age and sex were analyzed. RESULTS: The mean SUV and SUVR of the pituitary gland were 17.6 (range: 7-59.5, SD = 7.1) and 13.8 (range: 3.3-52.6, SD = 7.2), respectively. Older females had significantly higher SUV of the pituitary gland compared to younger females. When stratified by age and sex, both older and younger females had significantly higher pituitary SUV than older males. SUVR did not differ significantly by age or sex. MSH of the pituitary gland in younger females was significantly greater than in younger males at all age cutoffs. CONCLUSION: This study provides an empiric profiling of the physiological [68 Ga]-DOTATATE avidity of the pituitary gland. The findings suggest that SUV may vary by age and sex and can help guide the use of [68 Ga]-DOTATATE PET/MRI in clinical and research settings. Future studies can build on these findings to investigate further the relationship between pituitary biology and demographic factors.


Asunto(s)
Tumores Neuroendocrinos , Compuestos Organometálicos , Masculino , Adulto , Humanos , Femenino , Persona de Mediana Edad , Tumores Neuroendocrinos/diagnóstico , Estudios Prospectivos , Tomografía de Emisión de Positrones , Receptores de Somatostatina/metabolismo , Hipófisis/patología
13.
J Neurosci ; 41(36): 7514-7531, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34301828

RESUMEN

Primary cilia exhibit a distinct complement of proteins, including G-protein-coupled receptors (GPCRs) that mediate sensory and developmental signals. The localization of GPCRs to the ciliary membrane involves ciliary localization sequences (CLSs), but it is not known how CLSs might relate to cilium type. Here, we studied the localization of two rhodopsin (RHO)-like GPCRs, somatostatin receptor (SSTR3) and RHO, in three types of cilia, from inner medullary collecting duct (IMCD3) cells, hTERT-RPE1 cells (possessing pocket cilia), and rod photoreceptors (whose cilia grow into elaborate phototransductive outer segments). SSTR3 was localized specifically to all three types of cilia, whereas RHO showed more selectivity for the photoreceptor cilium. Focusing on C-terminal CLSs, we characterized a novel CLS in the SSTR3 C terminus, which was required for the robust ciliary localization of SSTR3. Replacing the C terminus of RHO with this SSTR3 CLS-enhanced ciliary localization, compared with full-length RHO in IMCD3 and hTERT-RPE1 cells. Addition of the SSTR3 CLS to the single transmembrane protein CD8A enabled ciliary localization. In hTERT-RPE1 cells, a partial SSTR3 CLS added to CD8A effected specific localization to the periciliary (pocket) membrane, demonstrating C-terminal localization sequence targeting to this domain. Using retinas from mice, including both sexes, we show that deletion of the C terminus of RHO reduced the rod outer segment localization and that addition of the SSTR3 C-terminal CLS to the truncated RHO partly rescued this mislocalization. Overall, the study details elements of the different C termini of SSTR3 and RHO that are major effectors in determining specificity of cilium (or pericilium) localization among different types of cilia.SIGNIFICANCE STATEMENT The localization of G-protein-coupled receptors to primary cilia is key to many types of signal transduction. After characterizing a novel C-terminal CLS in SSTR3, we investigated how SSTR3 and RHO localization to the cilium relates to C-terminal CLSs and to cilium type. We found that the SSTR3 C-terminal CLS was effective in three different types of cilia, but the RHO C terminus showed a clear localization preference for the highly elaborate photoreceptor cilium. When added to CD8A, part of the SSTR3 CLS promoted specific periciliary membrane localization in hTERT-RPE1 cells, demonstrating an effective CLS for this domain. Thus, we demonstrate that elements of the C termini of SSTR3 and RHO determine different localization patterns among different types of cilia.


Asunto(s)
Cilios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Somatostatina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Rodopsina/metabolismo , Animales , Línea Celular , Humanos , Ratones , Retina/metabolismo , Transducción de Señal/fisiología
14.
Eur J Nucl Med Mol Imaging ; 49(4): 1360-1373, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34665275

RESUMEN

PURPOSE: To explore the feasibility of [68Ga]Ga-DOTATATE positron emission tomography/computed tomography (PET/CT) in patients with non-keratinizing nasopharyngeal carcinoma (NPC) and to evaluate whether [68Ga]Ga-DOTATATE PET/CT could be used for non-invasive determination of somatostatin receptor 2 (SSTR2) expression in NPC. METHODS: This prospective study included patients with NPC who underwent [68Ga]Ga-DOTATATE PET/CT between February and May 2021. The [68Ga]Ga-DOTATATE and [18F]FDG uptakes in primary and metastatic NPC lesions were calculated and compared, and the [68Ga]Ga-DOTATATE uptake between SSTR2 score groups was analysed. RESULTS: A total of 36 participants (25 patients, initial staging; 11 patients, recurrence detection) were included; 33 patients also underwent [18F]FDG PET/CT for staging/restaging as a part of their routine diagnostic workup. [68Ga]Ga-DOTATATE PET/CT showed an intense tracer uptake in primary and metastatic NPC lesions. The radiotracer uptake was higher with [68Ga]Ga-DOTATATE than with [18F]FDG PET in primary NPC lesions (SUVmax: 12.03 vs. 10.07, P = 0.048; tumour-to-brain ratio: 36.16 vs. 0.86, P < 0.001) and regional lymph node metastases (median SUVmax: 9.11 vs. 6.12, P < 0.001) and comparable in bone and visceral metastases. Importantly, most NPC lesions showed intense SSTR2 expression (85.7%), which was strongly correlated with the [68Ga]Ga-DOTATATE uptake. The SUVmax of SSTR2-negative lesions was significantly lower than that of SSTR2-positive lesions (SUVmax: 4.95 vs. 12.61, P = 0.013). CONCLUSION: [68Ga]Ga-DOTATATE PET/CT is a promising imaging modality for detecting primary and metastatic NPC, with favourable image contrast and comparable diagnostic efficacy when compared to [18F]FDG PET/CT. An intense SSTR2 expression was observed in most NPCs, and this expression was significantly correlated with the [68Ga]Ga-DOTATATE uptake.


Asunto(s)
Neoplasias Nasofaríngeas , Compuestos Organometálicos , Fluorodesoxiglucosa F18 , Radioisótopos de Galio , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagen , Neoplasias Nasofaríngeas/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones , Estudios Prospectivos , Cintigrafía , Radiofármacos , Receptores de Somatostatina/metabolismo
15.
Eur J Nucl Med Mol Imaging ; 49(4): 1113-1126, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34625828

RESUMEN

PURPOSE: The ߯-emitting terbium-161 also emits conversion and Auger electrons, which are believed to be effective in killing single cancer cells. Terbium-161 was applied with somatostatin receptor (SSTR) agonists that localize in the cytoplasm (DOTATOC) and cellular nucleus (DOTATOC-NLS) or with a SSTR antagonist that localizes at the cell membrane (DOTA-LM3). The aim was to identify the most favorable peptide/terbium-161 combination for the treatment of neuroendocrine neoplasms (NENs). METHODS: The capability of the 161Tb- and 177Lu-labeled somatostatin (SST) analogues to reduce viability and survival of SSTR-positive AR42J tumor cells was investigated in vitro. The radiopeptides' tissue distribution profiles were assessed in tumor-bearing mice. The efficacy of terbium-161 compared to lutetium-177 was investigated in therapy studies in mice using DOTATOC or DOTA-LM3, respectively. RESULTS: In vitro, [161Tb]Tb-DOTA-LM3 was 102-fold more potent than [177Lu]Lu-DOTA-LM3; however, 161Tb-labeled DOTATOC and DOTATOC-NLS were only 4- to fivefold more effective inhibiting tumor cell viability than their 177Lu-labeled counterparts. This result was confirmed in vivo and demonstrated that [161Tb]Tb-DOTA-LM3 was significantly more effective in delaying tumor growth than [177Lu]Lu-DOTA-LM3, thereby, prolonging survival of the mice. A therapeutic advantage of terbium-161 over lutetium-177 was also manifest when applied with DOTATOC. Since the nuclear localizing sequence (NLS) compromised the in vivo tissue distribution of DOTATOC-NLS, it was not used for therapy. CONCLUSION: The use of membrane-localizing DOTA-LM3 was beneficial and profited from the short-ranged electrons emitted by terbium-161. Based on these preclinical data, [161Tb]Tb-DOTA-LM3 may outperform the clinically employed [177Lu]Lu-DOTATOC for the treatment of patients with NENs.


Asunto(s)
Tumores Neuroendocrinos , Receptores de Somatostatina , Animales , Humanos , Ratones , Tumores Neuroendocrinos/patología , Octreótido , Radioisótopos , Receptores de Somatostatina/metabolismo , Terbio/uso terapéutico , Distribución Tisular
16.
Neurosurg Rev ; 45(4): 2671-2679, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34601710

RESUMEN

The expression of somatostatin receptors in meningioma is well established. First, suggestions of a prognostic impact of SSTRs in meningioma have been made. However, the knowledge is based on few investigations in small cohorts. We recently analyzed the expression of all five known SSTRs in a large cohort of over 700 meningiomas and demonstrated significant correlations with WHO tumor grade and other clinical characteristics. We therefore expanded our dataset and additionally collected information about radiographic tumor recurrence and progression as well as clinically relevant factors (gender, age, extent of resection, WHO grade, tumor location, adjuvant radiotherapy, neurofibromatosis type 2, primary/recurrent tumor) for a comprehensive prognostic multivariate analysis (n = 666). The immunohistochemical expression scores of SSTR1, 2A, 3, 4, and 5 were scored using an intensity distribution score ranging from 0 to 12. For recurrence-free progression analysis, a cutoff at an intensity distribution score of 6 was used. Univariate analysis demonstrated a higher rate of tumor recurrence for increased expression scores for SSTR2A, SSTR3, and SSTR4 (p = 0.0312, p = 0.0351, and p = 0.0390, respectively), while high expression levels of SSTR1 showed less frequent tumor recurrences (p = 0.0012). In the Kaplan-Meier analysis, a higher intensity distribution score showed a favorable prognosis for SSTR1 (p = 0.0158) and an unfavorable prognosis for SSTR2A (0.0143). The negative prognostic impact of higher SSTR2A expression remained a significant factor in the multivariate analysis (RR 1.69, p = 0.0060). We conclude that the expression of SSTR2A has an independent prognostic value regarding meningioma recurrence.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Receptores de Somatostatina , Humanos , Inmunohistoquímica , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/patología , Meningioma/diagnóstico , Meningioma/patología , Recurrencia Local de Neoplasia , Pronóstico , Receptores de Somatostatina/metabolismo
17.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955756

RESUMEN

Idiopathic superior oblique muscle palsy is a major type of paralytic, non-comitant strabismus and presents vertical and cyclo-torsional deviation of one eye against the other eye, with a large vertical fusion range and abnormal head posture such as head tilt. Genetic background is considered to play a role in its development, as patients with idiopathic superior oblique muscle palsy have varying degrees of muscle hypoplasia and, rarely, the complete absence of the muscle, that is, aplasia. In this study, whole genome sequencing was performed, and single nucleotide variations and short insertions/deletions (SNVs/InDels) were annotated in two patients each in three small families (six patients in total) with idiopathic superior oblique muscle palsy, in addition to three normal individuals in one family. At first, linkage analysis was carried out in the three families and SNVs/InDels in chromosomal loci with negative LOD scores were excluded. Next, SNVs/InDels shared by the six patients, but not by the three normal individuals, were chosen. SNVs/InDels were further narrowed down by choosing low-frequency (<1%) or non-registered SNVs/InDels in four databases for the Japanese population, and then by choosing SNVs/InDels with functional influence, leading to one candidate gene, SSTR5-AS1 in chromosome 16. The six patients were heterozygous for 13-nucleotide deletion in SSTR5-AS1, except for one homozygous patient, while the three normal individuals were wild type. Targeted polymerase chain reaction (PCR) and direct sequencing of PCR products confirmed the 13-nucleotide deletion in SSTR5-AS1. In the face of newly-registered SSTR5-AS1 13-nucleotide deletion at a higher frequency in a latest released database for the Japanese population, the skipping of low-frequency and non-registration sorting still resulted in only 13 candidate genes including SSTR5-AS1 as common variants. The skipping of linkage analysis also led to the same set of 13 candidate genes. Different testing strategies that consisted of linkage analysis and simple unintentional bioinformatics could reach candidate genes in three small families with idiopathic superior oblique muscle palsy.


Asunto(s)
Biología Computacional , Músculos Oculomotores , Humanos , Japón , Nucleótidos , Parálisis , Secuenciación Completa del Genoma
18.
J Cell Physiol ; 236(10): 6974-6987, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33682941

RESUMEN

Octreotide (OCT) is used to inhibit hormone secretion and growth in somatotroph tumors, although a significant percentage of patients are resistant. It has also been tested in nonfunctioning (NF) tumors but with poor results, with these outcomes having been associated with SSTR2 levels and impaired signaling. We investigated whether OCT inhibitory effects can be improved by TGF-ß1 in functioning and nonfunctioning somatotroph tumor cells. OCT effects on hormone secretion and proliferation were analyzed in the presence of TGF-ß1 in WT and SSTR2-overexpressing secreting GH3 and silent somatotroph tumor cells. The mechanism underlying these effects was assessed by studying SSTR and TGFßR signaling pathways mediators. In addition, we analyzed the effects of OCT/TGF-ß1 treatment on tumor growth and cell proliferation in vivo. The inhibitory effects of OCT on GH- and PRL-secretion and proliferation were improved in the presence of TGF-ß1, as well as by SSTR2 overexpression. The OCT/TGF-ß1 treatment induced downregulation of pERK1/2 and pAkt, upregulation of pSmad3, and inhibition of cyclin D1. In vivo experiments showed that OCT in the presence of TGF-ß1 blocked tumor volume growth, decreased cell proliferation, and increased tumor necrosis. These results indicate that SSTR2 levels and the stimulation of TGF-ß1/TGFßR/Smad2/3 pathway are important for strengthening the antiproliferative and antisecretory effects of OCT.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Proliferación Celular/efectos de los fármacos , Octreótido/farmacología , Neoplasias Hipofisarias/tratamiento farmacológico , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Somatotrofos/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Animales , Línea Celular , Femenino , Humanos , Ratones Desnudos , Fosforilación , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Ratas , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Transducción de Señal , Somatotrofos/metabolismo , Somatotrofos/patología , Carga Tumoral/efectos de los fármacos
19.
BMC Genomics ; 22(1): 134, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632121

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cells are a potential resource for the clinical therapy of certain diseases. Canine, as a companion animal, living in the same space with human, is an ideal new model for human diseases research. Because of the high prevalence of diabetes, alternative transplantation islets resource (i.e. insulin producing cells) for diabetes treatment will be in urgent need, which makes our research on the transdifferentiation of Bone marrow mesenchymal stem cells into insulin producing cells become more important. RESULT: In this study, we completed the transdifferentiation process and achieved the transcriptome profiling of five samples with two biological duplicates, namely, "BMSCs", "islets", "stage 1", "stage 2" and "stage 3", and the latter three samples were achieved on the second, fifth and eighth day of induction. A total of 11,530 differentially expressed transcripts were revealed in the profiling data. The enrichment analysis of differentially expressed genes revealed several signaling pathways that are essential for regulating proliferation and transdifferentiation, including focal adhesion, ECM-receptor interaction, tight junction, protein digestion and absorption, and the Rap1 signaling pathway. Meanwhile, the obtained protein-protein interaction network and functional identification indicating involvement of three genes, SSTR2, RPS6KA6, and VIP could act as a foundation for further research. CONCLUSION: In conclusion, to the best of our knowledge, this is the first survey of the transdifferentiation of canine BMSCs into insulin-producing cells according with the timeline using next-generation sequencing technology. The three key genes we pick out may regulate decisive genes during the development of transdifferentiation of insulin producing cells.


Asunto(s)
Insulinas , Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea , Transdiferenciación Celular/genética , Perros , Perfilación de la Expresión Génica , Humanos
20.
Chembiochem ; 22(7): 1307-1315, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33238069

RESUMEN

Multimodal imaging probes have attracted the interest of ongoing research, for example, for the surgical removal of tumors. Modular synthesis approaches allow the construction of hybrid probes consisting of a radiotracer, a fluorophore and a targeting unit. We present the synthesis of a new asymmetric bifunctional cyanine dye that can be used as a structural and functional linker for the construction of such hybrid probes. 68 Ga-DOTATATE, a well-characterized radiopeptide targeting the overexpressed somatostatin receptor subtype 2 (SSTR2) in neuroendocrine tumors, was labeled with our cyanine dye, thus providing additional information along with the data obtained from the radiotracer. We tested the SSTR2-targeting and imaging properties of the resulting probe 68 Ga-DOTA-ICC-TATE in vitro and in a tumor xenograft mouse model. Despite the close proximity between dye and pharmacophore, we observed a high binding affinity towards SSTR2 as well as elevated uptake in SSTR2-overexpressing tumors in the positron emission tomography (PET) scan and histological examination.


Asunto(s)
Carbocianinas/química , Colorantes Fluorescentes/química , Receptores de Somatostatina/metabolismo , Somatostatina/química , Animales , Línea Celular Tumoral , Colorantes Fluorescentes/síntesis química , Humanos , Ratones , Ratones Desnudos , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/metabolismo , Octreótido/análogos & derivados , Octreótido/química , Compuestos Organometálicos/química , Péptidos/química , Péptidos/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/metabolismo , Receptores de Somatostatina/química , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda