Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ecotoxicol Environ Saf ; 150: 270-279, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29289862

RESUMEN

In this study, secondary municipal solid waste composts (SC) and wood vinegar treated secondary compost (WV-SC) was prepared to investigate the capability for single-heavy metals and multi-metal systems adsorption. The adsorption sequence of WV-SC for the maximum single metals sorption capacities was Cd (42.7mgg-1) > Cu (38.6mgg-1) > Zn (34.9mgg-1) > Ni (28.7mgg-1) and showed higher than that of SC adsorption isotherm. In binary/quaternary-metal systems, Ni adsorption showed a stronger inhibitory effect compared with Zn, Cd and Cu on both SC and WV-SC. According to Freundlich and Langmuir adsorption isotherm models, as well as desorption behaviors and speciation analysis of heavy metals, competitive adsorption behaviors were differed from single-metal adsorption. Especially, the three-dimensional simulation of competitive adsorption indicated that the Ni was easily exchanged and desorbed. The amount of exchangeable heavy metal fraction were in the lowest level for the metal-loaded adsorbents, composting treated by wood vinegar improved the adsorbed metals converted to the residue fraction. This was an essential start in estimating the multiple heavy metal adsorption behaviors of secondary composts, the results proved that wood vinegar was an effective additive to improve the composts quality and decrease the metal toxicity.


Asunto(s)
Ácido Acético/química , Compostaje , Contaminantes Ambientales/análisis , Fermentación , Metales Pesados/análisis , Metanol/química , Adsorción , Modelos Teóricos
2.
Environ Technol ; 40(22): 2962-2976, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29584584

RESUMEN

Composting may change the adsorption characteristics and mechanisms of organic materials due to their differences in organic chemical functional groups and surface structures. The adsorption properties of heavy metals onto the municipal solid waste compost (MSW-C) and its secondary fermentation form (MSW-SC) were comparatively investigated in single, binary and multiple solutions by batch experiments. In the single-metal system, the maximum adsorption capacities of Cu, Zn, Cd and Ni onto MSW-SC were 29.2, 26.3, 38.1 and 22.0 mg g-1, respectively, and showed higher than that of MSW-C. The adsorption fitted best with the pseudo-second-order kinetics and Langmuir isotherms. The competitive adsorption results indicated that the composts exhibited good selectivity in the adsorption of Cu over Cd, Zn and Ni; thus, for the quaternary-metal systems, the adsorption sequence was Cu > Zn > Cd > Ni. Humic acid content, cation exchange capacity and surface area were increased following the secondary composting. FTIR analysis indicated amine and aromatic compounds were main binding sites accounting for metal sorption. SEM-EDX analysis suggested that the MSW-SC had rough surfaces and stronger adsorption capacity. Decreasing percentage of exchangeable metals was found in the metal-loaded MSW-SC based on a speciation analysis. This study highlights the interactive impacts of different metals during adsorption by compost with different maturity, the secondary composting process was a multifunctional improvement of sorption characteristics and MSW-SC was developed to be a highly efficient biosorbent.


Asunto(s)
Compostaje , Metales Pesados , Adsorción , Iones , Residuos Sólidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda