Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Plant Biol ; 23(1): 609, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036956

RESUMEN

BACKGROUND: Plants show developmental plasticity with variations in environmental nutrients. Considering low-cost rock dust has been identified as a potential alternative to artificial fertilizers for more sustainable agriculture, the growth responses of Arabidopsis seedlings on three rock meals (basalt, granite, and marlstone) were examined for the different foraging behavior, biomass accumulation, and root architecture. RESULTS: Compared to ½ MS medium, basalt and granite meal increased primary root length by 13% and 38%, respectively, but marlstone caused a 66% decrease, and they all drastically reduced initiation and elongation of lateral roots but lengthened root hairs. Simultaneous supply of organic nutrients and trace elements increased fresh weight due to the increased length of primary roots and root hairs. When nitrogen (N), phosphorus (P), and potassium (K) were supplied individually, N proved most effective in improving fresh weight of seedlings growing on basalt and granite, whereas K, followed by P, was most effective for those growing on marlstone. Unexpectedly, the addition of N to marlstone negatively affected seedling growth, which was associated with repressed auxin biosynthesis in roots. CONCLUSIONS: Our data indicate that plants can recognize and adapt to complex mineral deficiency by adjusting hormonal homeostasis to achieve environmental sensitivity and developmental plasticity, which provide a basis for ecologically sound and sustainable strategies to maximize the use of natural resources and reduce the production of artificial fertilizers.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Plantones , Ácidos Indolacéticos , Fertilizantes , Raíces de Plantas , Homeostasis , Nutrientes
2.
Am J Bot ; 102(8): 1250-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26290548

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: The presence of gelatinous (tension) fibers (GFs) in the roots of two extant cycadales (Cycas and Zamia) in a recent publication raises interesting issues of GF distribution in seed plants. An immediate question that arises from this discovery is whether GFs occur consistently in the radicle of all extant cycad genera and therefore might have a similar role in root contraction. We present results of a survey of nursery-grown material of all 10 genera.• METHODS: We sequentially sectioned seedling root material and used simple staining and histochemical methods to follow anatomical changes along the radicle of all 10 genera.• KEY RESULTS: We found GFs in nine genera; Stangeria appears to be the only genus without them. In all genera, there is a wide variation in the number of GFs and also variation in the development of thickened, fleshy roots. "Tertiary expansion" is a useful term to describe late cell division and enlargement of both primary and secondary parenchyma, the latter produced by the vascular cambium. Certain other histological features can be diagnostically useful at the generic level.• CONCLUSIONS: The functional interpretation of GFs as being wholly responsible for apparent tissue contraction is now somewhat compromised, especially as distortion of tracheary elements by changes in dimensions of parenchyma cells can falsely suggest root contraction when it may not occur. These preliminary results point the way to a more precise investigation of study material grown in more uniform environments using advanced technological methods.


Asunto(s)
Cycadopsida/citología , Gelatina/metabolismo , Raíces de Plantas/citología , Cycadopsida/fisiología , Raíces de Plantas/fisiología , Plantones/citología , Plantones/fisiología
3.
Cryobiology ; 68(3): 436-45, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24657198

RESUMEN

Phenylketonuria (PKU) is an inherited metabolic disorder caused by deficient phenylalanine hydroxylase (PAH) activity, the enzyme responsible for the disposal of excess amounts of the essential amino acid phenylalanine (Phe). Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) has potential to serve as an enzyme substitution therapy for this human genetic disease. Using 7-day-old Japanese Striped corn seedlings (Japonica Striped maize, Zea mays L. cv. japonica) that contain high activities of PAL, we investigated a number of methods to preserve the roots as an intact food and for long-term storage. The cryoprotectant effects of maple syrup and other edible sugars (mono- and oligosaccharides) were evaluated. Following thawing, the preserved roots were then examined to determine whether the rigid plant cell walls could protect the PAL enzyme from proteolysis during simulated (in vitro) digestion comprised of gastric and intestinal phases. While several treatments led to retention of PAL activity during freezing, upon thawing and in vitro digestion, root tissues that had been previously frozen in the presence of maple syrup exhibited the highest residual PAL activities (∼50% of the initial enzyme activity), in marked contrast to all of the treatments using other edible sugars. The structural integrity of the root cells, and the stability of the functional PAL tetramer were also preserved with the maple syrup protocol. These results have significance for the formulation of oral enzyme/protein therapeutics. When plant tissues are adequately preserved, the rigid cell walls constitute a protective barrier even under harsh (e.g. gastrointestinal-like) conditions.


Asunto(s)
Criopreservación/métodos , Fenilanina Amoníaco-Liasa/metabolismo , Plantones/enzimología , Zea mays/enzimología , Crioprotectores/metabolismo , Terapia Enzimática , Humanos , Fenilanina Amoníaco-Liasa/administración & dosificación , Fenilanina Amoníaco-Liasa/uso terapéutico , Fenilcetonurias/tratamiento farmacológico , Plantones/fisiología , Zea mays/fisiología
4.
J Hazard Mater ; 480: 136052, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368354

RESUMEN

Nanoplastics can transfer from the environment to plants and potentially harm organisms. However, the mechanisms on how crop root systems absorb and transport nanoplastics are still unclear. Here, original and fluorescent labeled polystyrene and polyvinyl chloride nanoparticles (PS-NPs, PVC-NPs; 30 nm; 10 mg L-1) were employed to study the distribution and internalization pathways in wheat seedling roots. In the study, nanoplastics accumulated more in the root tip and surface, with PVC-NPs more prevalent than PS-NPs. After being treated with inhibitors (Na3VO4, chlorpromazine and amiloride), the nanoplastics mean fluorescence intensities were reduced by 4.0-51.1 %. During the uptake, both passive and energy-consuming pathways occurred. For the energy-consuming uptake pathway, macropinocytosis contributed more to cytoplasm than clathrin-mediated endocytosis. H+ influx was observed during nanoplastic transport into the cytoplasm, and the reduction in plasma membrane ATPase activity led to a decrease in nanoplastic internalization. These results elucidate the pathways of nanoplastics absorption and transport in wheat roots, provide crucial evidence for assessing nanoplastics' ecological risks and support the development of technologies to block nanoplastics absorption by crop roots, ensuring agricultural and ecosystem safety.

5.
J Plant Physiol ; 246-247: 153127, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32007728

RESUMEN

Ca2+ acts as a universal second messenger in eukaryotes. In animals, a wide variety of environmental and developmental stimuli trigger Ca2+ dynamics in organelles, such as the cytoplasm, nucleus, and endoplasmic reticulum (ER). However, ER Ca2+ ([Ca2+]er) homeostasis and its contributions in cytosolic and/or nucleosolic Ca2+ dynamics in plants remain elusive. GCaMPs are comprised of a circularly permutated form of enhanced green fluorescent protein fused to calmodulin and myosin light-chain kinase M13 and used for monitoring Ca2+ dynamics in mammalian cells. Here, we targeted a high-affinity variant of GCaMP with nuclear export signal in the cytoplasm (NES-GCaMP6m), with a nuclear-localised signal in the nucleus (NLS-GCaMP6m), and a low-affinity variant of GCaMP, also known as calcium-measuring organelle-entrapped protein indicators (CEPIA), with a signal peptide sequence of the ER-localised protein Calreticulin 1a in the ER lumen (CRT1a-R-CEPIA1er) for intraorganellar Ca2+ imaging in Arabidopsis. We found that cytosolic Ca2+ ([Ca2+]cyt) increases induced by 250 mM sorbitol as an osmotic stress stimulus, 50 µM abscisic acid (ABA), or 1 mM carbachol (CCh) were mainly due to extracellular Ca2+ influx, whereas nucleosolic Ca2+ ([Ca2+]nuc) increases triggered by osmotic stress, ABA, or CCh were contributed by [Ca2+]er release. In addition, [Ca2+]er dynamics presented specific patterns in response to different stimuli such as osmotic stress, ABA, or CCh, indicating that Ca2+ signalling occurs in the ER in plants. These results provide valuable insights into subcellular Ca2+ dynamics in response to different stresses in Arabidopsis root cells and prove that GCaMP imaging is a useful tool for furthering our understanding of plant organelle functions.


Asunto(s)
Arabidopsis/metabolismo , Técnicas Biosensibles/métodos , Calcio/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Unión al Calcio/química , Proteínas Fluorescentes Verdes/química , Plantones/metabolismo
6.
Micron ; 110: 79-87, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29772476

RESUMEN

In animals during apoptosis, the best examined type of programmed cell death (PCD), three main phases are distinguished: (i) specification (signaling), (ii) killing and (iii) execution one. It has bean postulated that plant PCD also involves three subsequent phases: (i) transmission of death signals to cells (signaling), (ii) initiation of killing processes and (iii) destruction of cells. One of the most important hallmarks of animal and plant PCD are those regarding nucleus, not thoroughly studied in plants so far. To study kinetin-induced PCD (Kin-PCD) in the context of nuclear material faith, 2-cm apical parts of Vicia faba ssp. minor seedling roots were used. Applied assays involving spectrophotometry, transmission electron microscopy, fluorescence and white light microscopy allowed to examine metabolic and cytomorphologic hallmarks such as changes in DNA content, ssDNA formation and activity of acidic and basic nucleases (DNases and RNases) as well as malformations and fragmentation of nucleoli and nuclei. The obtained results concerning the PCD hallmarks and influence of ZnSO4 on Kin-PCD allowed us to confirmed presence of specification/signaling, killing and execution/degradation phases of the process and broaden the knowledge about processes affecting nuclei during PCD.


Asunto(s)
Apoptosis/fisiología , Núcleo Celular/fisiología , Raíces de Plantas/fisiología , Plantones/fisiología , Vicia faba/fisiología , Cromatina/genética , ADN de Cadena Simple/genética , Cinetina/farmacología , Microscopía Electrónica de Transmisión , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sulfato de Zinc/farmacología
7.
Environ Pollut ; 231(Pt 1): 524-532, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28841504

RESUMEN

Rare earth elements (REEs) are used in various fields, resulting in their accumulation in the environment. This accumulation has affected the survival and distribution of crops in various ways. Acid rain is a serious global environmental problem. The combined effects on crops from these two types of pollution have been reported, but the effects on crop root nitrogen assimilation are rarely known. To explore the impact of combined contamination from these two pollutants on crop nitrogen assimilation, the soybean seedlings were treated with simulated environmental pollution from acid rain and a representative rare earth ion, lanthanum ion (La3+), then the indexes related to plant nitrogen assimilation process in roots were determined. The results showed that combined treatment with pH 4.5 acid rain and 0.08 mM La3+ promoted nitrogen assimilation synergistically, while the other combined treatments all showed inhibitory effects. Moreover, acid rain aggravated the inhibitory effect of 1.20 or 0.40 mM La3+ on nitrogen assimilation in soybean seedling roots. Thus, the effects of acid rain and La3+ on crops depended on the combination levels of acid rain intensity and La3+ concentration. Acid rain increases the bioavailability of La3+, and the combined effects of these two pollutants were more serious than that of either pollutant alone. These results provide new evidence in favor of limiting overuse of REEs in agriculture. This work also provides a new framework for ecological risk assessment of combined acid rain and REEs pollution on soybean crops.


Asunto(s)
Lluvia Ácida , Contaminantes Ambientales/análisis , Glycine max/fisiología , Lantano/análisis , Ciclo del Nitrógeno/efectos de los fármacos , Nitrógeno/metabolismo , Ecología , Raíces de Plantas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/fisiología , Glycine max/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda